1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
|
Integer
-5
-5
LargeInteger
9
9
LargeInteger
inf
inf
Rational
3/8
3/8
Perm2
10
<regina.Perm2: 10>
Perm3
021
<regina.Perm3: 021>
Perm4
0321
<regina.Perm4: 0321>
Perm5
01324
<regina.Perm5: 01324>
Perm6
013245
<regina.Perm6: 013245>
Perm7
0132456
<regina.Perm7: 0132456>
Perm8
01324567
<regina.Perm8: 01324567>
Perm15
0132456789abcde
<regina.Perm15: 0132456789abcde>
VectorInt
( 1 0 -2 )
<regina.VectorInt: ( 1 0 -2 )>
VectorLarge
( 1 0 inf -2 )
<regina.VectorLarge: ( 1 0 inf -2 )>
Matrix2
[[ 1 2 ] [ 3 4 ]]
<regina.Matrix2: [[ 1 2 ] [ 3 4 ]]>
Matrix2._Row
[ 3 4 ]
<regina.Matrix2._Row: [ 3 4 ]>
MatrixBool
[[ 1 0 ] [ 0 1 ]]
<regina.MatrixBool: [[ 1 0 ] [ 0 1 ]]>
MatrixInt
[[ 2 -1 -1 2 -1 -1 ] [ -2 1 1 -2 1 1 ]]
<regina.MatrixInt: [[ 2 -1 -1 2 -1 -1 ] [ -2 1 1 -2 1 1 ]]>
Cyclotomic
-2/5 x^3 + 2/5 x^2 + 7/10
<regina.Cyclotomic: -2/5 x^3 + 2/5 x^2 + 7/10>
PolynomialRational
-2/5 x^3 + 2/5 x^2 + 7/10
<regina.PolynomialRational: -2/5 x^3 + 2/5 x^2 + 7/10>
Laurent
x^4 - x^2 + 1 - x^-2 + x^-4
<regina.Laurent: x^4 - x^2 + 1 - x^-2 + x^-4>
Laurent2
x^2 - y^2 - 1 + x^-2
<regina.Laurent2: x^2 - y^2 - 1 + x^-2>
HyperList
HyperList.Vertex
<HyperList.Vertex: 4>
HyperAlg
HyperAlg.VertexDD
<HyperAlg.VertexDD: 32>
NormalList
NormalList.Vertex
<NormalList.Vertex: 4>
NormalAlg
NormalAlg.VertexDD
<NormalAlg.VertexDD: 32>
AngleAlg
AngleAlg.DD
<AngleAlg.DD: 32>
CensusPurge
CensusPurge.NonMinimal
<CensusPurge.NonMinimal: 1>
SurfaceExport
SurfaceExport.Name
<SurfaceExport.Name: 1>
Flags_HyperList
0x0004
<regina.Flags_HyperList: 0x0004>
Flags_HyperAlg
0x0020
<regina.Flags_HyperAlg: 0x0020>
Flags_NormalList
0x0004
<regina.Flags_NormalList: 0x0004>
Flags_NormalAlg
0x0020
<regina.Flags_NormalAlg: 0x0020>
Flags_AngleAlg
0x0020
<regina.Flags_AngleAlg: 0x0020>
Flags_CensusPurge
0x03
<regina.Flags_CensusPurge: 0x03>
Flags_SurfaceExport
0x0003
<regina.Flags_SurfaceExport: 0x0003>
NormalEncoding
0x0203
<regina.NormalEncoding: 0x0203>
HyperEncoding
0x011f
<regina.HyperEncoding: 0x011f>
LPSystem
quad
<regina.LPSystem: quad>
AbelianGroup
3 Z_5
<regina.AbelianGroup: 3 Z_5>
MarkedAbelianGroup
3 Z_5 (Z^46 -> Z^24 -> Z^1)
<regina.MarkedAbelianGroup: 3 Z_5 (Z^46 -> Z^24 -> Z^1)>
HomMarkedAbelianGroup
Isomorphism: [[ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ]]
<regina.HomMarkedAbelianGroup: Isomorphism: [[ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ]]>
GroupPresentation
< a b | a b a^-1 b a b^-1, a b^-1 a^-1 b^-1 a b^2 >
<regina.GroupPresentation: < a b | a b a^-1 b a b^-1, a b^-1 a^-1 b^-1 a b^2 >>
GroupExpression
g0 g1 g0^-1 g1 g0 g1^-1
<regina.GroupExpression: g0 g1 g0^-1 g1 g0 g1^-1>
GroupExpressionTerm
g0^-1
<regina.GroupExpressionTerm: g0^-1>
GroupPresentation
< a b c | a c^-1, a b^-1 c^-1 b >
<regina.GroupPresentation: < a b c | a c^-1, a b^-1 c^-1 b >>
HomGroupPresentation
Isomorphism: g0 -> g1, g1 -> g0, g2 -> g1
<regina.HomGroupPresentation: Isomorphism: g0 -> g1, g1 -> g0, g2 -> g1>
GroupPresentation
< a b | a^-1 b^-1 a b >
<regina.GroupPresentation: < a b | a^-1 b^-1 a b >>
Bitmask
00010000000000000000000000000000
<regina.Bitmask: 00010000000000000000000000000000>
Bitmask8
00010000
<regina.Bitmask8: 00010000>
Qitmask8
00020000
<regina.Qitmask8: 00020000>
BoolSet
{ true }
<regina.BoolSet: { true }>
TrieSet
Trie containing 0 sets
<regina.TrieSet: Trie containing 0 sets>
DiscType
7:3
<regina.DiscType: 7:3>
DiscSpec
1:3 #2
<regina.DiscSpec: 1:3 #2>
PrismSpec
