File: stl.h

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (666 lines) | stat: -rw-r--r-- 24,742 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
    pybind11/stl.h: Transparent conversion for STL data types

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "pybind11.h"
#include "detail/common.h"
#include "detail/descr.h"
#include "detail/type_caster_base.h"

#include <deque>
#include <initializer_list>
#include <list>
#include <map>
#include <memory>
#include <ostream>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <valarray>

// See `detail/common.h` for implementation of these guards.
#if defined(PYBIND11_HAS_OPTIONAL)
#    include <optional>
#elif defined(PYBIND11_HAS_EXP_OPTIONAL)
#    include <experimental/optional>
#endif

#if defined(PYBIND11_HAS_VARIANT)
#    include <variant>
#endif

PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)

//
// Begin: Equivalent of
//        https://github.com/google/clif/blob/ae4eee1de07cdf115c0c9bf9fec9ff28efce6f6c/clif/python/runtime.cc#L388-L438
/*
The three `object_is_convertible_to_*()` functions below are
the result of converging the behaviors of pybind11 and PyCLIF
(http://github.com/google/clif).

Originally PyCLIF was extremely far on the permissive side of the spectrum,
while pybind11 was very far on the strict side. Originally PyCLIF accepted any
Python iterable as input for a C++ `vector`/`set`/`map` argument, as long as
the elements were convertible. The obvious (in hindsight) problem was that
any empty Python iterable could be passed to any of these C++ types, e.g. `{}`
was accepted for C++ `vector`/`set` arguments, or `[]` for C++ `map` arguments.

The functions below strike a practical permissive-vs-strict compromise,
informed by tens of thousands of use cases in the wild. A main objective is
to prevent accidents and improve readability:

- Python literals must match the C++ types.

- For C++ `set`: The potentially reducing conversion from a Python sequence
  (e.g. Python `list` or `tuple`) to a C++ `set` must be explicit, by going
  through a Python `set`.

- However, a Python `set` can still be passed to a C++ `vector`. The rationale
  is that this conversion is not reducing. Implicit conversions of this kind
  are also fairly commonly used, therefore enforcing explicit conversions
  would have an unfavorable cost : benefit ratio; more sloppily speaking,
  such an enforcement would be more annoying than helpful.

Additional checks have been added to allow types derived from `collections.abc.Set` and
`collections.abc.Mapping` (`collections.abc.Sequence` is already allowed by `PySequence_Check`).
*/

inline bool object_is_instance_with_one_of_tp_names(PyObject *obj,
                                                    std::initializer_list<const char *> tp_names) {
    if (PyType_Check(obj)) {
        return false;
    }
    const char *obj_tp_name = Py_TYPE(obj)->tp_name;
    for (const auto *tp_name : tp_names) {
        if (std::strcmp(obj_tp_name, tp_name) == 0) {
            return true;
        }
    }
    return false;
}

inline bool object_is_convertible_to_std_vector(const handle &src) {
    // Allow sequence-like objects, but not (byte-)string-like objects.
    if (PySequence_Check(src.ptr()) != 0) {
        return !PyUnicode_Check(src.ptr()) && !PyBytes_Check(src.ptr());
    }
    // Allow generators, set/frozenset and several common iterable types.
    return (PyGen_Check(src.ptr()) != 0) || (PyAnySet_Check(src.ptr()) != 0)
           || object_is_instance_with_one_of_tp_names(
               src.ptr(), {"dict_keys", "dict_values", "dict_items", "map", "zip"});
}

inline bool object_is_convertible_to_std_set(const handle &src, bool convert) {
    // Allow set/frozenset and dict keys.
    // In convert mode: also allow types derived from collections.abc.Set.
    return ((PyAnySet_Check(src.ptr()) != 0)
            || object_is_instance_with_one_of_tp_names(src.ptr(), {"dict_keys"}))
           || (convert && isinstance(src, module_::import("collections.abc").attr("Set")));
}

