File: arrow.test

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (224 lines) | stat: -rw-r--r-- 5,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2007-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Provides some simple tests for arrow polynomials.
#
# This file is a single component of Regina's python test suite.  To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

a = Arrow()
print(a, a.isZero())

print('--------')

a.initDiagram(3, 0, 1, 2)
print(a, a.isZero())

try:
    a.initDiagram(3, 0, 'a')
except InvalidArgument:
    print('Exception caught')

try:
    a.initDiagram(1, 1, 0)
except InvalidArgument:
    print('Exception caught')

print(a, a.isZero())
b = Arrow(a)
a += a
print(a, a.isZero(), b, b.isZero())
a -= a
print(a, a.isZero(), b, b.isZero())

print('--------')

a.set(Laurent(-1, [2, 0, 0, -1]))
a.set(1, Laurent(-2, [3, -1]))

try:
    a.set(3, 0)
except InvalidArgument:
    print('Exception caught')

try:
    a.set(2, 0, Laurent(-2, [3, -1]))
except InvalidArgument:
    print('Exception caught')

print(a, a.isZero())

print('--------')

b = Arrow()
b.set(1, Laurent(-2, [3, -1]))
print(b)
print(a + b)
print(a - b)
print(b + a)
print(b - a)
print(- a)

print('--------')

a += b
print(a)
a -= b
print(a)
a -= b
print(a)

print('--------')

a += b
print(a, 'vs', b)
a.swap(b)
print(a, 'vs', b)
swap(b, a)
print(a, 'vs', b)

print('--------')

print(a * -3)
print(-3 * a)
print(a * Laurent(2, [1]))
print(Laurent(2, [1]) * a)

print('--------')

print(a[[]])
print(a[[1]])
print(a[[2]])
print(a[[0, 1]])
a[[0, 1]] = Laurent(3, [2, 0, -5])
print(a)
print(a[[0, 1]])

try:
    print(a[[0, 1, 0]])
except InvalidArgument:
    print('Exception caught')

a[[0, 1]] = Laurent()
print(a)

print('--------')

a *= -3
print(a)
a *= Laurent(2, [1])
print(a)

print('--------')

a.shift(-2)
print(a)
a.negate()
print(a)
a.invertA()
print(a)
a.scaleUp(2)
print(a)
a.scaleDown(-2)
print(a)

print('--------')

print(a.tightEncoding())
print(Arrow.tightDecoding(a.tightEncoding()))
a.init()
print(a, a.isZero())
print(a.tightEncoding())
print(Arrow.tightDecoding(a.tightEncoding()))

print('--------')

print(Arrow([([], Laurent(-4, [1])), ([1], Laurent(-10, [-1,0,0,0,1]))]))
print(Arrow([([], (-4, [1])), ([1], (-10, [-1,0,0,0,1]))]))
print(Arrow([([], (-4, [1])), ([], (-4, [2])), ([1], (-10, [-1,0,0,0,1]))]))
print(Arrow([([], (-4, [1])), ([], (-4, [-1])), ([1], (-10, [-1,0,0,0,1]))]))

try:
    print(Arrow([([], (-4, [1])), ([1, 'a'], (-10, [-1,0,0,0,1]))]))
except InvalidArgument:
    print('Exception caught')

try:
    print(Arrow([([], (-4, [1])), ([1, -2], (-10, [-1,0,0,0,1]))]))
except InvalidArgument:
    print('Exception caught')

laurent = Laurent(-2, [4,0,0,-1])
print(Arrow([([], laurent)]) == laurent)
print(Arrow([([1], laurent)]) == laurent)
print(Arrow([([], laurent), ([1], laurent)]) == laurent)
print(Arrow([([], laurent), ([1], laurent)])[[1]] == laurent)

print('--------')

# Compute some actual arrow polynomials.
# The following examples are all taken from Dye & Kauffman, JKTR 18 (2009).
# These are also in the C++ test suite; see there for further discussion
# (including the reasons why some of our answers differ from Dye-Kauffman).

# Section 3.1: Virtual Hopf link
l = Link.fromData([-1], [[1], [-1]])
print(l); print(l.arrow())

# Section 3.2: Virtualised trefoil (not the virtual trefoil!)
l = Link.fromData([+1, +1, -1], [1, -2, 3, -1, 2, -3])
print(l); print(l.arrow())

# Section 3.3: Kishino's knot
l = Link.fromData([+1, -1, +1, -1], [1, -2, 4, -3, -4, 3, -1, 2])
print(l); print(l.arrow())

# Section 3.4: Slavik's knot
l = Link.fromData([+1, +1, -1, -1, -1], [1, -3, 4, -1, 2, -5, 3, -4, 5, -2])
print(l); print(l.arrow())

# Section 3.5: Miyazawa's knot
# Note: our answer differs by sign (+/-) for the coefficient of K_1^2 A^-4.
# However: our answer is consistent with the Jones polynomial for that same
# knot, and so it seems likely that the sign error is in the Dye-Kauffman paper.
l = Link.fromData([+1, -1, +1, +1], [1, -2, -3, -1, 3, 4, 2, -4])
print(l); print(l.arrow())

# Section 3.6: Two knots differentiated only by K_1 and K_3
l1 = Link.fromSignedGauss('O1-O2-O3-O4+U1-U3-U2-U4+') # knot 4.93
l2 = Link.fromSignedGauss('O1-O2-U3-O4+U2-U1-O3-U4+') # knot 4.103
print(l1); print(l1.arrow());
print(l2); print(l2.arrow());

# Section 3.8: Two virtual torus links
# Note: In the Dye-Kauffman paper, the polynomials for these links do not
# appear to be normalised using the writhe (though this is perhaps explicitly
# noted in the paper since they use the subscript <..>_A instead of <..>_NA.
l1 = Link.fromData([+1, +1, +1], [[1, -2, 3], [-1, 2, -3]])
l2 = Link.fromData([-1, -1, -1], [[3, -2, 1], [-1, 2, -3]])
print(l1); print(l1.arrow());
print(l2); print(l2.arrow());