5:1
<regina.PrismSpec: 5:1>
NormalSurfaces
3 embedded, vertex surfaces (Quad normal)
<regina.NormalSurfaces: 3 embedded, vertex surfaces (Quad normal)>
NormalSurface
1 0 0 1 ; 1 0 0 || 1 0 0 1 ; 1 0 0
<regina.NormalSurface: 1 0 0 1 ; 1 0 0 || 1 0 0 1 ; 1 0 0>
NormalHypersurfaces
4 embedded, vertex hypersurfaces (Prism normal)
<regina.NormalHypersurfaces: 4 embedded, vertex hypersurfaces (Prism normal)>
NormalHypersurface
0 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 0 || 0 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 0
<regina.NormalHypersurface: 0 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 0 || 0 0 0 0 0 ; 0 0 0 0 0 1 0 0 0 0>
AngleStructures
5 vertex angle structures (no restrictions)
<regina.AngleStructures: 5 vertex angle structures (no restrictions)>
AngleStructure
1 0 0 ; 1 0 0
<regina.AngleStructure: 1 0 0 ; 1 0 0>
SurfaceFilterCombination
AND filter
<regina.SurfaceFilterCombination: AND filter>
SurfaceFilterProperties
Euler in { 1 0 }, orientable only
<regina.SurfaceFilterProperties: Euler in { 1 0 }, orientable only>
DiscSetSurface
( 0 1 0 1 0 1 0 0 0 0 | 0 0 1 1 1 0 0 0 0 0 | 1 0 1 0 0 1 0 0 0 0 | 0 1 0 1 0 1 0 0 0 0 | 1 1 0 0 1 0 0 0 0 0 )
<regina.DiscSetSurface: ( 0 1 0 1 0 1 0 0 0 0 | 0 0 1 1 1 0 0 0 0 0 | 1 0 1 0 0 1 0 0 0 0 | 0 1 0 1 0 1 0 0 0 0 | 1 1 0 0 1 0 0 0 0 0 )>
DiscSetTet
( 0 1 0 1 0 1 0 0 0 0 )
<regina.DiscSetTet: ( 0 1 0 1 0 1 0 0 0 0 )>
ModelLinkGraph
6-node planar graph: [1:0 2:0 3:0 3:3] [0:0 4:0 4:3 2:1] [0:1 1:3 5:0 3:1] [0:2 2:3 5:3 0:3] [1:1 5:2 5:1 1:2] [2:2 4:2 4:1 3:2]
<regina.ModelLinkGraph: 6-node planar graph: [1:0 2:0 3:0 3:3] [0:0 4:0 4:3 2:1] [0:1 1:3 5:0 3:1] [0:2 2:3 5:3 0:3] [1:1 5:2 5:1 1:2] [2:2 4:2 4:1 3:2]>
ModelLinkGraphNode
Node 0: arcs 0, 1, 2, 3 -> 1:0, 2:0, 3:0, 3:3
<regina.ModelLinkGraphNode: Node 0: arcs 0, 1, 2, 3 -> 1:0, 2:0, 3:0, 3:3>
ModelLinkGraphArc
0:2
<regina.ModelLinkGraphArc: 0:2>
ModelLinkGraphCells
8 cells: (0:0 1:0-1 4:0-1 5:2-3 3:2-3 0:3) (0:1 2:0-1 1:3-0 0:0) (0:2 3:0-1 2:3-0 0:1) (0:3 3:3-0 0:2) (1:2 4:3-0 1:1) (1:3 2:1-2 5:0-1 4:2-3 1:2) (2:3 3:1-2 5:3-0 2:2) (4:2 5:1-2 4:1)
<regina.ModelLinkGraphCells: 8 cells: (0:0 1:0-1 4:0-1 5:2-3 3:2-3 0:3) (0:1 2:0-1 1:3-0 0:0) (0:2 3:0-1 2:3-0 0:1) (0:3 3:3-0 0:2) (1:2 4:3-0 1:1) (1:3 2:1-2 5:0-1 4:2-3 1:2) (2:3 3:1-2 5:3-0 2:2) (4:2 5:1-2 4:1)>
Link
Empty link
<regina.Link: Empty link>
Link
0-crossing knot: ( )
<regina.Link: 0-crossing knot: ( )>
Link
5-crossing, 2-component link: --++- ( ^0 _1 ^4 _3 ^2 _4 ) ( _0 ^1 _2 ^3 )
<regina.Link: 5-crossing, 2-component link: --++- ( ^0 _1 ^4 _3 ^2 _4 ) ( _0 ^1 _2 ^3 )>
PacketOfLink
5-crossing, 2-component link: --++- ( ^0 _1 ^4 _3 ^2 _4 ) ( _0 ^1 _2 ^3 )
<regina.PacketOfLink: 5-crossing, 2-component link: --++- ( ^0 _1 ^4 _3 ^2 _4 ) ( _0 ^1 _2 ^3 )>
StrandRef
(null)
<regina.StrandRef: (null)>
StrandRef
_0
<regina.StrandRef: _0>
Crossing
Crossing 0 (+): over _1 -+-> _3, under ^2 -+-> ^1
<regina.Crossing: Crossing 0 (+): over _1 -+-> _3, under ^2 -+-> ^1>
Tangle
3-crossing vertical tangle: | --+ ( _0 ^1 ) ( ^2 _1 ^0 _2 )
<regina.Tangle: 3-crossing vertical tangle: | --+ ( _0 ^1 ) ( ^2 _1 ^0 _2 )>
Crossing
Crossing 0 (-): over _1 -+-> _2, under (null) -+-> ^1
<regina.Crossing: Crossing 0 (-): over _1 -+-> _2, under (null) -+-> ^1>
SnapPeaTriangulation
Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0, vertex 1 ]
<regina.SnapPeaTriangulation: Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0, vertex 1 ]>
