1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2015-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Tests the behaviour of the packet cloning functions.
#
# This file is a single component of Regina's python test suite. To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
root = Container()
# Note: Since Regina 7.0, when cloning a packet tree, the cloned surface
# lists point to the *original* triangulations.
# 3-D surface test:
tri = PacketOfTriangulation3(Example3.poincare())
list = PacketOfNormalSurfaces(tri, NormalCoords.Standard)
tri.append(list)
root.append(tri)
tri2 = tri.cloneAsSibling(True)
list2 = tri2.firstChild()
s = list.surface(0)
s2 = list2.surface(0)
print(tri.samePacket(list.triangulation().packet()))
print(tri.samePacket(list2.triangulation().packet()))
print(not tri2.samePacket(list2.triangulation().packet()))
print(tri.samePacket(s.triangulation().packet()))
print(tri.samePacket(s2.triangulation().packet()))
print(not tri2.samePacket(s2.triangulation().packet()))
# 4-D hypersurface test:
tri = PacketOfTriangulation4(Example4.s3xs1())
list = PacketOfNormalHypersurfaces(tri, HyperCoords.Standard)
tri.append(list)
root.append(tri)
tri2 = tri.cloneAsSibling(True)
list2 = tri2.firstChild()
s = list.hypersurface(0)
s2 = list2.hypersurface(0)
print(tri.samePacket(list.triangulation().packet()))
print(tri.samePacket(list2.triangulation().packet()))
print(not tri2.samePacket(list2.triangulation().packet()))
print(tri.samePacket(s.triangulation().packet()))
print(tri.samePacket(s2.triangulation().packet()))
print(not tri2.samePacket(s2.triangulation().packet()))
# Angle structure test:
tri = PacketOfTriangulation3(Example3.whiteheadLink())
list = PacketOfAngleStructures(tri)
tri.append(list)
root.append(tri)
tri2 = tri.cloneAsSibling(True)
list2 = tri2.firstChild()
s = list.structure(0)
s2 = list2.structure(0)
print(tri.samePacket(list.triangulation().packet()))
print(tri.samePacket(list2.triangulation().packet()))
print(not tri2.samePacket(list2.triangulation().packet()))
print(tri.samePacket(s.triangulation().packet()))
print(tri.samePacket(s2.triangulation().packet()))
print(not tri2.samePacket(s2.triangulation().packet()))
|