File: embeddings.test

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (87 lines) | stat: -rw-r--r-- 2,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2015-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Tests bindings related to FaceEmbedding objects.
#
# This file is a single component of Regina's python test suite.  To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

def doit(list):
	for f in list:
		print(f)

t = Triangulation2()
s = t.newSimplex()

doit(s.vertex(0).embeddings())
doit(s.edge(0).embeddings())

t = Triangulation3()
s = t.newSimplex()

doit(s.vertex(0).embeddings())
doit(s.edge(0).embeddings())
doit(s.triangle(0).embeddings())

t = Triangulation4()
s = t.newSimplex()

doit(s.vertex(0).embeddings())
doit(s.edge(0).embeddings())
doit(s.triangle(0).embeddings())
doit(s.tetrahedron(0).embeddings())

t = Triangulation5()
s = t.newSimplex()

doit(s.vertex(0).embeddings())
doit(s.edge(0).embeddings())
doit(s.triangle(0).embeddings())
doit(s.tetrahedron(0).embeddings())
doit(s.pentachoron(0).embeddings())

t = Triangulation6()
s = t.newSimplex()

doit(s.vertex(0).embeddings())
doit(s.edge(0).embeddings())
doit(s.triangle(0).embeddings())
doit(s.tetrahedron(0).embeddings())
doit(s.pentachoron(0).embeddings())
doit(s.face(5, 0).embeddings())

print()

t = Example3.poincare()
list = t.vertex(0).embeddings()
front = t.vertex(0).front()
back = t.vertex(0).back()
# Embeddings can outlive their faces, but currently this means we
# don't ensure they do *not* outlive their triangulations.
# t = None
print([i for i in list])
print(front, back)