1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2007-2025, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Provides tests for passing by value vs reference.
#
# This file is a single component of Regina's python test suite. To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# As an exception, when this program is distributed through (i) the
# App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or
# (iii) Google Play by Google Inc., then that store may impose any
# digital rights management, device limits and/or redistribution
# restrictions that are required by its terms of service.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
v = VectorInt([1,2,3,4])
print(v)
v[2].negate()
print(v)
v[3] = 5
print(v)
print()
v = VectorLarge([1,2,3,4])
print(v)
v[2].makeInfinite()
print(v)
v[3] = 5
print(v)
print()
m = MatrixInt([[1,2], [3,4]])
print(m.detail())
m.entry(0,1).negate()
print(m.detail())
# The following line does not even compile:
# m.entry(1,1) = 3 # should not work
m.set(1,1,5)
print(m.detail())
p = Polynomial([2,3,4,5])
print(p)
p.leading().negate() # should do nothing due to constness
print(p)
p[2].negate() # should do nothing due to constness
print(p)
p[1] = 7; # should work
print(p)
print()
p = Laurent(-1, [2,3,4,5])
print(p)
p[1].negate() # should do nothing due to constness
print(p)
p[1] = 7; # should work
print(p)
print()
p = Laurent2(2,3)
print(p)
p[2,3].negate() # should do nothing due to constness
print(p)
p[2,3] = 7; # should work
print(p)
print()
p = Cyclotomic(3, [2, 5])
print(p)
p[1] = 4
print(p)
p[1].negate()
print(p)
print()
g = Example3.poincare().fundamentalGroup()
print(g.relation(0))
g.relation(0).term(0).exponent = 2
print(g.relation(0))
g.relation(0).terms()[0].exponent = 3
print(g.relation(0))
g.relations()[0].term(0).exponent = 4
print(g.relation(0))
g.relations()[0].terms()[0].exponent = 5
print(g.relation(0))
print()
r = g.relations()[0]
print(r)
g.relation(0).term(0).exponent = 6
print(r)
r = None
print()
t = g.relation(0).terms()[0]
print(t)
g.relation(0).term(0).exponent = 7
print(t)
print()
n = NormalSurfaces(Example3.figureEight(), NormalCoords.Quad)
for s in n:
s.setName('foo')
for s in n:
print(s.name())
print()
|