1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2015-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Tests the use of pure Python functions as C++ callbacks.
#
# This file is a single component of Regina's python test suite. To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
########################################################################
# Callback actions that we pass to retriangulate() or rewrite():
########################################################################
def display(sig, tri):
# A callback that uses both sig and tri arguments.
print(' ' + sig, tri.size())
return False
sigs = None
def collect(sig, tri):
# A callback that uses a global variable.
global sigs
sigs.append(sig)
count = None
def stopAfter10(sig, tri):
# A callback that uses a global variable, and that also uses the
# return value to terminate the search.
global count
count = count + 1
return (count >= 10)
########################################################################
# Callback actions that we pass to enumerateCovers():
########################################################################
def displayCover(tri, type):
t = Triangulation3(tri)
t.simplify()
print(' ' + str(type) + ': ' + t.homology().str())
########################################################################
# Callback actions that we pass to isomorphism searches:
########################################################################
isoCount = None
def stopAfter5Iso(iso):
# A callback that uses a global variable, and that also uses the
# return value to terminate the search.
global isoCount
isoCount = isoCount + 1
return (isoCount >= 5)
def displayIso(iso):
print(iso.detail())
return False
########################################################################
# Full tests that we can run on a triangulation or link:
########################################################################
def printBanner(name, test, height, threads):
print(name + ' -> ' + test + ', height = ' + str(height) + \
', threads = ' + str(threads))
def testDisplay(obj, name, height, threads):
printBanner(name, 'display', height, threads)
if obj.__class__ == Link:
obj.rewrite(height, threads, display)
else:
obj.retriangulate(height, threads, display)
def testStopAfter10(obj, name, height, threads):
printBanner(name, 'stop after 10', height, threads)
global count
count = 0
if obj.__class__ == Link:
ans = obj.rewrite(height, threads, stopAfter10)
else:
ans = obj.retriangulate(height, threads, stopAfter10)
if ans:
print(' search terminated early, count:', count)
else:
print(' search ran to completion, count:', count)
def testCollect(obj, name, height, threads):
printBanner(name, 'collect', height, threads)
global sigs
sigs = []
if obj.__class__ == Link:
ans = obj.rewrite(height, threads, collect)
else:
ans = obj.retriangulate(height, threads, collect)
sigs.sort()
for i in sigs:
print(' ' + i)
def testCovers(link, name, sheets):
print(name + ' -> all covers, sheets = ' + str(sheets))
tri = SnapPeaTriangulation(link.complement())
tri.enumerateCovers(sheets, SnapPeaTriangulation.CoverEnumeration.All, displayCover)
def testIso(inner, innerName, outer, outerName, countOnly = False):
comp = innerName + ' vs ' + outerName
if not countOnly:
print(comp + ' -> isomorphisms, display')
inner.findAllIsomorphisms(outer, displayIso)
print(comp + ' -> subcomplexes, display')
inner.findAllSubcomplexesIn(outer, displayIso)
global isoCount
print(comp + ' -> isomorphisms, stop after 5')
isoCount = 0
ans = inner.findAllIsomorphisms(outer, stopAfter5Iso)
if ans:
print(' search terminated early, count:', isoCount)
else:
print(' search ran to completion, count:', isoCount)
print(comp + ' -> subcomplexes, stop after 5')
isoCount = 0
ans = inner.findAllSubcomplexesIn(outer, stopAfter5Iso)
if ans:
print(' search terminated early, count:', isoCount)
else:
print(' search ran to completion, count:', isoCount)
########################################################################
# Individual test cases:
########################################################################
tri = Example3.poincare()
testDisplay(tri, 'Poincare homology sphere', 1, 1)
testDisplay(tri, 'Poincare homology sphere', 1, 2)