SnapPeaTriangulation
Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0: (5, -2), vertex 1 ]
<regina.SnapPeaTriangulation: Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0: (5, -2), vertex 1 ]>
PacketOfSnapPeaTriangulation
Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0: (5, -2), vertex 1 ]
<regina.PacketOfSnapPeaTriangulation: Ideal orientable 3-D triangulation, f = ( 2 4 8 4 ), cusps: [ vertex 0: (5, -2), vertex 1 ]>
Cusp
(5,-2)-filled cusp at vertex 0
<regina.Cusp: (5,-2)-filled cusp at vertex 0>
Cusp
Complete cusp at vertex 1
<regina.Cusp: Complete cusp at vertex 1>
FacetSpec3
6:2
<regina.FacetSpec3: 6:2>
FacePair
{1,3}
<regina.FacePair: {1,3}>
FacetPairing3
1:1 1:0 1:2 1:3 | 0:1 0:0 0:2 0:3
<regina.FacetPairing3: 1:1 1:0 1:2 1:3 | 0:1 0:0 0:2 0:3>
FacetPairing4
1:4 1:1 1:2 1:3 1:0 | 0:4 0:1 0:2 0:3 0:0
<regina.FacetPairing4: 1:4 1:1 1:2 1:3 1:0 | 0:4 0:1 0:2 0:3 0:0>
Triangulation2
Bounded non-orientable 2-D triangulation, f = ( 1 2 1 )
<regina.Triangulation2: Bounded non-orientable 2-D triangulation, f = ( 1 2 1 )>
Triangulation3
Closed orientable 3-D triangulation, f = ( 1 6 10 5 )
<regina.Triangulation3: Closed orientable 3-D triangulation, f = ( 1 6 10 5 )>
PacketOfTriangulation3
Closed orientable 3-D triangulation, f = ( 1 6 10 5 )
<regina.PacketOfTriangulation3: Closed orientable 3-D triangulation, f = ( 1 6 10 5 )>
Triangulation4
Ideal orientable 4-D triangulation, f = ( 1 1 4 5 2 )
<regina.Triangulation4: Ideal orientable 4-D triangulation, f = ( 1 1 4 5 2 )>
Triangulation5
Possibly closed orientable 5-D triangulation, f = ( 6 15 20 15 6 2 )
<regina.Triangulation5: Possibly closed orientable 5-D triangulation, f = ( 6 15 20 15 6 2 )>
Face2_0
Vertex 0, boundary, degree 3: 0 (2), 1 (1), 0 (0)
<regina.Face2_0: Vertex 0, boundary, degree 3: 0 (2), 1 (1), 0 (0)>
FaceEmbedding2_0
0 (2)
<regina.FaceEmbedding2_0: 0 (2)>
Face2_1
Edge 0, internal: 0 (01), 1 (12)
<regina.Face2_1: Edge 0, internal: 0 (01), 1 (12)>
FaceEmbedding2_1
0 (01)
<regina.FaceEmbedding2_1: 0 (01)>
Simplex2
2-simplex 0: 01 -> 1 (12), 12 -> 1 (01)
<regina.Simplex2: 2-simplex 0: 01 -> 1 (12), 12 -> 1 (01)>
Component2
Component with 2 triangles: entire triangulation
<regina.Component2: Component with 2 triangles: entire triangulation>
BoundaryComponent2
Boundary component 0: 0 (20)
<regina.BoundaryComponent2: Boundary component 0: 0 (20)>
Face3_0
Vertex 0, internal, degree 20: 0 (0), 2 (3), 3 (3), 4 (3), 1 (3), 3 (0), 1 (2), 4 (0), 1 (1), 2 (0), 0 (1), 4 (1), 0 (2), 2 (1), 0 (3), 3 (1), 3 (2), 2 (2), 4 (2), 1 (0)
<regina.Face3_0: Vertex 0, internal, degree 20: 0 (0), 2 (3), 3 (3), 4 (3), 1 (3), 3 (0), 1 (2), 4 (0), 1 (1), 2 (0), 0 (1), 4 (1), 0 (2), 2 (1), 0 (3), 3 (1), 3 (2), 2 (2), 4 (2), 1 (0)>
FaceEmbedding3_0
0 (0)
<regina.FaceEmbedding3_0: 0 (0)>
Face3_1
Edge 0, internal, degree 5: 0 (01), 3 (32), 1 (20), 2 (02), 4 (31)
<regina.Face3_1: Edge 0, internal, degree 5: 0 (01), 3 (32), 1 (20), 2 (02), 4 (31)>
FaceEmbedding3_1
0 (01)
<regina.FaceEmbedding3_1: 0 (01)>
Face3_2
Triangle 0, internal: 0 (012), 4 (312)
<regina.Face3_2: Triangle 0, internal: 0 (012), 4 (312)>
FaceEmbedding3_2
0 (012)
<regina.FaceEmbedding3_2: 0 (012)>
Simplex3
3-simplex 0: 012 -> 4 (312), 013 -> 3 (321), 023 -> 2 (312), 123 -> 1 (321)
<regina.Simplex3: 3-simplex 0: 012 -> 4 (312), 013 -> 3 (321), 023 -> 2 (312), 123 -> 1 (321)>
Component3
Component with 5 tetrahedra: entire triangulation
<regina.Component3: Component with 5 tetrahedra: entire triangulation>