inline bool object_is_convertible_to_std_map(const handle &src, bool convert) {
    // Allow dict.
    if (PyDict_Check(src.ptr())) {
        return true;
    }
    // Allow types conforming to Mapping Protocol.
    // According to https://docs.python.org/3/c-api/mapping.html, `PyMappingCheck()` checks for
    // `__getitem__()` without checking the type of keys. In order to restrict the allowed types
    // closer to actual Mapping-like types, we also check for the `items()` method.
    if (PyMapping_Check(src.ptr()) != 0) {
        PyObject *items = PyObject_GetAttrString(src.ptr(), "items");
        if (items != nullptr) {
            bool is_convertible = (PyCallable_Check(items) != 0);
            Py_DECREF(items);
            if (is_convertible) {
                return true;
            }
        } else {
            PyErr_Clear();
        }
    }
    // In convert mode: Allow types derived from collections.abc.Mapping
    return convert && isinstance(src, module_::import("collections.abc").attr("Mapping"));
}

//
// End: Equivalent of clif/python/runtime.cc
//

/// Extracts an const lvalue reference or rvalue reference for U based on the type of T (e.g. for
/// forwarding a container element).  Typically used indirect via forwarded_type(), below.
template <typename T, typename U>
using forwarded_type = conditional_t<std::is_lvalue_reference<T>::value,
                                     remove_reference_t<U> &,
                                     remove_reference_t<U> &&>;

/// Forwards a value U as rvalue or lvalue according to whether T is rvalue or lvalue; typically
/// used for forwarding a container's elements.
template <typename T, typename U>
constexpr forwarded_type<T, U> forward_like(U &&u) {
    return std::forward<detail::forwarded_type<T, U>>(std::forward<U>(u));
}

// Checks if a container has a STL style reserve method.
// This will only return true for a `reserve()` with a `void` return.
template <typename C>
using has_reserve_method = std::is_same<decltype(std::declval<C>().reserve(0)), void>;

template <typename Type, typename Key>
struct set_caster {
    using type = Type;
    using key_conv = make_caster<Key>;

private:
    template <typename T = Type, enable_if_t<has_reserve_method<T>::value, int> = 0>
    void reserve_maybe(const anyset &s, Type *) {
        value.reserve(s.size());
    }
    void reserve_maybe(const anyset &, void *) {}

    bool convert_iterable(const iterable &itbl, bool convert) {
        for (const auto &it : itbl) {
            key_conv conv;
            if (!conv.load(it, convert)) {
                return false;
            }
            value.insert(cast_op<Key &&>(std::move(conv)));
        }
        return true;
    }

    bool convert_anyset(const anyset &s, bool convert) {
        value.clear();
        reserve_maybe(s, &value);
        return convert_iterable(s, convert);
    }

public:
    bool load(handle src, bool convert) {
        if (!object_is_convertible_to_std_set(src, convert)) {
            return false;
        }
        if (isinstance<anyset>(src)) {
            value.clear();
            return convert_anyset(reinterpret_borrow<anyset>(src), convert);
        }
        if (!convert) {
            return false;
        }
        assert(isinstance<iterable>(src));
        value.clear();
        return convert_iterable(reinterpret_borrow<iterable>(src), convert);
    }

    template <typename T>
    static handle cast(T &&src, return_value_policy policy, handle parent) {
        if (!std::is_lvalue_reference<T>::value) {
            policy = return_value_policy_override<Key>::policy(policy);
        }
        pybind11::set s;
        for (auto &&value : src) {
            auto value_ = reinterpret_steal<object>(
                key_conv::cast(detail::forward_like<T>(value), policy, parent));
            if (!value_ || !s.add(std::move(value_))) {
                return handle();
            }
        }
        return s.release();
    }

