File: repr.out.v2

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (951 lines) | stat: -rw-r--r-- 27,985 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
Integer
-5
-5

LargeInteger
9
9

LargeInteger
inf
inf

Rational
3/8
3/8

Perm2
10
<regina.Perm2: 10>

Perm3
021
<regina.Perm3: 021>

Perm4
0321
<regina.Perm4: 0321>

Perm5
01324
<regina.Perm5: 01324>

Perm6
013245
<regina.Perm6: 013245>

Perm7
0132456
<regina.Perm7: 0132456>

Perm8
01324567
<regina.Perm8: 01324567>

Perm15
0132456789abcde
<regina.Perm15: 0132456789abcde>

VectorInt
( 1 0 -2 )
<regina.VectorInt: ( 1 0 -2 )>

VectorLarge
( 1 0 inf -2 )
<regina.VectorLarge: ( 1 0 inf -2 )>

Matrix2
[[ 1 2 ] [ 3 4 ]]
<regina.Matrix2: [[ 1 2 ] [ 3 4 ]]>

Matrix2._Row
[ 3 4 ]
<regina.Matrix2._Row: [ 3 4 ]>

MatrixBool
[[ 1 0 ] [ 0 1 ]]
<regina.MatrixBool: [[ 1 0 ] [ 0 1 ]]>

MatrixInt
[[ 2 -1 -1 2 -1 -1 ] [ -2 1 1 -2 1 1 ]]
<regina.MatrixInt: [[ 2 -1 -1 2 -1 -1 ] [ -2 1 1 -2 1 1 ]]>

Cyclotomic
-2/5 x^3 + 2/5 x^2 + 7/10
<regina.Cyclotomic: -2/5 x^3 + 2/5 x^2 + 7/10>

PolynomialRational
-2/5 x^3 + 2/5 x^2 + 7/10
<regina.PolynomialRational: -2/5 x^3 + 2/5 x^2 + 7/10>

Laurent
x^4 - x^2 + 1 - x^-2 + x^-4
<regina.Laurent: x^4 - x^2 + 1 - x^-2 + x^-4>

Laurent2
x^2 - y^2 - 1 + x^-2
<regina.Laurent2: x^2 - y^2 - 1 + x^-2>

HyperList
HyperList.Vertex
<HyperList.Vertex: 4>

HyperAlg
HyperAlg.VertexDD
<HyperAlg.VertexDD: 32>

NormalList
NormalList.Vertex
<NormalList.Vertex: 4>

NormalAlg
NormalAlg.VertexDD
<NormalAlg.VertexDD: 32>

AngleAlg
AngleAlg.DD
<AngleAlg.DD: 32>

CensusPurge
CensusPurge.NonMinimal
<CensusPurge.NonMinimal: 1>

SurfaceExport
SurfaceExport.Name
<SurfaceExport.Name: 1>

Flags_HyperList
0x0004
<regina.Flags_HyperList: 0x0004>

Flags_HyperAlg
0x0020
<regina.Flags_HyperAlg: 0x0020>

Flags_NormalList
0x0004
<regina.Flags_NormalList: 0x0004>

Flags_NormalAlg
0x0020
<regina.Flags_NormalAlg: 0x0020>

Flags_AngleAlg
0x0020
<regina.Flags_AngleAlg: 0x0020>

Flags_CensusPurge
0x03
<regina.Flags_CensusPurge: 0x03>

Flags_SurfaceExport
0x0003
<regina.Flags_SurfaceExport: 0x0003>

NormalEncoding
0x0203
<regina.NormalEncoding: 0x0203>

HyperEncoding
0x011f
<regina.HyperEncoding: 0x011f>

LPSystem
quad
<regina.LPSystem: quad>

AbelianGroup
3 Z_5
<regina.AbelianGroup: 3 Z_5>

MarkedAbelianGroup
3 Z_5 (Z^46 -> Z^24 -> Z^1)
<regina.MarkedAbelianGroup: 3 Z_5 (Z^46 -> Z^24 -> Z^1)>

HomMarkedAbelianGroup
Isomorphism: [[ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ]]
<regina.HomMarkedAbelianGroup: Isomorphism: [[ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ]]>

GroupPresentation
< a b | a b a^-1 b a b^-1, a b^-1 a^-1 b^-1 a b^2 >
<regina.GroupPresentation: < a b | a b a^-1 b a b^-1, a b^-1 a^-1 b^-1 a b^2 >>

GroupExpression
g0 g1 g0^-1 g1 g0 g1^-1
<regina.GroupExpression: g0 g1 g0^-1 g1 g0 g1^-1>

GroupExpressionTerm
g0^-1
<regina.GroupExpressionTerm: g0^-1>

GroupPresentation
< a b c | a c^-1, a b^-1 c^-1 b >
<regina.GroupPresentation: < a b c | a c^-1, a b^-1 c^-1 b >>

HomGroupPresentation
Isomorphism: g0 -> g1, g1 -> g0, g2 -> g1
<regina.HomGroupPresentation: Isomorphism: g0 -> g1, g1 -> g0, g2 -> g1>

GroupPresentation
< a b | a^-1 b^-1 a b >
<regina.GroupPresentation: < a b | a^-1 b^-1 a b >>

Bitmask
00010000000000000000000000000000
<regina.Bitmask: 00010000000000000000000000000000>

