1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2007-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Tests the census generation code.
#
# This file is a single component of Regina's python test suite. To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
s = None
partial = None
#######################################################################
def foundGluings2(g):
print(g.triangulate().isoSig())
def auto2(p, isos):
print(p.str())
GluingPermSearcher2.findAllPerms(p, isos, False, foundGluings2)
def best2(p, isos):
print(p.str())
b = GluingPermSearcher2.bestSearcher(p, isos, False)
b.runSearch(foundGluings2)
FacetPairing2.findAllPairings(2, False, 0, auto2)
print()
FacetPairing2.findAllPairings(2, False, 0, best2)
print()
def foundPartial2(g):
if s.isComplete():
print('Depth too large: found complete set')
partial.append(s.taggedData())
def partial2(p, isos):
global s, partial
print(p.str())
partial = []
s = GluingPermSearcher2(p, isos, False)
s.partialSearch(2, foundPartial2)
for i in partial:
s = GluingPermSearcher2.fromTaggedData(i)
s.runSearch(foundGluings2)
FacetPairing2.findAllPairings(2, False, 0, partial2)
print()
#######################################################################
def foundGluings3(g):
t = g.triangulate()
# Note: simplify() might reduce vertices but keep the
# same number of tetrahedra.
if not t.simplify():
print(t.isoSig())
def auto3(p, isos):
print(p.str())
GluingPermSearcher3.findAllPerms(p, isos, True, True,
CensusPurge.NonMinimal, foundGluings3)
def best3(p, isos):
print(p.str())
b = GluingPermSearcher3.bestSearcher(p, isos, True, True,
CensusPurge.NonMinimal)
b.runSearch(foundGluings3)
FacetPairing3.findAllPairings(2, False, 0, auto3)
print()
FacetPairing3.findAllPairings(2, False, 0, best3)
print()
def foundPartial3(g):
if s.isComplete():
print('Depth too large: found complete set')
partial.append(s.taggedData())
def partial3(p, isos):
global s, partial
print(p.str())
partial = []
s = CompactSearcher(p, isos, True, CensusPurge.NonMinimal)
s.partialSearch(2, foundPartial3)
for i in partial:
s = GluingPermSearcher3.fromTaggedData(i)
s.runSearch(foundGluings3)
FacetPairing3.findAllPairings(2, False, 0, partial3)
print()
#######################################################################
def foundGluings4(g):
print(g.triangulate().isoSig())
def auto4(p, isos):
print(p.str())
GluingPermSearcher4.findAllPerms(p, isos, True, True, foundGluings4)
def best4(p, isos):
print(p.str())
b = GluingPermSearcher4.bestSearcher(p, isos, True, True)
b.runSearch(foundGluings4)
FacetPairing4.findAllPairings(2, False, 0, auto4)
print()
FacetPairing4.findAllPairings(2, False, 0, best4)
print()
def foundPartial4(g):
if s.isComplete():
print('Depth too large: found complete set')
partial.append(s.taggedData())
def partial4(p, isos):
global s, partial
print(p.str())
partial = []
s = GluingPermSearcher4(p, isos, True, True)
s.partialSearch(2, foundPartial4)
for i in partial:
s = GluingPermSearcher4.fromTaggedData(i)
s.runSearch(foundGluings4)
FacetPairing4.findAllPairings(2, False, 0, partial4)
print()
#######################################################################
|