    PYBIND11_TYPE_CASTER(type,
                         io_name("collections.abc.Set", "set") + const_name("[") + key_conv::name
                             + const_name("]"));
};

template <typename Type, typename Key, typename Value>
struct map_caster {
    using key_conv = make_caster<Key>;
    using value_conv = make_caster<Value>;

private:
    template <typename T = Type, enable_if_t<has_reserve_method<T>::value, int> = 0>
    void reserve_maybe(const dict &d, Type *) {
        value.reserve(d.size());
    }
    void reserve_maybe(const dict &, void *) {}

    bool convert_elements(const dict &d, bool convert) {
        value.clear();
        reserve_maybe(d, &value);
        for (const auto &it : d) {
            key_conv kconv;
            value_conv vconv;
            if (!kconv.load(it.first.ptr(), convert) || !vconv.load(it.second.ptr(), convert)) {
                return false;
            }
            value.emplace(cast_op<Key &&>(std::move(kconv)), cast_op<Value &&>(std::move(vconv)));
        }
        return true;
    }

public:
    bool load(handle src, bool convert) {
        if (!object_is_convertible_to_std_map(src, convert)) {
            return false;
        }
        if (isinstance<dict>(src)) {
            return convert_elements(reinterpret_borrow<dict>(src), convert);
        }
        if (!convert) {
            return false;
        }
        auto items = reinterpret_steal<object>(PyMapping_Items(src.ptr()));
        if (!items) {
            throw error_already_set();
        }
        assert(isinstance<iterable>(items));
        return convert_elements(dict(reinterpret_borrow<iterable>(items)), convert);
    }

    template <typename T>
    static handle cast(T &&src, return_value_policy policy, handle parent) {
        dict d;
        return_value_policy policy_key = policy;
        return_value_policy policy_value = policy;
        if (!std::is_lvalue_reference<T>::value) {
            policy_key = return_value_policy_override<Key>::policy(policy_key);
            policy_value = return_value_policy_override<Value>::policy(policy_value);
        }
        for (auto &&kv : src) {
            auto key = reinterpret_steal<object>(
                key_conv::cast(detail::forward_like<T>(kv.first), policy_key, parent));
            auto value = reinterpret_steal<object>(
                value_conv::cast(detail::forward_like<T>(kv.second), policy_value, parent));
            if (!key || !value) {
                return handle();
            }
            d[std::move(key)] = std::move(value);
        }
        return d.release();
    }

    PYBIND11_TYPE_CASTER(Type,
                         io_name("collections.abc.Mapping", "dict") + const_name("[")
                             + key_conv::name + const_name(", ") + value_conv::name
                             + const_name("]"));
};

template <typename Type, typename Value>
struct list_caster {
    using value_conv = make_caster<Value>;

    bool load(handle src, bool convert) {
        if (!object_is_convertible_to_std_vector(src)) {
            return false;
        }
        if (isinstance<sequence>(src)) {
            return convert_elements(src, convert);
        }
        if (!convert) {
            return false;
        }
        // Designed to be behavior-equivalent to passing tuple(src) from Python:
        // The conversion to a tuple will first exhaust the generator object, to ensure that
        // the generator is not left in an unpredictable (to the caller) partially-consumed
        // state.
        assert(isinstance<iterable>(src));
        return convert_elements(tuple(reinterpret_borrow<iterable>(src)), convert);
    }

private:
    template <typename T = Type, enable_if_t<has_reserve_method<T>::value, int> = 0>
    void reserve_maybe(const sequence &s, Type *) {
        value.reserve(s.size());
    }
    void reserve_maybe(const sequence &, void *) {}

    bool convert_elements(handle seq, bool convert) {
        auto s = reinterpret_borrow<sequence>(seq);
        value.clear();
        reserve_maybe(s, &value);
        for (const auto &it : seq) {
            value_conv conv;
            if (!conv.load(it, convert)) {
                return false;
            }
            value.push_back(cast_op<Value &&>(std::move(conv)));
        }
        return true;
    }

public:
    template <typename T>
    static handle cast(T &&src, return_value_policy policy, handle parent) {
        if (!std::is_lvalue_reference<T>::value) {
            policy = return_value_policy_override<Value>::policy(policy);
        }
        list l(src.size());
        ssize_t index = 0;
        for (auto &&value : src) {
            auto value_ = reinterpret_steal<object>(
                value_conv::cast(detail::forward_like<T>(value), policy, parent));
            if (!value_) {
                return handle();
            }
            PyList_SET_ITEM(l.ptr(), index++, value_.release().ptr()); // steals a reference
        }
        return l.release();
    }