Face4_0
Vertex 0, ideal, degree 10: 0 (0), 1 (0), 1 (1), 0 (1), 1 (2), 0 (2), 1 (4), 0 (3), 1 (3), 0 (4)
<regina.Face4_0: Vertex 0, ideal, degree 10: 0 (0), 1 (0), 1 (1), 0 (1), 1 (2), 0 (2), 1 (4), 0 (3), 1 (3), 0 (4)>
FaceEmbedding4_0
0 (0)
<regina.FaceEmbedding4_0: 0 (0)>
Face4_1
Edge 0, internal, degree 20: 0 (01), 1 (12), 0 (12), 1 (01), 1 (24), 0 (23), 1 (14), 1 (02), 0 (02), 0 (13), 1 (43), 0 (03), 1 (23), 1 (04), 1 (13), 0 (34), 1 (03), 0 (14), 0 (04), 0 (24)
<regina.Face4_1: Edge 0, internal, degree 20: 0 (01), 1 (12), 0 (12), 1 (01), 1 (24), 0 (23), 1 (14), 1 (02), 0 (02), 0 (13), 1 (43), 0 (03), 1 (23), 1 (04), 1 (13), 0 (34), 1 (03), 0 (14), 0 (04), 0 (24)>
FaceEmbedding4_1
0 (01)
<regina.FaceEmbedding4_1: 0 (01)>
ListView_Triangulation4_edges
[ <regina.Face4_1: Edge 0, internal, degree 20: 0 (01), 1 (12), 0 (12), 1 (01), 1 (24), 0 (23), 1 (14), 1 (02), 0 (02), 0 (13), 1 (43), 0 (03), 1 (23), 1 (04), 1 (13), 0 (34), 1 (03), 0 (14), 0 (04), 0 (24)> ]
<<internal>.ListView: [ <regina.Face4_1: Edge 0, internal, degree 20: 0 (01), 1 (12), 0 (12), 1 (01), 1 (24), 0 (23), 1 (14), 1 (02), 0 (02), 0 (13), 1 (43), 0 (03), 1 (23), 1 (04), 1 (13), 0 (34), 1 (03), 0 (14), 0 (04), 0 (24)> ]>
Face4_2
Triangle 0, internal, degree 4: 0 (234), 0 (124), 0 (014), 1 (123)
<regina.Face4_2: Triangle 0, internal, degree 4: 0 (234), 0 (124), 0 (014), 1 (123)>
FaceEmbedding4_2
0 (234)
<regina.FaceEmbedding4_2: 0 (234)>
Face4_3
Tetrahedron 0, internal: 0 (0123), 1 (0143)
<regina.Face4_3: Tetrahedron 0, internal: 0 (0123), 1 (0143)>
FaceEmbedding4_3
0 (0123)
<regina.FaceEmbedding4_3: 0 (0123)>
Simplex4
4-simplex 0: 0123 -> 1 (0143), 0124 -> 0 (1234), 0134 -> 1 (1243), 0234 -> 1 (0123), 1234 -> 0 (0124)
<regina.Simplex4: 4-simplex 0: 0123 -> 1 (0143), 0124 -> 0 (1234), 0134 -> 1 (1243), 0234 -> 1 (0123), 1234 -> 0 (0124)>
Component4
Component with 2 pentachora: entire triangulation
<regina.Component4: Component with 2 pentachora: entire triangulation>
BoundaryComponent4
Boundary component 0, ideal at vertex 0: 0 (0), 1 (0), 1 (1), 0 (1), 1 (2), 0 (2), 1 (4), 0 (3), 1 (3), 0 (4)
<regina.BoundaryComponent4: Boundary component 0, ideal at vertex 0: 0 (0), 1 (0), 1 (1), 0 (1), 1 (2), 0 (2), 1 (4), 0 (3), 1 (3), 0 (4)>
Face5_0
Vertex 0, internal, degree 2: 0 (0), 1 (0)
<regina.Face5_0: Vertex 0, internal, degree 2: 0 (0), 1 (0)>
FaceEmbedding5_0
0 (0)
<regina.FaceEmbedding5_0: 0 (0)>
Face5_1
Edge 0, internal, degree 2: 0 (01), 1 (01)
<regina.Face5_1: Edge 0, internal, degree 2: 0 (01), 1 (01)>
FaceEmbedding5_1
0 (01)
<regina.FaceEmbedding5_1: 0 (01)>
Face5_2
Triangle 0, internal, degree 2: 0 (012), 1 (012)
<regina.Face5_2: Triangle 0, internal, degree 2: 0 (012), 1 (012)>
FaceEmbedding5_2
0 (012)
<regina.FaceEmbedding5_2: 0 (012)>
Face5_3
Tetrahedron 0, internal, degree 2: 0 (2345), 1 (2345)
<regina.Face5_3: Tetrahedron 0, internal, degree 2: 0 (2345), 1 (2345)>
FaceEmbedding5_3
0 (2345)
<regina.FaceEmbedding5_3: 0 (2345)>
Face5_4
Pentachoron 0, internal: 0 (01234), 1 (01234)
<regina.Face5_4: Pentachoron 0, internal: 0 (01234), 1 (01234)>
FaceEmbedding5_4
0 (01234)
<regina.FaceEmbedding5_4: 0 (01234)>
Simplex5
5-simplex 0: 01234 -> 1 (01234), 01235 -> 1 (01235), 01245 -> 1 (01245), 01345 -> 1 (01345), 02345 -> 1 (02345), 12345 -> 1 (12345)
<regina.Simplex5: 5-simplex 0: 01234 -> 1 (01234), 01235 -> 1 (01235), 01245 -> 1 (01245), 01345 -> 1 (01345), 02345 -> 1 (02345), 12345 -> 1 (12345)>
