File: spsc_overwrite_queue.hpp

package info (click to toggle)
relacy 0.0%2Bgit20191025.acc09bb-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 1,472 kB
  • sloc: cpp: 17,955; makefile: 68; ansic: 16; sh: 15
file content (202 lines) | stat: -rw-r--r-- 5,738 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#pragma once


template<typename T>
class queue
{
public:
    queue(size_t count)
    {
        assert(count >= 6);
        sema = CreateSemaphore(0, 0, 1, 0);
        waiting.store(false, std::memory_order_relaxed);
        deq_node = 0;
        block = new node [count];
        block->next.store(0, std::memory_order_relaxed);
        full_tail = block;
        full_head.store(block, std::memory_order_relaxed);
        free_head = block + 1;
        free_tail.store(block + count - 1, std::memory_order_relaxed);
        free_tail.load(std::memory_order_relaxed)->next.store(0, std::memory_order_relaxed);
        for (size_t i = 1; i != count - 1; i += 1)
            block[i].next.store(block + i + 1, std::memory_order_relaxed);
    }

    ~queue()
    {
        CloseHandle(sema);
        delete [] block;
    }

    VAR_T(T)& enqueue_prepare()
    {
        return full_tail->data;
    }

    void enqueue_commit()
    {
        node* n = get_free_node();
        n->next.store(0, std::memory_order_release);
        full_tail->next.store(n, std::memory_order_seq_cst);
        bool signal = waiting.load(std::memory_order_seq_cst);
        full_tail = n;
        if (signal)
        {
            waiting.store(false, std::memory_order_relaxed);
            ReleaseSemaphore(sema, 1, 0);
        }
    }

    VAR_T(T)& dequeue_prepare()
    {
        deq_node = get_full_node();
        return deq_node->data;
    }

    void dequeue_commit()
    {
        deq_node->next.store(0, std::memory_order_release);
        node* prev = free_tail.exchange(deq_node, std::memory_order_acq_rel);
        prev->next.store(deq_node, std::memory_order_release);
    }

private:
    struct node
    {
        std::atomic<node*>  next;
        VAR_T(T)            data;
    };

    node*                   block;
    node*                   full_tail;
    node*                   free_head;
    node*                   deq_node;
    char                    pad [64];
    std::atomic<node*>      full_head;
    std::atomic<node*>      free_tail;
    std::atomic<bool>       waiting;
    HANDLE                  sema;

    node* get_free_node()
    {
        for (;;)
        {
            node* n = free_head;
            node* next = n->next.load(std::memory_order_acquire);
            if (next)
            {
                free_head = next;
                return n;
            }

            n = full_head.load(std::memory_order_acquire);
            next = n->next.load(std::memory_order_acquire);
            if (next)
            {
                if (full_head.compare_exchange_strong(n, next, std::memory_order_seq_cst))
                {
                    //node* n2 = free_head;
                    //node* next2 = n2->next.load(std::memory_order_acquire);
                    //if (next2)
                    //{
                    //    n->next.store(0, std::memory_order_release);
                    //    node* prev = free_tail.exchange(n, std::memory_order_acq_rel);
                    //    prev->next.store(n, std::memory_order_release);
                    //    free_head = next2;
                    //    return n2;
                    //}
                    //else
                    {
                        return n;
                    }
                }
            }
        }
    }

    node* get_full_node()
    {
        node* n = full_head.load(std::memory_order_acquire);
        for (;;)
        {
            node* next = n->next.load(std::memory_order_acquire);
            if (next == 0)
            {
                waiting.store(true, std::memory_order_seq_cst);
                n = full_head.load(std::memory_order_seq_cst);
                next = n->next.load(std::memory_order_acquire);
                if (next)
                {
                    waiting.store(false, std::memory_order_relaxed);
                }
                else
                {
                    WaitForSingleObject(sema, INFINITE);
                    n = full_head.load(std::memory_order_acquire);
                    continue;
                }
            }
            if (full_head.compare_exchange_strong(n, next, std::memory_order_acq_rel))
                return n;
        }
    }
};



unsigned RL_STDCALL consumer_thread(void* ctx)
{
    queue<int>* q = (queue<int>*)ctx;
    int prev_data = -1;
    for (;;)
    {
        VAR_T(int)& data0 = q->dequeue_prepare();
        int data = VAR(data0);
        assert(data > prev_data);
        prev_data = data;
        q->dequeue_commit();
        //printf("%d\n", prev_data);
        if (prev_data == 11)
            break;
        //Sleep(5);
    }
    return 0;
}

unsigned RL_STDCALL producer_thread(void* ctx)
{
    queue<int>* q = (queue<int>*)ctx;
    for (int i = 0; i != 12; i += 1)
    {
        VAR_T(int)& data = q->enqueue_prepare();
        VAR(data) = i;
        q->enqueue_commit();
        //Sleep(1);
    }
    return 0;
}

void spsc_overwrite_queue_test()
{
    queue<int> q (6);
    HANDLE th [2];
    th[0] = (HANDLE)_beginthreadex(0, 0, consumer_thread, &q, 0, 0);
    th[1] = (HANDLE)_beginthreadex(0, 0, producer_thread, &q, 0, 0);
    WaitForMultipleObjects(2, th, 1, INFINITE);

    for (int i = 100; i != 104; i += 1)
    {
        VAR_T(int)& data = q.enqueue_prepare();
        VAR(data) = i;
        q.enqueue_commit();
    }

    for (int i = 100; i != 104; i += 1)
    {
        VAR_T(int)& data0 = q.dequeue_prepare();
        int data = VAR(data0);
        assert(data == i);
        q.dequeue_commit();
    }
}