    PYBIND11_TYPE_CASTER(Type,
                         io_name("collections.abc.Sequence", "list") + const_name("[")
                             + value_conv::name + const_name("]"));
};

template <typename Type, typename Alloc>
struct type_caster<std::vector<Type, Alloc>> : list_caster<std::vector<Type, Alloc>, Type> {};

template <typename Type, typename Alloc>
struct type_caster<std::deque<Type, Alloc>> : list_caster<std::deque<Type, Alloc>, Type> {};

template <typename Type, typename Alloc>
struct type_caster<std::list<Type, Alloc>> : list_caster<std::list<Type, Alloc>, Type> {};

template <typename ArrayType, typename V, size_t... I>
ArrayType vector_to_array_impl(V &&v, index_sequence<I...>) {
    return {{std::move(v[I])...}};
}

// Based on https://en.cppreference.com/w/cpp/container/array/to_array
template <typename ArrayType, size_t N, typename V>
ArrayType vector_to_array(V &&v) {
    return vector_to_array_impl<ArrayType, V>(std::forward<V>(v), make_index_sequence<N>{});
}

template <typename ArrayType, typename Value, bool Resizable, size_t Size = 0>
struct array_caster {
    using value_conv = make_caster<Value>;

private:
    std::unique_ptr<ArrayType> value;

    template <bool R = Resizable, enable_if_t<R, int> = 0>
    bool convert_elements(handle seq, bool convert) {
        auto l = reinterpret_borrow<sequence>(seq);
        value.reset(new ArrayType{});
        // Using `resize` to preserve the behavior exactly as it was before PR #5305
        // For the `resize` to work, `Value` must be default constructible.
        // For `std::valarray`, this is a requirement:
        // https://en.cppreference.com/w/cpp/named_req/NumericType
        value->resize(l.size());
        size_t ctr = 0;
        for (const auto &it : l) {
            value_conv conv;
            if (!conv.load(it, convert)) {
                return false;
            }
            (*value)[ctr++] = cast_op<Value &&>(std::move(conv));
        }
        return true;
    }

    template <bool R = Resizable, enable_if_t<!R, int> = 0>
    bool convert_elements(handle seq, bool convert) {
        auto l = reinterpret_borrow<sequence>(seq);
        if (l.size() != Size) {
            return false;
        }
        // The `temp` storage is needed to support `Value` types that are not
        // default-constructible.
        // Deliberate choice: no template specializations, for simplicity, and
        // because the compile time overhead for the specializations is deemed
        // more significant than the runtime overhead for the `temp` storage.
        std::vector<Value> temp;
        temp.reserve(l.size());
        for (auto it : l) {
            value_conv conv;
            if (!conv.load(it, convert)) {
                return false;
            }
            temp.emplace_back(cast_op<Value &&>(std::move(conv)));
        }
        value.reset(new ArrayType(vector_to_array<ArrayType, Size>(std::move(temp))));
        return true;
    }

public:
    bool load(handle src, bool convert) {
        if (!object_is_convertible_to_std_vector(src)) {
            return false;
        }
        if (isinstance<sequence>(src)) {
            return convert_elements(src, convert);
        }
        if (!convert) {
            return false;
        }
        // Designed to be behavior-equivalent to passing tuple(src) from Python:
        // The conversion to a tuple will first exhaust the generator object, to ensure that
        // the generator is not left in an unpredictable (to the caller) partially-consumed
        // state.
        assert(isinstance<iterable>(src));
        return convert_elements(tuple(reinterpret_borrow<iterable>(src)), convert);
    }