Component5
Component with 2 5-simplices: entire triangulation
<regina.Component5: Component with 2 5-simplices: entire triangulation>
Component5
Component with 1 5-simplex: 2
<regina.Component5: Component with 1 5-simplex: 2>
BoundaryComponent5
Boundary component 0: 2 (01253), 2 (01245), 2 (02345), 2 (01354)
<regina.BoundaryComponent5: Boundary component 0: 2 (01253), 2 (01245), 2 (02345), 2 (01354)>
Isomorphism3
0 -> 1 (1230), 1 -> 0 (2103)
<regina.Isomorphism3: 0 -> 1 (1230), 1 -> 0 (2103)>
HomologicalData
Nothing computed yet
<regina.HomologicalData: Nothing computed yet>
HomMarkedAbelianGroup
Epic (kernel Z): [[ 4 3 ]]
<regina.HomMarkedAbelianGroup: Epic (kernel Z): [[ 4 3 ]]>
HomologicalData
H0(M): Z, H1(M): Z, H2(M): 0, H3(M): 0, H0(BM): Z, H1(BM): 2 Z, H2(BM): Z, H1(BM) -> H1(M): Epic (kernel Z): [[ 4 3 ]]
<regina.HomologicalData: H0(M): Z, H1(M): Z, H2(M): 0, H3(M): 0, H0(BM): Z, H1(BM): 2 Z, H2(BM): Z, H1(BM) -> H1(M): Epic (kernel Z): [[ 4 3 ]]>
SFSFibre
(5,-2)
<regina.SFSFibre: (5,-2)>
LensSpace
L(7,2)
<regina.LensSpace: L(7,2)>
SFSpace
SFS [D/o2: (3,1) (4,-3)]
<regina.SFSpace: SFS [D/o2: (3,1) (4,-3)]>
SimpleSurfaceBundle
RP2 x S1
<regina.SimpleSurfaceBundle: RP2 x S1>
SnapPeaCensusManifold
SnapPea x101
<regina.SnapPeaCensusManifold: SnapPea x101>
Handlebody
Genus 2 handlebody
<regina.Handlebody: Genus 2 handlebody>
TorusBundle
T x I / [ 0,1 | 1,0 ]
<regina.TorusBundle: T x I / [ 0,1 | 1,0 ]>
GraphLoop
SFS [A/o2: (2,1) (5,3)] / [ 0,-1 | 1,0 ]
<regina.GraphLoop: SFS [A/o2: (2,1) (5,3)] / [ 0,-1 | 1,0 ]>
GraphPair
SFS [D/o2: (3,1) (4,3)] U/m SFS [D/o2: (3,1) (4,3)], m = [ 0,1 | 1,2 ]
<regina.GraphPair: SFS [D/o2: (3,1) (4,3)] U/m SFS [D/o2: (3,1) (4,3)], m = [ 0,1 | 1,2 ]>
GraphTriple
SFS [D/o2: (3,1) (4,3)] U/m SFS [A/o2: (2,1) (5,2)] U/n SFS [D/o2: (3,1) (4,3)], m = [ -2,1 | 1,0 ], n = [ 1,2 | 3,5 ]
<regina.GraphTriple: SFS [D/o2: (3,1) (4,3)] U/m SFS [A/o2: (2,1) (5,2)] U/n SFS [D/o2: (3,1) (4,3)], m = [ -2,1 | 1,0 ], n = [ 1,2 | 3,5 ]>
list of SFSAlt
SFS [D/o2: (3,1) (4,3)], via [[ 1 0 ] [ 0 1 ]], without reflection
SFS [D/o2: (3,1) (4,3)], via [[ 1 0 ] [ 0 -1 ]], using reflection
[<regina.SFSAlt: SFS [D/o2: (3,1) (4,3)], via [[ 1 0 ] [ 0 1 ]], without reflection>, <regina.SFSAlt: SFS [D/o2: (3,1) (4,3)], via [[ 1 0 ] [ 0 -1 ]], using reflection>]
list of SFSAlt
SFS [A/o2: (2,1) (5,2)], via [[ 1 0 ] [ 0 1 ]], without reflection
SFS [A/o2: (2,1) (5,2)], via [[ 1 0 ] [ 0 -1 ]], using reflection
[<regina.SFSAlt: SFS [A/o2: (2,1) (5,2)], via [[ 1 0 ] [ 0 1 ]], without reflection>, <regina.SFSAlt: SFS [A/o2: (2,1) (5,2)], via [[ 1 0 ] [ 0 -1 ]], using reflection>]
SnapPeaCensusTri
SnapPea m004
<regina.SnapPeaCensusTri: SnapPea m004>
TxIDiagonalCore
T6:1
<regina.TxIDiagonalCore: T6:1>
TxIParallelCore
T6*
<regina.TxIParallelCore: T6*>
SnappedBall
Snapped 3-ball, internal edge 1 (23)
<regina.SnappedBall: Snapped 3-ball, internal edge 1 (23)>
SnappedTwoSphere
Snapped 2-sphere, equator 0 (01) = 1 (01)
<regina.SnappedTwoSphere: Snapped 2-sphere, equator 0 (01) = 1 (01)>
PillowTwoSphere
Pillow 2-sphere, triangles 3, 4
<regina.PillowTwoSphere: Pillow 2-sphere, triangles 3, 4>
SatBlockModel
Model of Cube {0,1,2,3}
<regina.SatBlockModel: Model of Cube {0,1,2,3}>
BlockedSFS
Blocked SFS [Tri, LST(1, 2, 3), LST(1, 5, 6), Mob(v)]
<regina.BlockedSFS: Blocked SFS [Tri, LST(1, 2, 3), LST(1, 5, 6), Mob(v)]>
SatRegion
[ Tri(major) {0,2,1} | LST(1,5,6) {4..7}, reflected(H) | LST(1,2,3) {3}, reflected(H) | Mobius(vert) {triangle 0}, reflected(H) ]