Bitmask8
00010000
<regina.Bitmask8: 00010000>

Qitmask8
00020000
<regina.Qitmask8: 00020000>

BoolSet
{ true }
<regina.BoolSet: { true }>

TrieSet
Trie containing 0 sets
<regina.TrieSet: Trie containing 0 sets>

DiscType
7:3
<regina.DiscType: 7:3>

DiscSpec
1:3 #2
<regina.DiscSpec: 1:3 #2>

PrismSpec
5:1
<regina.PrismSpec: 5:1>

NormalSurfaces
3 embedded, vertex surfaces (Quad normal)
<regina.NormalSurfaces: 3 embedded, vertex surfaces (Quad normal)>

NormalSurface
1 0 0 1 ; 1 0 0 || 1 0 0 1 ; 1 0 0
<regina.NormalSurface: 1 0 0 1 ; 1 0 0 || 1 0 0 1 ; 1 0 0>

NormalHypersurfaces
4 embedded, vertex hypersurfaces (Prism normal)
<regina.NormalHypersurfaces: 4 embedded, vertex hypersurfaces (Prism normal)>

NormalHypersurface
0 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 0 || 0 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 0
<regina.NormalHypersurface: 0 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 0 || 0 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 0>

AngleStructures
5 vertex angle structures (no restrictions)
<regina.AngleStructures: 5 vertex angle structures (no restrictions)>

AngleStructure
1 0 0 ; 1 0 0
<regina.AngleStructure: 1 0 0 ; 1 0 0>

SurfaceFilterCombination
AND filter
<regina.SurfaceFilterCombination: AND filter>

SurfaceFilterProperties
Euler in { 1 0 }, orientable only
<regina.SurfaceFilterProperties: Euler in { 1 0 }, orientable only>

DiscSetSurface
( 0 1 0 1 0 1 0 0 0 0 | 0 0 1 1 1 0 0 0 0 0 | 1 0 1 0 0 1 0 0 0 0 | 0 1 0 1 0 1 0 0 0 0 | 1 1 0 0 1 0 0 0 0 0 )
<regina.DiscSetSurface: ( 0 1 0 1 0 1 0 0 0 0 | 0 0 1 1 1 0 0 0 0 0 | 1 0 1 0 0 1 0 0 0 0 | 0 1 0 1 0 1 0 0 0 0 | 1 1 0 0 1 0 0 0 0 0 )>

DiscSetTet
( 0 1 0 1 0 1 0 0 0 0 )
<regina.DiscSetTet: ( 0 1 0 1 0 1 0 0 0 0 )>

ModelLinkGraph
6-node planar graph: [1:0 2:0 3:0 3:3] [0:0 4:0 4:3 2:1] [0:1 1:3 5:0 3:1] [0:2 2:3 5:3 0:3] [1:1 5:2 5:1 1:2] [2:2 4:2 4:1 3:2]
<regina.ModelLinkGraph: 6-node planar graph: [1:0 2:0 3:0 3:3] [0:0 4:0 4:3 2:1] [0:1 1:3 5:0 3:1] [0:2 2:3 5:3 0:3] [1:1 5:2 5:1 1:2] [2:2 4:2 4:1 3:2]>

ModelLinkGraphNode
Node 0: arcs 0, 1, 2, 3 -> 1:0, 2:0, 3:0, 3:3
<regina.ModelLinkGraphNode: Node 0: arcs 0, 1, 2, 3 -> 1:0, 2:0, 3:0, 3:3>

ModelLinkGraphArc
0:2
<regina.ModelLinkGraphArc: 0:2>

ModelLinkGraphCells
8 cells: (0:0 1:0-1 4:0-1 5:2-3 3:2-3 0:3) (0:1 2:0-1 1:3-0 0:0) (0:2 3:0-1 2:3-0 0:1) (0:3 3:3-0 0:2) (1:2 4:3-0 1:1) (1:3 2:1-2 5:0-1 4:2-3 1:2) (2:3 3:1-2 5:3-0 2:2) (4:2 5:1-2 4:1)
<regina.ModelLinkGraphCells: 8 cells: (0:0 1:0-1 4:0-1 5:2-3 3:2-3 0:3) (0:1 2:0-1 1:3-0 0:0) (0:2 3:0-1 2:3-0 0:1) (0:3 3:3-0 0:2) (1:2 4:3-0 1:1) (1:3 2:1-2 5:0-1 4:2-3 1:2) (2:3 3:1-2 5:3-0 2:2) (4:2 5:1-2 4:1)>

Link
Empty link
<regina.Link: Empty link>

Link
0-crossing knot: ( )
<regina.Link: 0-crossing knot: ( )>

Link
5-crossing, 2-component link: --++- ( ^0 _1 ^4 _3 ^2 _4 ) ( _0 ^1 _2 ^3 )
<regina.Link: 5-crossing, 2-component link: --++- ( ^0 _1 ^4 _3 ^2 _4 ) ( _0 ^1 _2 ^3 )>

PacketOfLink
5-crossing, 2-component link: --++- ( ^0 _1 ^4 _3 ^2 _4 ) ( _0 ^1 _2 ^3 )
<regina.PacketOfLink: 5-crossing, 2-component link: --++- ( ^0 _1 ^4 _3 ^2 _4 ) ( _0 ^1 _2 ^3 )>