    template <typename T>
    static handle cast(T &&src, return_value_policy policy, handle parent) {
        list l(src.size());
        ssize_t index = 0;
        for (auto &&value : src) {
            auto value_ = reinterpret_steal<object>(
                value_conv::cast(detail::forward_like<T>(value), policy, parent));
            if (!value_) {
                return handle();
            }
            PyList_SET_ITEM(l.ptr(), index++, value_.release().ptr()); // steals a reference
        }
        return l.release();
    }

    // Code copied from PYBIND11_TYPE_CASTER macro.
    // Intentionally preserving the behavior exactly as it was before PR #5305
    template <typename T_, enable_if_t<std::is_same<ArrayType, remove_cv_t<T_>>::value, int> = 0>
    static handle cast(T_ *src, return_value_policy policy, handle parent) {
        if (!src) {
            return none().release();
        }
        if (policy == return_value_policy::take_ownership) {
            auto h = cast(std::move(*src), policy, parent);
            delete src; // WARNING: Assumes `src` was allocated with `new`.
            return h;
        }
        return cast(*src, policy, parent);
    }

    // NOLINTNEXTLINE(google-explicit-constructor)
    operator ArrayType *() { return &(*value); }
    // NOLINTNEXTLINE(google-explicit-constructor)
    operator ArrayType &() { return *value; }
    // NOLINTNEXTLINE(google-explicit-constructor)
    operator ArrayType &&() && { return std::move(*value); }

    template <typename T_>
    using cast_op_type = movable_cast_op_type<T_>;

    static constexpr auto name
        = const_name<Resizable>(const_name(""), const_name("typing.Annotated["))
          + io_name("collections.abc.Sequence", "list") + const_name("[") + value_conv::name
          + const_name("]")
          + const_name<Resizable>(const_name(""),
                                  const_name(", \"FixedSize(") + const_name<Size>()
                                      + const_name(")\"]"));
};

template <typename Type, size_t Size>
struct type_caster<std::array<Type, Size>>
    : array_caster<std::array<Type, Size>, Type, false, Size> {};

template <typename Type>
struct type_caster<std::valarray<Type>> : array_caster<std::valarray<Type>, Type, true> {};

template <typename Key, typename Compare, typename Alloc>
struct type_caster<std::set<Key, Compare, Alloc>>
    : set_caster<std::set<Key, Compare, Alloc>, Key> {};

template <typename Key, typename Hash, typename Equal, typename Alloc>
struct type_caster<std::unordered_set<Key, Hash, Equal, Alloc>>
    : set_caster<std::unordered_set<Key, Hash, Equal, Alloc>, Key> {};

template <typename Key, typename Value, typename Compare, typename Alloc>
struct type_caster<std::map<Key, Value, Compare, Alloc>>
    : map_caster<std::map<Key, Value, Compare, Alloc>, Key, Value> {};

template <typename Key, typename Value, typename Hash, typename Equal, typename Alloc>
struct type_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>>
    : map_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>, Key, Value> {};

// This type caster is intended to be used for std::optional and std::experimental::optional
template <typename Type, typename Value = typename Type::value_type>
struct optional_caster {
    using value_conv = make_caster<Value>;

    template <typename T>
    static handle cast(T &&src, return_value_policy policy, handle parent) {
        if (!src) {
            return none().release();
        }
        if (!std::is_lvalue_reference<T>::value) {
            policy = return_value_policy_override<Value>::policy(policy);
        }
        // NOLINTNEXTLINE(bugprone-unchecked-optional-access)
        return value_conv::cast(*std::forward<T>(src), policy, parent);
    }

    bool load(handle src, bool convert) {
        if (!src) {
            return false;
        }
        if (src.is_none()) {
            return true; // default-constructed value is already empty
        }
        value_conv inner_caster;
        if (!inner_caster.load(src, convert)) {
            return false;
        }

        value.emplace(cast_op<Value &&>(std::move(inner_caster)));
        return true;
    }

