1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
----------
Empty link
Link link = Link::fromData({ });
link = Link.fromData([ ], [ ])
Empty link
----------
0-crossing knot: ( )
Link link = Link::fromData({ }, { 0 });
link = Link.fromData([ ], [[ ]])
0-crossing knot: ( )
----------
0-crossing, 2-component link: ( ) ( )
Link link = Link::fromData({ }, { 0 }, { 0 });
link = Link.fromData([ ], [[ ], [ ]])
0-crossing, 2-component link: ( ) ( )
----------
3-crossing knot: +++ ( ^0 _1 ^2 _0 ^1 _2 )
Link link = Link::fromData({ +1, +1, +1 }, { 1, -2, 3, -1, 2, -3 });
link = Link.fromData([ +1, +1, +1 ], [ 1, -2, 3, -1, 2, -3 ])
3-crossing knot: +++ ( ^0 _1 ^2 _0 ^1 _2 )
----------
2-crossing, 2-component link: ++ ( ^0 _1 ) ( _0 ^1 )
Link link = Link::fromData({ +1, +1 }, { 1, -2 }, { -1, 2 });
link = Link.fromData([ +1, +1 ], [[ 1, -2 ], [ -1, 2 ]])
2-crossing, 2-component link: ++ ( ^0 _1 ) ( _0 ^1 )
----------
Empty 3-D triangulation
Triangulation<3> tri = Triangulation<3>::fromGluings(0, {
});
tri = Triangulation3.fromGluings(0, [
])
Empty 3-D triangulation
----------
Bounded orientable 2-D triangulation, f = ( 2 4 2 )
Triangulation<2> tri = Triangulation<2>::fromGluings(2, {
{ 0, 0, 1, {2,0,1} }, { 0, 2, 1, {1,2,0} }});
tri = Triangulation2.fromGluings(2, [
[ 0, 0, 1, Perm3(2,0,1) ], [ 0, 2, 1, Perm3(1,2,0) ]])
Bounded orientable 2-D triangulation, f = ( 2 4 2 )
----------
Bounded orientable 3-D triangulation, f = ( 4 6 4 1 )
Triangulation<3> tri = Triangulation<3>::fromGluings(1, {
});
tri = Triangulation3.fromGluings(1, [
])
Bounded orientable 3-D triangulation, f = ( 4 6 4 1 )
----------
Closed orientable 3-D triangulation, f = ( 1 6 10 5 )
Triangulation<3> tri = Triangulation<3>::fromGluings(5, {
{ 0, 0, 1, {0,3,2,1} }, { 0, 1, 2, {3,0,1,2} },
{ 0, 2, 3, {3,2,0,1} }, { 0, 3, 4, {3,1,2,0} },
{ 1, 1, 2, {2,1,0,3} }, { 1, 2, 4, {2,3,1,0} },
{ 1, 3, 3, {2,0,3,1} }, { 2, 2, 3, {1,2,3,0} },
{ 2, 3, 4, {3,0,1,2} }, { 3, 2, 4, {1,2,3,0} }});
tri = Triangulation3.fromGluings(5, [
[ 0, 0, 1, Perm4(0,3,2,1) ], [ 0, 1, 2, Perm4(3,0,1,2) ],
[ 0, 2, 3, Perm4(3,2,0,1) ], [ 0, 3, 4, Perm4(3,1,2,0) ],
[ 1, 1, 2, Perm4(2,1,0,3) ], [ 1, 2, 4, Perm4(2,3,1,0) ],
[ 1, 3, 3, Perm4(2,0,3,1) ], [ 2, 2, 3, Perm4(1,2,3,0) ],
[ 2, 3, 4, Perm4(3,0,1,2) ], [ 3, 2, 4, Perm4(1,2,3,0) ]])
Closed orientable 3-D triangulation, f = ( 1 6 10 5 )
----------
Ideal orientable 4-D triangulation, f = ( 1 1 4 5 2 )
Triangulation<4> tri = Triangulation<4>::fromGluings(2, {
{ 0, 0, 0, {3,0,1,2,4} }, { 0, 1, 1, {0,4,1,2,3} },
{ 0, 2, 1, {1,2,0,4,3} }, { 0, 4, 1, {0,1,4,3,2} },
{ 1, 1, 1, {0,3,1,4,2} }});
tri = Triangulation4.fromGluings(2, [
[ 0, 0, 0, Perm5(3,0,1,2,4) ], [ 0, 1, 1, Perm5(0,4,1,2,3) ],
[ 0, 2, 1, Perm5(1,2,0,4,3) ], [ 0, 4, 1, Perm5(0,1,4,3,2) ],
[ 1, 1, 1, Perm5(0,3,1,4,2) ]])
Ideal orientable 4-D triangulation, f = ( 1 1 4 5 2 )
----------
Possibly closed orientable 8-D triangulation, f = ( 9 36 84 126 126 84 36 9 2 )
Triangulation<8> tri = Triangulation<8>::fromGluings(2, {
{ 0, 0, 1, {0,1,2,3,4,5,6,7,8} }, { 0, 1, 1, {0,1,2,3,4,5,6,7,8} },
{ 0, 2, 1, {0,1,2,3,4,5,6,7,8} }, { 0, 3, 1, {0,1,2,3,4,5,6,7,8} },
{ 0, 4, 1, {0,1,2,3,4,5,6,7,8} }, { 0, 5, 1, {0,1,2,3,4,5,6,7,8} },
{ 0, 6, 1, {0,1,2,3,4,5,6,7,8} }, { 0, 7, 1, {0,1,2,3,4,5,6,7,8} },
{ 0, 8, 1, {0,1,2,3,4,5,6,7,8} }});
tri = Triangulation8.fromGluings(2, [
[ 0, 0, 1, Perm9([0,1,2,3,4,5,6,7,8]) ], [ 0, 1, 1, Perm9([0,1,2,3,4,5,6,7,8]) ],
[ 0, 2, 1, Perm9([0,1,2,3,4,5,6,7,8]) ], [ 0, 3, 1, Perm9([0,1,2,3,4,5,6,7,8]) ],
[ 0, 4, 1, Perm9([0,1,2,3,4,5,6,7,8]) ], [ 0, 5, 1, Perm9([0,1,2,3,4,5,6,7,8]) ],
[ 0, 6, 1, Perm9([0,1,2,3,4,5,6,7,8]) ], [ 0, 7, 1, Perm9([0,1,2,3,4,5,6,7,8]) ],
[ 0, 8, 1, Perm9([0,1,2,3,4,5,6,7,8]) ]])
Possibly closed orientable 8-D triangulation, f = ( 9 36 84 126 126 84 36 9 2 )
|