StrandRef
(null)
<regina.StrandRef: (null)>

StrandRef
_0
<regina.StrandRef: _0>

Crossing
Crossing 0 (+): over _1 -+-> _3, under ^2 -+-> ^1
<regina.Crossing: Crossing 0 (+): over _1 -+-> _3, under ^2 -+-> ^1>

Tangle
3-crossing vertical tangle: | --+ ( _0 ^1 ) ( ^2 _1 ^0 _2 )
<regina.Tangle: 3-crossing vertical tangle: | --+ ( _0 ^1 ) ( ^2 _1 ^0 _2 )>

Crossing
Crossing 0 (-): over _1 -+-> _2, under (null) -+-> ^1
<regina.Crossing: Crossing 0 (-): over _1 -+-> _2, under (null) -+-> ^1>

SnapPeaTriangulation
Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0, vertex 1 ]
<regina.SnapPeaTriangulation: Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0, vertex 1 ]>

SnapPeaTriangulation
Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0: (5, -2), vertex 1 ]
<regina.SnapPeaTriangulation: Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0: (5, -2), vertex 1 ]>

PacketOfSnapPeaTriangulation
Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0: (5, -2), vertex 1 ]
<regina.PacketOfSnapPeaTriangulation: Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0: (5, -2), vertex 1 ]>

Cusp
(5,-2)-filled cusp at vertex 0
<regina.Cusp: (5,-2)-filled cusp at vertex 0>

Cusp
Complete cusp at vertex 1
<regina.Cusp: Complete cusp at vertex 1>

FacetSpec3
6:2
<regina.FacetSpec3: 6:2>

FacePair
{1,3}
<regina.FacePair: {1,3}>

FacetPairing3
1:1 1:0 1:2 1:3 | 0:1 0:0 0:2 0:3
<regina.FacetPairing3: 1:1 1:0 1:2 1:3 | 0:1 0:0 0:2 0:3>

FacetPairing4
1:4 1:1 1:2 1:3 1:0 | 0:4 0:1 0:2 0:3 0:0
<regina.FacetPairing4: 1:4 1:1 1:2 1:3 1:0 | 0:4 0:1 0:2 0:3 0:0>

Triangulation2
Bounded non-orientable 2-D triangulation, f = ( 1 2 1 )
<regina.Triangulation2: Bounded non-orientable 2-D triangulation, f = ( 1 2 1 )>

Triangulation3
Closed orientable 3-D triangulation, f = ( 1 6 10 5 )
<regina.Triangulation3: Closed orientable 3-D triangulation, f = ( 1 6 10 5 )>

PacketOfTriangulation3
Closed orientable 3-D triangulation, f = ( 1 6 10 5 )
<regina.PacketOfTriangulation3: Closed orientable 3-D triangulation, f = ( 1 6 10 5 )>

Triangulation4
Ideal orientable 4-D triangulation, f = ( 1 1 4 5 2 )
<regina.Triangulation4: Ideal orientable 4-D triangulation, f = ( 1 1 4 5 2 )>

Triangulation5
Possibly closed orientable 5-D triangulation, f = ( 6 15 20 15 6 2 )
<regina.Triangulation5: Possibly closed orientable 5-D triangulation, f = ( 6 15 20 15 6 2 )>

Face2_0
Vertex 0, boundary, degree 3: 0 (2), 1 (1), 0 (0)
<regina.Face2_0: Vertex 0, boundary, degree 3: 0 (2), 1 (1), 0 (0)>

FaceEmbedding2_0
0 (2)
<regina.FaceEmbedding2_0: 0 (2)>

Face2_1
Edge 0, internal: 0 (01), 1 (12)
<regina.Face2_1: Edge 0, internal: 0 (01), 1 (12)>

FaceEmbedding2_1
0 (01)
<regina.FaceEmbedding2_1: 0 (01)>

Simplex2
2-simplex 0: 01 -> 1 (12), 12 -> 1 (01)
<regina.Simplex2: 2-simplex 0: 01 -> 1 (12), 12 -> 1 (01)>

Component2
Component with 2 triangles: entire triangulation
<regina.Component2: Component with 2 triangles: entire triangulation>

BoundaryComponent2
Boundary component 0: 0 (20)
<regina.BoundaryComponent2: Boundary component 0: 0 (20)>

Face3_0
Vertex 0, internal, degree 20: 0 (0), 2 (3), 3 (3), 4 (3), 1 (3), 3 (0), 1 (2), 4 (0), 1 (1), 2 (0), 0 (1), 4 (1), 0 (2), 2 (1), 0 (3), 3 (1), 3 (2), 2 (2), 4 (2), 1 (0)
<regina.Face3_0: Vertex 0, internal, degree 20: 0 (0), 2 (3), 3 (3), 4 (3), 1 (3), 3 (0), 1 (2), 4 (0), 1 (1), 2 (0), 0 (1), 4 (1), 0 (2), 2 (1), 0 (3), 3 (1), 3 (2), 2 (2), 4 (2), 1 (0)>

FaceEmbedding3_0
0 (0)
<regina.FaceEmbedding3_0: 0 (0)>

Face3_1
Edge 0, internal, degree 5: 0 (01), 3 (32), 1 (20), 2 (02), 4 (31)
<regina.Face3_1: Edge 0, internal, degree 5: 0 (01), 3 (32), 1 (20), 2 (02), 4 (31)>

FaceEmbedding3_1
0 (01)
<regina.FaceEmbedding3_1: 0 (01)>

Face3_2
Triangle 0, internal: 0 (012), 4 (312)
<regina.Face3_2: Triangle 0, internal: 0 (012), 4 (312)>