<regina.SatRegion: [ Tri(major) {0,2,1} | LST(1,5,6) {4..7}, reflected(H) | LST(1,2,3) {3}, reflected(H) | Mobius(vert) {triangle 0}, reflected(H) ]>
SatBlockSpec
Tri(major) {0,2,1}
<regina.SatBlockSpec: Tri(major) {0,2,1}>
SatTriPrism
Tri(major) {0,2,1}
<regina.SatTriPrism: Tri(major) {0,2,1}>
SatAnnulus
0 (013), 2 (320)
<regina.SatAnnulus: 0 (013), 2 (320)>
BlockedSFSLoop
Blocked SFS Loop [Tri, Tri, Tri, Mob(v), Layer]
<regina.BlockedSFSLoop: Blocked SFS Loop [Tri, Tri, Tri, Mob(v), Layer]>
BlockedSFSPair
Blocked SFS Pair [Tri, Mob(v), Mob(v) | Tri, Layer]
<regina.BlockedSFSPair: Blocked SFS Pair [Tri, Mob(v), Mob(v) | Tri, Layer]>
BlockedSFSTriple
Blocked SFS Triple [Tri, LST(1, 2, 3), Mob(v) | Tri, Mob(v) | Tri, Mob(v), Mob(v)]
<regina.BlockedSFSTriple: Blocked SFS Triple [Tri, LST(1, 2, 3), Mob(v) | Tri, Mob(v) | Tri, Mob(v), Mob(v)]>
PluggedTorusBundle
Plugged Torus Bundle [T6:1 | Tri, Mob(v)]
<regina.PluggedTorusBundle: Plugged Torus Bundle [T6:1 | Tri, Mob(v)]>
TrivialTri
L'(3,1)
<regina.TrivialTri: L'(3,1)>
LayeredLoop
C~(2)
<regina.LayeredLoop: C~(2)>
LayeredTorusBundle
B(T6:1 | -1,-1 | -1,-2)
<regina.LayeredTorusBundle: B(T6:1 | -1,-1 | -1,-2)>
PlugTriSolidTorus
P(0)
<regina.PlugTriSolidTorus: P(0)>
TrivialTri
N(3,2)
<regina.TrivialTri: N(3,2)>
AugTriSolidTorus
A(3,-1 | 5,-6)
<regina.AugTriSolidTorus: A(3,-1 | 5,-6)>
TriSolidTorus
Triangular solid torus, tetrahedra 2 (2103) 1 (1032) 0 (0321)
<regina.TriSolidTorus: Triangular solid torus, tetrahedra 2 (2103) 1 (1032) 0 (0321)>
LayeredLensSpace
L(8,3)
<regina.LayeredLensSpace: L(8,3)>
LayeredSolidTorus
LST(2, 3, 5), base 0 (edges 5|23|401), top 1 (edges 41|32|5)
<regina.LayeredSolidTorus: LST(2, 3, 5), base 0 (edges 5|23|401), top 1 (edges 41|32|5)>
LayeredSolidTorus
LST(2, 3, 5), base 1 (edges 0|41|352), top 0 (edges 23|41|0)
<regina.LayeredSolidTorus: LST(2, 3, 5), base 1 (edges 0|41|352), top 0 (edges 23|41|0)>
Layering
Layer 0 tetrahedra: 0 (230), 0 (321) -> 0 (230), 0 (321) via [[ 1 0 ] [ 0 1 ]]
<regina.Layering: Layer 0 tetrahedra: 0 (230), 0 (321) -> 0 (230), 0 (321) via [[ 1 0 ] [ 0 1 ]]>
Layering
Layer 1 tetrahedron: 0 (230), 0 (321) -> 1 (123), 1 (032) via [[ 1 0 ] [ -1 1 ]]
<regina.Layering: Layer 1 tetrahedron: 0 (230), 0 (321) -> 1 (123), 1 (032) via [[ 1 0 ] [ -1 1 ]]>
LayeredChainPair
C(4,6)
<regina.LayeredChainPair: C(4,6)>
LayeredChain
Chain(4), tetrahedra 3 (1302) .. 1 (0213)
<regina.LayeredChain: Chain(4), tetrahedra 3 (1302) .. 1 (0213)>
SpiralSolidTorus
7-tetrahedron spiralled solid torus, tetrahedra 1 (0213), 0 (2130), 2 (0213), 6 (2130), 9 (0213), 8 (1302), 5 (3021)
<regina.SpiralSolidTorus: 7-tetrahedron spiralled solid torus, tetrahedra 1 (0213), 0 (2130), 2 (0213), 6 (2130), 9 (0213), 8 (1302), 5 (3021)>
CensusHit
m004 : #1 -- Cusped hyperbolic census (orientable)
<regina.CensusHit: m004 : #1 -- Cusped hyperbolic census (orientable)>
GluingPermSearcher2
New search, orientable only: stage 0, order: 0:0 0:2
<regina.GluingPermSearcher2: New search, orientable only: stage 0, order: 0:0 0:2>
GluingPermSearcher3
New search, orientable only, purge 0x01: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0
<regina.GluingPermSearcher3: New search, orientable only, purge 0x01: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0>
CompactSearcher
New search, orientable only, finite only, purge 0x01: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0