    PYBIND11_TYPE_CASTER(Type, value_conv::name | make_caster<none>::name);
};

#if defined(PYBIND11_HAS_OPTIONAL)
template <typename T>
struct type_caster<std::optional<T>> : public optional_caster<std::optional<T>> {};

template <>
struct type_caster<std::nullopt_t> : public void_caster<std::nullopt_t> {};
#endif

#if defined(PYBIND11_HAS_EXP_OPTIONAL)
template <typename T>
struct type_caster<std::experimental::optional<T>>
    : public optional_caster<std::experimental::optional<T>> {};

template <>
struct type_caster<std::experimental::nullopt_t>
    : public void_caster<std::experimental::nullopt_t> {};
#endif

/// Visit a variant and cast any found type to Python
struct variant_caster_visitor {
    return_value_policy policy;
    handle parent;

    using result_type = handle; // required by boost::variant in C++11

    template <typename T>
    result_type operator()(T &&src) const {
        return make_caster<T>::cast(std::forward<T>(src), policy, parent);
    }
};

/// Helper class which abstracts away variant's `visit` function. `std::variant` and similar
/// `namespace::variant` types which provide a `namespace::visit()` function are handled here
/// automatically using argument-dependent lookup. Users can provide specializations for other
/// variant-like classes, e.g. `boost::variant` and `boost::apply_visitor`.
template <template <typename...> class Variant>
struct visit_helper {
    template <typename... Args>
    static auto call(Args &&...args) -> decltype(visit(std::forward<Args>(args)...)) {
        return visit(std::forward<Args>(args)...);
    }
};

/// Generic variant caster
template <typename Variant>
struct variant_caster;

template <template <typename...> class V, typename... Ts>
struct variant_caster<V<Ts...>> {
    static_assert(sizeof...(Ts) > 0, "Variant must consist of at least one alternative.");

    template <typename U, typename... Us>
    bool load_alternative(handle src, bool convert, type_list<U, Us...>) {
        auto caster = make_caster<U>();
        if (caster.load(src, convert)) {
            value = cast_op<U>(std::move(caster));
            return true;
        }
        return load_alternative(src, convert, type_list<Us...>{});
    }

    bool load_alternative(handle, bool, type_list<>) { return false; }

    bool load(handle src, bool convert) {
        // Do a first pass without conversions to improve constructor resolution.
        // E.g. `py::int_(1).cast<variant<double, int>>()` needs to fill the `int`
        // slot of the variant. Without two-pass loading `double` would be filled
        // because it appears first and a conversion is possible.
        if (convert && load_alternative(src, false, type_list<Ts...>{})) {
            return true;
        }
        return load_alternative(src, convert, type_list<Ts...>{});
    }

    template <typename Variant>
    static handle cast(Variant &&src, return_value_policy policy, handle parent) {
        return visit_helper<V>::call(variant_caster_visitor{policy, parent},
                                     std::forward<Variant>(src));
    }

    using Type = V<Ts...>;
    PYBIND11_TYPE_CASTER(Type, ::pybind11::detail::union_concat(make_caster<Ts>::name...));
};

#if defined(PYBIND11_HAS_VARIANT)
template <typename... Ts>
struct type_caster<std::variant<Ts...>> : variant_caster<std::variant<Ts...>> {};

template <>
struct type_caster<std::monostate> : public void_caster<std::monostate> {};
#endif

PYBIND11_NAMESPACE_END(detail)

inline std::ostream &operator<<(std::ostream &os, const handle &obj) {
#ifdef PYBIND11_HAS_STRING_VIEW
    os << str(obj).cast<std::string_view>();
#else
    os << (std::string) str(obj);
#endif
    return os;
}

PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)