FaceEmbedding3_2
0 (012)
<regina.FaceEmbedding3_2: 0 (012)>

Simplex3
3-simplex 0: 012 -> 4 (312), 013 -> 3 (321), 023 -> 2 (312), 123 -> 1 (321)
<regina.Simplex3: 3-simplex 0: 012 -> 4 (312), 013 -> 3 (321), 023 -> 2 (312), 123 -> 1 (321)>

Component3
Component with 5 tetrahedra: entire triangulation
<regina.Component3: Component with 5 tetrahedra: entire triangulation>

Face4_0
Vertex 0, ideal, degree 10: 0 (0), 1 (0), 1 (1), 0 (1), 1 (2), 0 (2), 1 (4), 0 (3), 1 (3), 0 (4)
<regina.Face4_0: Vertex 0, ideal, degree 10: 0 (0), 1 (0), 1 (1), 0 (1), 1 (2), 0 (2), 1 (4), 0 (3), 1 (3), 0 (4)>

FaceEmbedding4_0
0 (0)
<regina.FaceEmbedding4_0: 0 (0)>

Face4_1
Edge 0, internal, degree 20: 0 (01), 1 (12), 0 (12), 1 (01), 1 (24), 0 (23), 1 (14), 1 (02), 0 (02), 0 (13), 1 (43), 0 (03), 1 (23), 1 (04), 1 (13), 0 (34), 1 (03), 0 (14), 0 (04), 0 (24)
<regina.Face4_1: Edge 0, internal, degree 20: 0 (01), 1 (12), 0 (12), 1 (01), 1 (24), 0 (23), 1 (14), 1 (02), 0 (02), 0 (13), 1 (43), 0 (03), 1 (23), 1 (04), 1 (13), 0 (34), 1 (03), 0 (14), 0 (04), 0 (24)>

FaceEmbedding4_1
0 (01)
<regina.FaceEmbedding4_1: 0 (01)>

ListView_Triangulation4_edges
[ <regina.Face4_1: Edge 0, internal, degree 20: 0 (01), 1 (12), 0 (12), 1 (01), 1 (24), 0 (23), 1 (14), 1 (02), 0 (02), 0 (13), 1 (43), 0 (03), 1 (23), 1 (04), 1 (13), 0 (34), 1 (03), 0 (14), 0 (04), 0 (24)> ]
<<internal>.ListView: [ <regina.Face4_1: Edge 0, internal, degree 20: 0 (01), 1 (12), 0 (12), 1 (01), 1 (24), 0 (23), 1 (14), 1 (02), 0 (02), 0 (13), 1 (43), 0 (03), 1 (23), 1 (04), 1 (13), 0 (34), 1 (03), 0 (14), 0 (04), 0 (24)> ]>

Face4_2
Triangle 0, internal, degree 4: 0 (234), 0 (124), 0 (014), 1 (123)
<regina.Face4_2: Triangle 0, internal, degree 4: 0 (234), 0 (124), 0 (014), 1 (123)>

FaceEmbedding4_2
0 (234)
<regina.FaceEmbedding4_2: 0 (234)>

Face4_3
Tetrahedron 0, internal: 0 (0123), 1 (0143)
<regina.Face4_3: Tetrahedron 0, internal: 0 (0123), 1 (0143)>

FaceEmbedding4_3
0 (0123)
<regina.FaceEmbedding4_3: 0 (0123)>

Simplex4
4-simplex 0: 0123 -> 1 (0143), 0124 -> 0 (1234), 0134 -> 1 (1243), 0234 -> 1 (0123), 1234 -> 0 (0124)
<regina.Simplex4: 4-simplex 0: 0123 -> 1 (0143), 0124 -> 0 (1234), 0134 -> 1 (1243), 0234 -> 1 (0123), 1234 -> 0 (0124)>

Component4
Component with 2 pentachora: entire triangulation
<regina.Component4: Component with 2 pentachora: entire triangulation>

BoundaryComponent4
Boundary component 0, ideal at vertex 0: 0 (0), 1 (0), 1 (1), 0 (1), 1 (2), 0 (2), 1 (4), 0 (3), 1 (3), 0 (4)
<regina.BoundaryComponent4: Boundary component 0, ideal at vertex 0: 0 (0), 1 (0), 1 (1), 0 (1), 1 (2), 0 (2), 1 (4), 0 (3), 1 (3), 0 (4)>

Face5_0
Vertex 0, internal, degree 2: 0 (0), 1 (0)
<regina.Face5_0: Vertex 0, internal, degree 2: 0 (0), 1 (0)>

FaceEmbedding5_0
0 (0)
<regina.FaceEmbedding5_0: 0 (0)>

Face5_1
Edge 0, internal, degree 2: 0 (01), 1 (01)
<regina.Face5_1: Edge 0, internal, degree 2: 0 (01), 1 (01)>

FaceEmbedding5_1
0 (01)
<regina.FaceEmbedding5_1: 0 (01)>

Face5_2
Triangle 0, internal, degree 2: 0 (012), 1 (012)
<regina.Face5_2: Triangle 0, internal, degree 2: 0 (012), 1 (012)>

FaceEmbedding5_2
0 (012)
<regina.FaceEmbedding5_2: 0 (012)>

Face5_3
Tetrahedron 0, internal, degree 2: 0 (2345), 1 (2345)
<regina.Face5_3: Tetrahedron 0, internal, degree 2: 0 (2345), 1 (2345)>