testStopAfter10(tri, 'Poincare homology sphere', 1, 1)
testStopAfter10(tri, 'Poincare homology sphere', 1, 2)
testCollect(tri, 'Poincare homology sphere', 1, 1)
testCollect(tri, 'Poincare homology sphere', 1, 2)
testIso(tri, 'Poincare homology sphere', tri, 'Poincare homology sphere', True)
print()
tri = Example3.weeks()
testDisplay(tri, 'Weeks manifold', 0, 1)
testDisplay(tri, 'Weeks manifold', 0, 2)
testStopAfter10(tri, 'Weeks manifold', 1, 1)
testStopAfter10(tri, 'Weeks manifold', 1, 2)
testCollect(tri, 'Weeks manifold', 0, 1)
testCollect(tri, 'Weeks manifold', 0, 2)
testIso(tri, 'Weeks manifold', tri, 'Weeks manifold')
print()
tri = Example4.cappellShaneson()
testDisplay(tri, 'Cappell-Shaneson knot complement', 0, 1)
testDisplay(tri, 'Cappell-Shaneson knot complement', 0, 2)
testStopAfter10(tri, 'Cappell-Shaneson knot complement', 2, 1)
testStopAfter10(tri, 'Cappell-Shaneson knot complement', 2, 2)
testCollect(tri, 'Cappell-Shaneson knot complement', 2, 1)
testCollect(tri, 'Cappell-Shaneson knot complement', 2, 2)
testIso(tri, 'Cappell-Shaneson knot complement', tri, 'Cappell-Shaneson knot complement')
print()
inner = Example3.lst(1,2)
outer = Example3.lens(8,3)
testIso(inner, 'LST(1,2,3)', outer, 'L(8,3)')
print()
link = ExampleLink.trefoil()
testDisplay(link, 'Trefoil', 0, 1)
testDisplay(link, 'Trefoil', 0, 2)
print()
link = ExampleLink.figureEight()
testStopAfter10(link, 'Figure eight knot', 1, 1)
testStopAfter10(link, 'Figure eight knot', 1, 2)
testCollect(link, 'Figure eight knot', 1, 1)
testCollect(link, 'Figure eight knot', 1, 2)
print()
link = ExampleLink.monster()
testStopAfter10(link, 'Monster unknot', 1, 1)
testStopAfter10(link, 'Monster unknot', 1, 2)
print()
link = ExampleLink.trefoil()
testCovers(link, 'Trefoil', 2)
testCovers(link, 'Trefoil', 3)
testCovers(link, 'Trefoil', 4)
testCovers(link, 'Trefoil', 5)
print()
########################################################################
# Test facet pairing enumeration:
########################################################################
def displayPairing(f, autos):
print(' ' + f.str(), ' -> automorphisms: ', len(autos))
print('Enumerating facet pairings:')
FacetPairing3.findAllPairings(3, BoolSet(False), 0, displayPairing)
FacetPairing5.findAllPairings(2, BoolSet(False), 0, displayPairing)
print()
########################################################################
# Test splitting surface signature enumeration:
########################################################################
def displaySig(s, autos):
print(' ' + s.str(), ' -> automorphisms: ', len(autos))
print('Enumerating splitting surface signatures:')
dummy = SigCensus.formCensus(3, displaySig)
print()
########################################################################
# Test enumeration of knots:
########################################################################
def displayKnot(k):
print(' ' + k.brief())
print('Enumerating knots:')
g = ModelLinkGraph.fromPlantri('bcdd,aeec,abfd,acfa,bffb,ceed')
g.generateMinimalLinks(displayKnot)
print()
########################################################################
# Test location of saturated regions:
########################################################################
def displayRegion(r):
print(r.detail())
s = SatRegion(r) # this is a non-trivial copy constructor
if r.detail() != s.detail():
print('ERROR - Does not match:\n' + s.detail())
print('Finding regions:')
t = Triangulation3.rehydrate('jofdiaabcceffhiiiedkgiilpsw')
dummy = SatRegion.find(t, False, displayRegion)
print()
########################################################################
# Test the non-callback version of SnapPeaTriangulation::enumerateCovers():
########################################################################
# Now that triangulations are not packets, we cannot use packet listeners
# to verify the lifetimes of the covers that are returned. For now just
# test that the routine seems to do the right thing.
print('Enumerating covers:')
c = [ (a[0].isoSig(), a[1]) for a in \
ExampleSnapPea.whiteheadLink().enumerateCovers(3, \
SnapPeaTriangulation.CoverEnumeration.All) ]
c.sort()
for i in c:
print(' ' + i[0], i[1])
print()
|