File: groups.test

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (115 lines) | stat: -rw-r--r-- 3,402 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2007-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Provides various tests for marked abelian groups.
#
# This file is a single component of Regina's python test suite.  To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

def makeMatrix(values):
	m = regina.MatrixInt(values)
	return m

def makeGroup(valuesM, valuesN):
	return regina.MarkedAbelianGroup(
		makeMatrix(valuesM),
		makeMatrix(valuesN))

def makeHom(domain, codomain, values):
	return regina.HomMarkedAbelianGroup(
		domain, codomain, makeMatrix(values))

def groupStats(g):
	print("------------------------")
	print("New marked abelian group")
	print("------------------------")
	print()
	print('Group:', g)
	
	print('Free generators:')
	for i in range(g.rank()):
		print(str(i) + ':', g.freeRep(i))
	print('Torsion generators:')
	for i in range(g.countInvariantFactors()):
		print(str(i) + ':', g.torsionRep(i))
	
	# Nothing else to say.
	print()

def homStats(h):
	print("----------------")
	print("New homomorphism")
	print("----------------")
	print()
	print(h.detail())


# Z + Z_6:
g1 = makeGroup([[1,1,1,1,1]],
	[[2,2,6], [-2,0,0], [0,-1,-3], [0,-1,0], [0,0,-3]])
groupStats(g1)

# 2 Z + 2 Z_2:
g2 = makeGroup([[1,1,1,1,1]],
	[[2,-6], [-2,0], [0,2], [0,2], [0,2]])
groupStats(g2)

# Hom: g2 -> g1, kernel Z + Z_2, cokernel Z_5:
homStats(makeHom(g2, g1,
	[[5,5,11,0,7], [0,0,1,0,2], [0,0,-1,0,-2], [0,0,0,0,0], [0,0,-6,5,-2]]))

# Hom: g2 -> g1, kernel Z + Z_2, cokernel Z_15:
homStats(makeHom(g2, g1,
	[[10,10,38,0,-5], [0,0,3,0,0], [0,0,-3,0,0], [0,0,0,0,0], [0,0,-28,10,15]]))

# Hom: g2 -> g1, kernel 2 Z + Z_2, cokernel Z:
homStats(makeHom(g2, g1,
	[[-3,0,0,-1,1], [-3,0,0,-1,1], [3,0,0,1,-1], [0,0,0,0,0], [3,0,0,1,-1]]))

# Some playing with snfRep():
print("------------------------------------")
print("Miscellaneous vector representations")
print("------------------------------------")
print()

try:
	print(g1.snfRep([-6,0,0,0,5]))
except InvalidArgument as e:
	print('Not in kernel')

print(g1.snfRep([-6,0,0,0,6]))
print(g1.snfRep([-4,2,-2,0,4]))
print(g1.snfRep([-8,-2,2,0,8]))
print(g1.snfRep([0,6,-6,0,0]))

try:
	print(g2.snfRep([0,-3,-1,3,0]))
except InvalidArgument as e:
	print('Not in kernel')

print(g2.snfRep([0,-3,-1,3,1]))
print(g2.snfRep([-3,0,-1,3,1]))