FaceEmbedding5_3
0 (2345)
<regina.FaceEmbedding5_3: 0 (2345)>

Face5_4
Pentachoron 0, internal: 0 (01234), 1 (01234)
<regina.Face5_4: Pentachoron 0, internal: 0 (01234), 1 (01234)>

FaceEmbedding5_4
0 (01234)
<regina.FaceEmbedding5_4: 0 (01234)>

Simplex5
5-simplex 0: 01234 -> 1 (01234), 01235 -> 1 (01235), 01245 -> 1 (01245), 01345 -> 1 (01345), 02345 -> 1 (02345), 12345 -> 1 (12345)
<regina.Simplex5: 5-simplex 0: 01234 -> 1 (01234), 01235 -> 1 (01235), 01245 -> 1 (01245), 01345 -> 1 (01345), 02345 -> 1 (02345), 12345 -> 1 (12345)>

Component5
Component with 2 5-simplices: entire triangulation
<regina.Component5: Component with 2 5-simplices: entire triangulation>

Component5
Component with 1 5-simplex: 2
<regina.Component5: Component with 1 5-simplex: 2>

BoundaryComponent5
Boundary component 0: 2 (01253), 2 (01245), 2 (02345), 2 (01354)
<regina.BoundaryComponent5: Boundary component 0: 2 (01253), 2 (01245), 2 (02345), 2 (01354)>

Isomorphism3
0 -> 1 (1230), 1 -> 0 (2103)
<regina.Isomorphism3: 0 -> 1 (1230), 1 -> 0 (2103)>

HomologicalData
Nothing computed yet
<regina.HomologicalData: Nothing computed yet>

HomMarkedAbelianGroup
Epic (kernel Z): [[ 4 3 ]]
<regina.HomMarkedAbelianGroup: Epic (kernel Z): [[ 4 3 ]]>

HomologicalData
H0(M): Z, H1(M): Z, H2(M): 0, H3(M): 0, H0(BM): Z, H1(BM): 2 Z, H2(BM): Z, H1(BM) -> H1(M): Epic (kernel Z): [[ 4 3 ]]
<regina.HomologicalData: H0(M): Z, H1(M): Z, H2(M): 0, H3(M): 0, H0(BM): Z, H1(BM): 2 Z, H2(BM): Z, H1(BM) -> H1(M): Epic (kernel Z): [[ 4 3 ]]>

SFSFibre
(5,-2)
<regina.SFSFibre: (5,-2)>

LensSpace
L(7,2)
<regina.LensSpace: L(7,2)>

SFSpace
SFS [D/o2: (3,1) (4,-3)]
<regina.SFSpace: SFS [D/o2: (3,1) (4,-3)]>

SimpleSurfaceBundle
RP2 x S1
<regina.SimpleSurfaceBundle: RP2 x S1>

SnapPeaCensusManifold
SnapPea x101
<regina.SnapPeaCensusManifold: SnapPea x101>

Handlebody
Genus 2 handlebody
<regina.Handlebody: Genus 2 handlebody>

TorusBundle
T x I / [ 0,1 | 1,0 ]
<regina.TorusBundle: T x I / [ 0,1 | 1,0 ]>

GraphLoop
SFS [A/o2: (2,1) (5,3)] / [ 0,-1 | 1,0 ]
<regina.GraphLoop: SFS [A/o2: (2,1) (5,3)] / [ 0,-1 | 1,0 ]>

GraphPair
SFS [D/o2: (3,1) (4,3)] U/m SFS [D/o2: (3,1) (4,3)], m = [ 0,1 | 1,2 ]
<regina.GraphPair: SFS [D/o2: (3,1) (4,3)] U/m SFS [D/o2: (3,1) (4,3)], m = [ 0,1 | 1,2 ]>

GraphTriple
SFS [D/o2: (3,1) (4,3)] U/m SFS [A/o2: (2,1) (5,2)] U/n SFS [D/o2: (3,1) (4,3)], m = [ -2,1 | 1,0 ], n = [ 1,2 | 3,5 ]
<regina.GraphTriple: SFS [D/o2: (3,1) (4,3)] U/m SFS [A/o2: (2,1) (5,2)] U/n SFS [D/o2: (3,1) (4,3)], m = [ -2,1 | 1,0 ], n = [ 1,2 | 3,5 ]>

list of SFSAlt
  SFS [D/o2: (3,1) (4,3)], via [[ 1 0 ] [ 0 1 ]], without reflection
  SFS [D/o2: (3,1) (4,3)], via [[ 1 0 ] [ 0 -1 ]], using reflection
[<regina.SFSAlt: SFS [D/o2: (3,1) (4,3)], via [[ 1 0 ] [ 0 1 ]], without reflection>, <regina.SFSAlt: SFS [D/o2: (3,1) (4,3)], via [[ 1 0 ] [ 0 -1 ]], using reflection>]

list of SFSAlt
  SFS [A/o2: (2,1) (5,2)], via [[ 1 0 ] [ 0 1 ]], without reflection
  SFS [A/o2: (2,1) (5,2)], via [[ 1 0 ] [ 0 -1 ]], using reflection
[<regina.SFSAlt: SFS [A/o2: (2,1) (5,2)], via [[ 1 0 ] [ 0 1 ]], without reflection>, <regina.SFSAlt: SFS [A/o2: (2,1) (5,2)], via [[ 1 0 ] [ 0 -1 ]], using reflection>]

