1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2007-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Provides various tests for marked abelian groups.
#
# This file is a single component of Regina's python test suite. To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
def makeMatrix(values):
m = regina.MatrixInt(values)
return m
def makeGroup(valuesM, valuesN):
return regina.MarkedAbelianGroup(
makeMatrix(valuesM),
makeMatrix(valuesN))
def makeHom(domain, codomain, values):
return regina.HomMarkedAbelianGroup(
domain, codomain, makeMatrix(values))
def groupStats(g):
print("------------------------")
print("New marked abelian group")
print("------------------------")
print()
print('Group:', g)
print('Free generators:')
for i in range(g.rank()):
print(str(i) + ':', g.freeRep(i))
print('Torsion generators:')
for i in range(g.countInvariantFactors()):
print(str(i) + ':', g.torsionRep(i))
# Nothing else to say.
print()
def homStats(h):
print("----------------")
print("New homomorphism")
print("----------------")
print()
print(h.detail())
# Z + Z_6:
g1 = makeGroup([[1,1,1,1,1]],
[[2,2,6], [-2,0,0], [0,-1,-3], [0,-1,0], [0,0,-3]])
groupStats(g1)
# 2 Z + 2 Z_2:
g2 = makeGroup([[1,1,1,1,1]],
[[2,-6], [-2,0], [0,2], [0,2], [0,2]])
groupStats(g2)
# Hom: g2 -> g1, kernel Z + Z_2, cokernel Z_5:
homStats(makeHom(g2, g1,
[[5,5,11,0,7], [0,0,1,0,2], [0,0,-1,0,-2], [0,0,0,0,0], [0,0,-6,5,-2]]))
# Hom: g2 -> g1, kernel Z + Z_2, cokernel Z_15:
homStats(makeHom(g2, g1,
[[10,10,38,0,-5], [0,0,3,0,0], [0,0,-3,0,0], [0,0,0,0,0], [0,0,-28,10,15]]))
# Hom: g2 -> g1, kernel 2 Z + Z_2, cokernel Z:
homStats(makeHom(g2, g1,
[[-3,0,0,-1,1], [-3,0,0,-1,1], [3,0,0,1,-1], [0,0,0,0,0], [3,0,0,1,-1]]))
# Some playing with snfRep():
print("------------------------------------")
print("Miscellaneous vector representations")
print("------------------------------------")
print()
try:
print(g1.snfRep([-6,0,0,0,5]))
except InvalidArgument as e:
print('Not in kernel')
print(g1.snfRep([-6,0,0,0,6]))
print(g1.snfRep([-4,2,-2,0,4]))
print(g1.snfRep([-8,-2,2,0,8]))
print(g1.snfRep([0,6,-6,0,0]))
try:
print(g2.snfRep([0,-3,-1,3,0]))
except InvalidArgument as e:
print('Not in kernel')
print(g2.snfRep([0,-3,-1,3,1]))
print(g2.snfRep([-3,0,-1,3,1]))
|