<regina.CompactSearcher: New search, orientable only, finite only, purge 0x01: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0>
HyperbolicMinSearcher
New search, orientable only, purge 0x09: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0
<regina.HyperbolicMinSearcher: New search, orientable only, purge 0x09: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0>
EulerSearcher
New search: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0
<regina.EulerSearcher: New search: stage 0, order: 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1 3:0 4:0 4:1 5:0 5:1 6:0 6:1 7:0>
ClosedPrimeMinSearcher
New search, orientable only, finite only, purge 0x07: stage 0, order: 3:0 7:0 6:0 6:1 5:0 5:1 4:0 4:1 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1
<regina.ClosedPrimeMinSearcher: New search, orientable only, finite only, purge 0x07: stage 0, order: 3:0 7:0 6:0 6:1 5:0 5:1 4:0 4:1 0:0 0:1 0:2 0:3 1:0 1:2 2:0 2:1>
GluingPermSearcher4
New search, finite only: stage 0, order: 0:0 0:1 0:2 0:3 0:4
<regina.GluingPermSearcher4: New search, finite only: stage 0, order: 0:0 0:1 0:2 0:3 0:4>
TypeTrie4
Trie for 4 types
<regina.TypeTrie4: Trie for 4 types>
TypeTrie7
Trie for 7 types
<regina.TypeTrie7: Trie for 7 types>
LPInitialTableaux_NonSpun
Columns: {+0,0} {-0} {-0} {+0,0} {-0} {-0}, constraints: [ 1 -1 0 1 0 -1 -1 0 ] [ 0 0 0 4 -2 -2 0 -1 ]
<regina.LPInitialTableaux_NonSpun: Columns: {+0,0} {-0} {-0} {+0,0} {-0} {-0}, constraints: [ 1 -1 0 1 0 -1 -1 0 ] [ 0 0 0 4 -2 -2 0 -1 ]>
LPMatrix
[[ 2 -1 -1 2 -1 -1 0 0 ] [ 1 -1 0 1 0 -1 -1 0 ] [ 0 0 0 4 -2 -2 0 -1 ]]
<regina.LPMatrix: [[ 2 -1 -1 2 -1 -1 0 0 ] [ 1 -1 0 1 0 -1 -1 0 ] [ 0 0 0 4 -2 -2 0 -1 ]]>
LPData_NonSpun
Uninitialised
<regina.LPData_NonSpun: Uninitialised>
LPData_NonSpun
Feasible basis: 0 1 3
<regina.LPData_NonSpun: Feasible basis: 0 1 3>
ValidityConstraints
Blocks: 2 x 7, local: { 4 5 6 }
<regina.ValidityConstraints: Blocks: 2 x 7, local: { 4 5 6 }>
ValidityConstraints
Blocks: 2 x 6, local: { 0 1 2 3 4 5 }, global: { 3 4 5 }
<regina.ValidityConstraints: Blocks: 2 x 6, local: { 0 1 2 3 4 5 }, global: { 3 4 5 }>
BanNone
Nothing banned or marked
<regina.BanNone: Nothing banned or marked>
BanBoundary
Banned: 0 1 2 9 10 11 12, nothing marked
<regina.BanBoundary: Banned: 0 1 2 9 10 11 12, nothing marked>
BanTorusBoundary
Banned: 0 1 2 9 10 11 12, marked: 9 10 11 12 13 14 15 16 17 18 19 20
<regina.BanTorusBoundary: Banned: 0 1 2 9 10 11 12, marked: 9 10 11 12 13 14 15 16 17 18 19 20>
PosOrder
Compare row indices using position vectors
<regina.PosOrder: Compare row indices using position vectors>
TreeDecomposition
Width 4, size 11, bags 0: {0,1,5,6} -> 1, 1: {0,1,2,5,7} -> 2, 2: {0,2,4,5,7} -> 4, 3: {2,3,4,8} -> 4, 4: {0,2,4,7,8} -> 5, 5: {0,4,7,8} -> 6, 6: {0,4,8,10} -> 8, 7: {4,8,9,10} -> 8, 8: {4,8,10} -> 9, 9: {8,10} -> 10, 10: {10}
<regina.TreeDecomposition: Width 4, size 11, bags 0: {0,1,5,6} -> 1, 1: {0,1,2,5,7} -> 2, 2: {0,2,4,5,7} -> 4, 3: {2,3,4,8} -> 4, 4: {0,2,4,7,8} -> 5, 5: {0,4,7,8} -> 6, 6: {0,4,8,10} -> 8, 7: {4,8,9,10} -> 8, 8: {4,8,10} -> 9, 9: {8,10} -> 10, 10: {10}>
TreeBag
Bag of 4 elements: 0 1 5 6
<regina.TreeBag: Bag of 4 elements: 0 1 5 6>
Signature
(abbc)(ac)
<regina.Signature: (abbc)(ac)>
FileInfo
Regina data: Second-generation XML format (Regina 3.0-6.0.1)
<regina.FileInfo: Regina data: Second-generation XML format (Regina 3.0-6.0.1)>
NoneType
None
None
ProgressTrackerOpen
Initialising - 0 step(s)