SnapPeaCensusTri
SnapPea m004
<regina.SnapPeaCensusTri: SnapPea m004>

TxIDiagonalCore
T6:1
<regina.TxIDiagonalCore: T6:1>

TxIParallelCore
T6*
<regina.TxIParallelCore: T6*>

SnappedBall
Snapped 3-ball, internal edge 1 (23)
<regina.SnappedBall: Snapped 3-ball, internal edge 1 (23)>

SnappedTwoSphere
Snapped 2-sphere, equator 0 (01) = 1 (01)
<regina.SnappedTwoSphere: Snapped 2-sphere, equator 0 (01) = 1 (01)>

PillowTwoSphere
Pillow 2-sphere, triangles 3, 4
<regina.PillowTwoSphere: Pillow 2-sphere, triangles 3, 4>

SatBlockModel
Model of Cube {0,1,2,3}
<regina.SatBlockModel: Model of Cube {0,1,2,3}>

BlockedSFS
Blocked SFS [Tri, LST(1, 2, 3), LST(1, 5, 6), Mob(v)]
<regina.BlockedSFS: Blocked SFS [Tri, LST(1, 2, 3), LST(1, 5, 6), Mob(v)]>

SatRegion
[ Tri(major) {0,2,1} | LST(1,5,6) {4..7}, reflected(H) | LST(1,2,3) {3}, reflected(H) | Mobius(vert) {triangle 0}, reflected(H) ]
<regina.SatRegion: [ Tri(major) {0,2,1} | LST(1,5,6) {4..7}, reflected(H) | LST(1,2,3) {3}, reflected(H) | Mobius(vert) {triangle 0}, reflected(H) ]>

SatBlockSpec
Tri(major) {0,2,1}
<regina.SatBlockSpec: Tri(major) {0,2,1}>

SatTriPrism
Tri(major) {0,2,1}
<regina.SatTriPrism: Tri(major) {0,2,1}>

SatAnnulus
0 (013), 2 (320)
<regina.SatAnnulus: 0 (013), 2 (320)>

BlockedSFSLoop
Blocked SFS Loop [Tri, Tri, Tri, Mob(v), Layer]
<regina.BlockedSFSLoop: Blocked SFS Loop [Tri, Tri, Tri, Mob(v), Layer]>

BlockedSFSPair
Blocked SFS Pair [Tri, Mob(v), Mob(v) | Tri, Layer]
<regina.BlockedSFSPair: Blocked SFS Pair [Tri, Mob(v), Mob(v) | Tri, Layer]>

BlockedSFSTriple
Blocked SFS Triple [Tri, LST(1, 2, 3), Mob(v) | Tri, Mob(v) | Tri, Mob(v), Mob(v)]
<regina.BlockedSFSTriple: Blocked SFS Triple [Tri, LST(1, 2, 3), Mob(v) | Tri, Mob(v) | Tri, Mob(v), Mob(v)]>

PluggedTorusBundle
Plugged Torus Bundle [T6:1 | Tri, Mob(v)]
<regina.PluggedTorusBundle: Plugged Torus Bundle [T6:1 | Tri, Mob(v)]>

TrivialTri
L'(3,1)
<regina.TrivialTri: L'(3,1)>

LayeredLoop
C~(2)
<regina.LayeredLoop: C~(2)>

LayeredTorusBundle
B(T6:1 | -1,-1 | -1,-2)
<regina.LayeredTorusBundle: B(T6:1 | -1,-1 | -1,-2)>

PlugTriSolidTorus
P(0)
<regina.PlugTriSolidTorus: P(0)>

TrivialTri
N(3,2)
<regina.TrivialTri: N(3,2)>

AugTriSolidTorus
A(3,-1 | 5,-6)
<regina.AugTriSolidTorus: A(3,-1 | 5,-6)>

TriSolidTorus
Triangular solid torus, tetrahedra 2 (2103) 1 (1032) 0 (0321)
<regina.TriSolidTorus: Triangular solid torus, tetrahedra 2 (2103) 1 (1032) 0 (0321)>

LayeredLensSpace
L(8,3)
<regina.LayeredLensSpace: L(8,3)>

LayeredSolidTorus
LST(2, 3, 5), base 0 (edges 5|23|401), top 1 (edges 41|32|5)
<regina.LayeredSolidTorus: LST(2, 3, 5), base 0 (edges 5|23|401), top 1 (edges 41|32|5)>

LayeredSolidTorus
LST(2, 3, 5), base 1 (edges 0|41|352), top 0 (edges 23|41|0)
<regina.LayeredSolidTorus: LST(2, 3, 5), base 1 (edges 0|41|352), top 0 (edges 23|41|0)>

Layering
Layer 0 tetrahedra: 0 (230), 0 (321) -> 0 (230), 0 (321) via [[ 1 0 ] [ 0 1 ]]
<regina.Layering: Layer 0 tetrahedra: 0 (230), 0 (321) -> 0 (230), 0 (321) via [[ 1 0 ] [ 0 1 ]]>

Layering
Layer 1 tetrahedron: 0 (230), 0 (321) -> 1 (123), 1 (032) via [[ 1 0 ] [ -1 1 ]]
<regina.Layering: Layer 1 tetrahedron: 0 (230), 0 (321) -> 1 (123), 1 (032) via [[ 1 0 ] [ -1 1 ]]>

