File: euler.test

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (93 lines) | stat: -rw-r--r-- 3,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2007-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Tests different Euler characteristic calculations.
#
# This file is a single component of Regina's python test suite.  To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

def printEuler(t, name):
	print(t.eulerCharTri(), t.eulerCharManifold(), \
		'---', name)
	
	# Consistency check, while we're here.
	eHom = regina.HomologicalData(t).eulerChar()
	if eHom != t.eulerCharManifold():
		print('ERROR: Triangulation3::eulerCharManifold() and')
		print('       HomologicalData.eulerChar() disagree!')

print('Euler characteristics for triangulation vs compact manifold:')

# Empty:
printEuler(regina.Triangulation3(), "Empty triangulation")

# Closed:
printEuler(regina.Example3.lens(8,3), "L(8,3)")
printEuler(regina.Example3.rp2xs1(), "RP2 x S1")

# Bounded:
printEuler(regina.Example3.solidKleinBottle(),
	"Solid Klein bottle")
printEuler(regina.Example3.lst(3,4), "LST(3,4,7)")

tri = regina.Triangulation3()
dummy = tri.newTetrahedron()
printEuler(tri, "Solid ball")

# Ideal:
printEuler(regina.Example3.figureEight(),
	"Figure eight knot complement")
printEuler(regina.Example3.whiteheadLink(),
	"Whitehead link complement")
printEuler(regina.Example3.gieseking(),
	"Gieseking manifold")
printEuler(regina.Example3.cuspedGenusTwoTorus(),
	"Cusped genus two torus")

# Edge joined to itself:
tri = regina.Triangulation3()
t = tri.newTetrahedron()
t.join(0, t, regina.Perm4(1,0,3,2))
t.join(2, t, regina.Perm4(1,0,3,2))
printEuler(tri, "Invalid edge")

# Subdivide to obtain a valid triangulation:
tri.subdivide()
printEuler(tri, "Two projective plane cusps")

# Invalid boundary vertex links:
tri = regina.Triangulation3()
(t, s) = tri.newTetrahedra(2)
t.join(3, s, regina.Perm4(0,1,2,3))
t.join(2, s, regina.Perm4(0,3,1,2))
printEuler(tri, "Pinched solid torus")

tri = regina.Triangulation3()
(t, s) = tri.newTetrahedra(2)
t.join(3, s, regina.Perm4(0,1,2,3))
t.join(2, s, regina.Perm4(0,2,1,3))
printEuler(tri, "Pinched solid Klein bottle")