<regina.ProgressTrackerOpen: Initialising - 0 step(s)>
ProgressTrackerOpen
Doing stuff - 3 step(s)
<regina.ProgressTrackerOpen: Doing stuff - 3 step(s)>
ProgressTrackerOpen
Finished
<regina.ProgressTrackerOpen: Finished>
ProgressTracker
Initialising - 0%
<regina.ProgressTracker: Initialising - 0%>
ProgressTracker
Doing stuff - 5.9%
<regina.ProgressTracker: Doing stuff - 5.9%>
ProgressTracker
Doing stuff - 76%
<regina.ProgressTracker: Doing stuff - 76%>
ProgressTracker
Cancelled but not finished
<regina.ProgressTracker: Cancelled but not finished>
Container
Container with 1 child, 3 descendants
<regina.Container: Container with 1 child, 3 descendants>
Text
Text of length 12
<regina.Text: Text of length 12>
Attachment
Attachment (3 bytes): test.txt
<regina.Attachment: Attachment (3 bytes): test.txt>
Script
2-line script, dummy = (null), text = <Welcome>
<regina.Script: 2-line script, dummy = (null), text = <Welcome>>
GluingPerms2
0 (102), 0 (102), 1 (120) | 0 (201), 1 (021), 1 (021)
<regina.GluingPerms2: 0 (102), 0 (102), 1 (120) | 0 (201), 1 (021), 1 (021)>
GluingPerms2
1 (012), 1 (012), 1 (012) | 0 (012), 0 (012), 0 (012)
<regina.GluingPerms2: 1 (012), 1 (012), 1 (012) | 0 (012), 0 (012), 0 (012)>
GluingPerms2
1 (021), 1 (210), 1 (102) | 0 (021), 0 (210), 0 (102)
<regina.GluingPerms2: 1 (021), 1 (210), 1 (102) | 0 (021), 0 (210), 0 (102)>
(aabb)
SigPartialIsomorphism
Symbols: ab -> ba; cycles: 0 -> 0 (>> 3), all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ba; cycles: 0 -> 0 (>> 3), all reversed>
(abab)
SigPartialIsomorphism
Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), all reversed>
(aab)(b)
SigPartialIsomorphism
Symbols: ab -> ab; cycles: 0 -> 0 (>> 1), 1 -> 1, all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ab; cycles: 0 -> 0 (>> 1), 1 -> 1, all reversed>
(ab)(ab)
SigPartialIsomorphism
Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), 1 -> 1 (>> 1), all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), 1 -> 1 (>> 1), all reversed>
(ab)(a)(b)
SigPartialIsomorphism
Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), 2 -> 1, 1 -> 2, all reversed
<regina.SigPartialIsomorphism: Symbols: ab -> ba; cycles: 0 -> 0 (>> 1), 2 -> 1, 1 -> 2, all reversed>
TreeSingleSoln_EulerPositive
Level 0 of 0..19, types: 0___________________
<regina.TreeSingleSoln_EulerPositive: Level 0 of 0..19, types: 0___________________>
TreeSingleSoln_EulerPositive
Level 19 of 0..19, types: 00010000010010000000
<regina.TreeSingleSoln_EulerPositive: Level 19 of 0..19, types: 00010000010010000000>
TautEnumeration
Level 1 of 0..1, types: 11
<regina.TautEnumeration: Level 1 of 0..1, types: 11>
TautEnumeration
Level 1 of 0..1, types: 23
<regina.TautEnumeration: Level 1 of 0..1, types: 23>
TautEnumeration
Level 1 of 0..1, types: 32
<regina.TautEnumeration: Level 1 of 0..1, types: 32>
TreeEnumeration
Level 1 of 0..1, types: 12
<regina.TreeEnumeration: Level 1 of 0..1, types: 12>
TreeEnumeration
Level 1 of 0..1, types: 13
<regina.TreeEnumeration: Level 1 of 0..1, types: 13>
TreeEnumeration
Level 1 of 0..1, types: 21
<regina.TreeEnumeration: Level 1 of 0..1, types: 21>
TreeEnumeration
Level 1 of 0..1, types: 31
<regina.TreeEnumeration: Level 1 of 0..1, types: 31>
TreeEnumeration_NonSpun
Level 1 of 0..1, types: 11
<regina.TreeEnumeration_NonSpun: Level 1 of 0..1, types: 11>
PermSn8_Sign
[ 01234567 01234576 01234675 01234657 ... 76543201 ]
<regina.PermSn8_Sign: [ 01234567 01234576 01234675 01234657 ... 76543201 ]>
|