LayeredChainPair
C(4,6)
<regina.LayeredChainPair: C(4,6)>

LayeredChain
Chain(4), tetrahedra 3 (1302) .. 1 (0213)
<regina.LayeredChain: Chain(4), tetrahedra 3 (1302) .. 1 (0213)>

SpiralSolidTorus
7-tetrahedron spiralled solid torus, tetrahedra 1 (0213), 0 (2130), 2 (0213), 6 (2130), 9 (0213), 8 (1302), 5 (3021)
<regina.SpiralSolidTorus: 7-tetrahedron spiralled solid torus, tetrahedra 1 (0213), 0 (2130), 2 (0213), 6 (2130), 9 (0213), 8 (1302), 5 (3021)>

CensusHit
m004 : #1 -- Cusped hyperbolic census (orientable)
<regina.CensusHit: m004 : #1 -- Cusped hyperbolic census (orientable)>

GluingPermSearcher2
New search, orientable only: stage 0, order: 0:0 0:2
<regina.GluingPermSearcher2: New search, orientable only: stage 0, order: 0:0 0:2>

GluingPermSearcher3
New search, orientable only, purge 0x01: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0
<regina.GluingPermSearcher3: New search, orientable only, purge 0x01: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0>

CompactSearcher
New search, orientable only, finite only, purge 0x01: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0
<regina.CompactSearcher: New search, orientable only, finite only, purge 0x01: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0>

HyperbolicMinSearcher
New search, orientable only, purge 0x09: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0
<regina.HyperbolicMinSearcher: New search, orientable only, purge 0x09: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0>

EulerSearcher
New search: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0
<regina.EulerSearcher: New search: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0>

ClosedPrimeMinSearcher
New search, orientable only, finite only, purge 0x07: stage 0, order: 3:0 7:0 6:0 6:1 5:0 5:1 4:0 4:1 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1
<regina.ClosedPrimeMinSearcher: New search, orientable only, finite only, purge 0x07: stage 0, order: 3:0 7:0 6:0 6:1 5:0 5:1 4:0 4:1 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1>

GluingPermSearcher4
New search, finite only: stage 0, order: 0:0 0:1 0:2 0:3 0:4
<regina.GluingPermSearcher4: New search, finite only: stage 0, order: 0:0 0:1 0:2 0:3 0:4>

TypeTrie4
Trie for 4 types
<regina.TypeTrie4: Trie for 4 types>

TypeTrie7
Trie for 7 types
<regina.TypeTrie7: Trie for 7 types>

LPInitialTableaux_NonSpun
Columns: {+0,0} {-0} {-0} {+0,0} {-0} {-0}, constraints: [ 1 -1 0 1 0 -1 -1 0 ] [ 0 0 0 4 -2 -2 0 -1 ]
<regina.LPInitialTableaux_NonSpun: Columns: {+0,0} {-0} {-0} {+0,0} {-0} {-0}, constraints: [ 1 -1 0 1 0 -1 -1 0 ] [ 0 0 0 4 -2 -2 0 -1 ]>

LPMatrix
[[ 2 -1 -1 2 -1 -1 0 0 ] [ 1 -1 0 1 0 -1 -1 0 ] [ 0 0 0 4 -2 -2 0 -1 ]]
<regina.LPMatrix: [[ 2 -1 -1 2 -1 -1 0 0 ] [ 1 -1 0 1 0 -1 -1 0 ] [ 0 0 0 4 -2 -2 0 -1 ]]>

LPData_NonSpun
Uninitialised
<regina.LPData_NonSpun: Uninitialised>

LPData_NonSpun
Feasible basis: 0 1 3
<regina.LPData_NonSpun: Feasible basis: 0 1 3>

ValidityConstraints
Blocks: 2 x 7, local: { 4 5 6 }
<regina.ValidityConstraints: Blocks: 2 x 7, local: { 4 5 6 }>

ValidityConstraints
Blocks: 2 x 6, local: { 0 1 2 3 4 5 }, global: { 3 4 5 }
<regina.ValidityConstraints: Blocks: 2 x 6, local: { 0 1 2 3 4 5 }, global: { 3 4 5 }>

BanNone
Nothing banned or marked
<regina.BanNone: Nothing banned or marked>

BanBoundary
Banned: 0 1 2 9 10 11 12, nothing marked
<regina.BanBoundary: Banned: 0 1 2 9 10 11 12, nothing marked>

BanTorusBoundary
Banned: 0 1 2 9 10 11 12, marked: 9 10 11 12 13 14 15 16 17 18 19 20
<regina.BanTorusBoundary: Banned: 0 1 2 9 10 11 12, marked: 9 10 11 12 13 14 15 16 17 18 19 20>

PosOrder
Compare row indices using position vectors
<regina.PosOrder: Compare row indices using position vectors>

TreeDecomposition
Width 4, size 11, bags 0: {0,1,5,6} -> 1, 1: {0,1,2,5,7} -> 2, 2: {0,2,4,5,7} -> 4, 3: {2,3,4,8} -> 4, 4: {0,2,4,7,8} -> 5, 5: {0,4,7,8} -> 6, 6: {0,4,8,10} -> 8, 7: {4,8,9,10} -> 8, 8: {4,8,10} -> 9, 9: {8,10} -> 10, 10: {10}
<regina.TreeDecomposition: Width 4, size 11, bags 0: {0,1,5,6} -> 1, 1: {0,1,2,5,7} -> 2, 2: {0,2,4,5,7} -> 4, 3: {2,3,4,8} -> 4, 4: {0,2,4,7,8} -> 5, 5: {0,4,7,8} -> 6, 6: {0,4,8,10} -> 8, 7: {4,8,9,10} -> 8, 8: {4,8,10} -> 9, 9: {8,10} -> 10, 10: {10}>

TreeBag
Bag of 4 elements: 0 1 5 6
<regina.TreeBag: Bag of 4 elements: 0 1 5 6>

Signature
(abbc)(ac)
<regina.Signature: (abbc)(ac)>

FileInfo
Regina data: Second-generation XML format (Regina 3.0-6.0.1)
<regina.FileInfo: Regina data: Second-generation XML format (Regina 3.0-6.0.1)>

NoneType
None
None

ProgressTrackerOpen
Initialising - 0 step(s)
<regina.ProgressTrackerOpen: Initialising - 0 step(s)>

ProgressTrackerOpen
Doing stuff - 3 step(s)
<regina.ProgressTrackerOpen: Doing stuff - 3 step(s)>

ProgressTrackerOpen
Finished
<regina.ProgressTrackerOpen: Finished>

ProgressTracker
Initialising - 0%
<regina.ProgressTracker: Initialising - 0%>

ProgressTracker
Doing stuff - 5.9%
<regina.ProgressTracker: Doing stuff - 5.9%>

ProgressTracker
Doing stuff - 76%
<regina.ProgressTracker: Doing stuff - 76%>

ProgressTracker
Cancelled but not finished
<regina.ProgressTracker: Cancelled but not finished>

Container
Container with 1 child, 3 descendants
<regina.Container: Container with 1 child, 3 descendants>

Text
Text of length 12
<regina.Text: Text of length 12>

Attachment
Attachment (3 bytes): test.txt
<regina.Attachment: Attachment (3 bytes): test.txt>

Script
2-line script, dummy = (null), text = <Welcome>
<regina.Script: 2-line script, dummy = (null), text = <Welcome>>

GluingPerms2
0 (102), 0 (102), 1 (120) | 0 (201), 1 (021), 1 (021)
<regina.GluingPerms2: 0 (102), 0 (102), 1 (120) | 0 (201), 1 (021), 1 (021)>

GluingPerms2
1 (012), 1 (012), 1 (012) | 0 (012), 0 (012), 0 (012)
<regina.GluingPerms2: 1 (012), 1 (012), 1 (012) | 0 (012), 0 (012), 0 (012)>

GluingPerms2
1 (021), 1 (210), 1 (102) | 0 (021), 0 (210), 0 (102)
<regina.GluingPerms2: 1 (021), 1 (210), 1 (102) | 0 (021), 0 (210), 0 (102)>

(aabb)
SigPartialIsomorphism
Symbols: ab -> ba; cycles: 0 -> 0 (>> 3), all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ba; cycles: 0 -> 0 (>> 3), all reversed>

(abab)
SigPartialIsomorphism
Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), all reversed>

(aab)(b)
SigPartialIsomorphism
Symbols: ab -> ab; cycles: 0 -> 0 (>> 1), 1 -> 1, all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ab; cycles: 0 -> 0 (>> 1), 1 -> 1, all reversed>

(ab)(ab)
SigPartialIsomorphism
Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), 1 -> 1 (>> 1), all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), 1 -> 1 (>> 1), all reversed>

(ab)(a)(b)
SigPartialIsomorphism
Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), 2 -> 1, 1 -> 2, all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), 2 -> 1, 1 -> 2, all reversed>

TreeSingleSoln_EulerPositive
Level 0 of 0..19, types: 0___________________
<regina.TreeSingleSoln_EulerPositive: Level 0 of 0..19, types: 0___________________>

TreeSingleSoln_EulerPositive
Level 19 of 0..19, types: 00010000010010000000
<regina.TreeSingleSoln_EulerPositive: Level 19 of 0..19, types: 00010000010010000000>

TautEnumeration
Level 1 of 0..1, types: 11
<regina.TautEnumeration: Level 1 of 0..1, types: 11>

TautEnumeration
Level 1 of 0..1, types: 23
<regina.TautEnumeration: Level 1 of 0..1, types: 23>

TautEnumeration
Level 1 of 0..1, types: 32
<regina.TautEnumeration: Level 1 of 0..1, types: 32>

TreeEnumeration
Level 1 of 0..1, types: 12
<regina.TreeEnumeration: Level 1 of 0..1, types: 12>

TreeEnumeration
Level 1 of 0..1, types: 13
<regina.TreeEnumeration: Level 1 of 0..1, types: 13>

TreeEnumeration
Level 1 of 0..1, types: 21
<regina.TreeEnumeration: Level 1 of 0..1, types: 21>

TreeEnumeration
Level 1 of 0..1, types: 31
<regina.TreeEnumeration: Level 1 of 0..1, types: 31>

TreeEnumeration_NonSpun
Level 1 of 0..1, types: 11
<regina.TreeEnumeration_NonSpun: Level 1 of 0..1, types: 11>

PermSn8_Sign
[ 01234567 01234576 01234675 01234657 ... 76543201 ]
<regina.PermSn8_Sign: [ 01234567 01234576 01234675 01234657 ... 76543201 ]>