1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
#!/usr/bin/env python
"""
bfactor_plot
---------
Pipeline setup script for automated processing with RELION 3.
Authors: Sjors H.W. Scheres, Takanori Nakane & Colin Palmer
Call this from the intended location of the RELION project directory, and provide
the name of a file containing options if needed. See the relion_it_options.py
file for an example.
Usage:
/path/to/relion_it.py [options_file...]
"""
from __future__ import print_function
import collections
import os
import runpy
import sys
import time
import glob
from math import log, sqrt
# Constants
PIPELINE_STAR = 'default_pipeline.star'
RUNNING_FILE = 'RUNNING' # prefix is appended in main()
SETUP_CHECK_FILE = 'SUBMITTED_JOBS' # prefix is appended in main()
class RelionItOptions(object):
"""
Options for the relion_it pipeline setup script.
When initialised, this contains default values for all options. Call
``update_from()`` to override the defaults with a dictionary of new values.
"""
#############################################################################
# Change the parameters below to reflect your experiment #
#############################################################################
# job prefix
prefix = 'BFACTOR_PLOT_'
# If program crahses saying "'utf-8' codec can't decode byte 0xXX in position YY",
# most likely run.job file in the job directory contains garbage bytes.
# Refine3D job with all particles
# This must be a job from RELION 3.1, not 3.0.
input_refine3d_job = 'Refine3D/job040/'
# PostProcess job for resolution assessment
input_postprocess_job = 'PostProcess/job083/'
# Minimum number of particles
minimum_nr_particles = 100
# Maximum number of particles
maximum_nr_particles = 9999999
#### relion_refine paremeters
# Initial low-pass filter for the refinements
refine_ini_lowpass = 40
# Read all particles in one batch into memory?
refine_preread_images = False
# Or copy particles to scratch disk?
refine_scratch_disk = ''
# Number of pooled particles?
refine_nr_pool = 10
# Use GPU-acceleration?
refine_do_gpu = True
# Which GPU to use (different from GPU used for pre-processing?)
refine_gpu = ''
# How many MPI processes to use
refine_mpi = 5
# How many threads to use
refine_threads = 6
# Skip padding?
refine_skip_padding = False
# Submit jobs to the cluster?
refine_submit_to_queue = False
### Cluster submission settings
# Name of the queue to which to submit the job
queue_name = 'openmpi'
# Name of the command used to submit scripts to the queue
queue_submit_command = 'qsub -l gpu=4'
# The template for your standard queue job submission script
queue_submission_template = '/public/EM/RELION/relion/bin/qsub.csh'
# Minimum number of dedicated cores that need to be requested on each node
queue_minimum_dedicated = 32
#######################################################################
############ typically no need to change anything below this line
#######################################################################
def update_from(self, other):
"""
Update this RelionItOptions object from a dictionary.
Special values (with names like '__xxx__') are removed, allowing this
method to be given a dictionary containing the namespace from a script
run with ``runpy``.
"""
while len(other) > 0:
key, value = other.popitem()
if not (key.startswith('__') and key.endswith('__')): # exclude __name__, __builtins__ etc.
if hasattr(self, key):
setattr(self, key, value)
else:
print('Unrecognised option {}'.format(key))
def load_star(filename):
from collections import OrderedDict
datasets = OrderedDict()
current_data = None
current_colnames = None
in_loop = 0 # 0: outside 1: reading colnames 2: reading data
for line in open(filename):
line = line.strip()
# remove comments
comment_pos = line.find('#')
if comment_pos > 0:
line = line[:comment_pos]
if line == "":
if in_loop == 2:
in_loop = 0
continue
if line.startswith("data_"):
in_loop = 0
data_name = line[5:]
current_data = OrderedDict()
datasets[data_name] = current_data
elif line.startswith("loop_"):
current_colnames = []
in_loop = 1
elif line.startswith("_"):
if in_loop == 2:
in_loop = 0
elems = line[1:].split()
if in_loop == 1:
current_colnames.append(elems[0])
current_data[elems[0]] = []
else:
current_data[elems[0]] = elems[1]
elif in_loop > 0:
in_loop = 2
elems = line.split()
assert len(elems) == len(current_colnames)
for idx, e in enumerate(elems):
current_data[current_colnames[idx]].append(e)
return datasets
def getJobName(name_in_script, done_file):
jobname = None
# See if we've done this job before, i.e. whether it is in the done_file
if (os.path.isfile(done_file)):
f = open(done_file,'r')
for line in f:
elems = line.split()
if len(elems) < 3: continue
if elems[0] == name_in_script:
jobname = elems[2]
break
f.close()
return jobname
def addJob(jobtype, name_in_script, done_file, options, template=None, alias=None):
jobname = getJobName(name_in_script, done_file)
# If we hadn't done it before, add it now
if (jobname is not None):
already_had_it = True
else:
already_had_it = False
optionstring = ''
for opt in options[:]:
optionstring += opt + ';'
command = 'relion_pipeliner'
if template is None:
command += ' --addJob ' + jobtype
else:
command += ' --addJobFromStar ' + template
command += ' --addJobOptions "' + optionstring + '"'
if alias is not None:
command += ' --setJobAlias "' + alias + '"'
#print("Debug: addJob executes " + command)
os.system(command)
pipeline = load_star(PIPELINE_STAR)
jobname = pipeline['pipeline_processes']['rlnPipeLineProcessName'][-1]
# Now add the jobname to the done_file
f = open(done_file,'a')
f.write(name_in_script + ' = ' + jobname + '\n')
f.close()
# return the name of the job in the RELION pipeline, e.g. 'Import/job001/'
return jobname, already_had_it
def RunJobs(jobs, repeat, wait, schedulename):
runjobsstring = ''
for job in jobs[:]:
runjobsstring += job + ' '
command = 'relion_pipeliner --schedule ' + schedulename + ' --repeat ' + str(repeat) + ' --min_wait ' + str(wait) + ' --RunJobs "' + runjobsstring + '" &'
#print("Debug: RunJobs executes " + command)
os.system(command)
def CheckForExit():
if not os.path.isfile(RUNNING_FILE):
print(" RELION_IT:", RUNNING_FILE, "file no longer exists, exiting now ...")
exit(0)
def WaitForJob(wait_for_this_job, seconds_wait):
time.sleep(seconds_wait)
print(" RELION_IT: waiting for job to finish in", wait_for_this_job)
while True:
pipeline = load_star(PIPELINE_STAR)
myjobnr = -1
for jobnr in range(0,len(pipeline['pipeline_processes']['rlnPipeLineProcessName'])):
jobname = pipeline['pipeline_processes']['rlnPipeLineProcessName'][jobnr]
if jobname == wait_for_this_job:
myjobnr = jobnr
if myjobnr < 0:
print(" ERROR: cannot find ", wait_for_this_job, " in ", PIPELINE_STAR)
exit(1)
status = int(pipeline['pipeline_processes']['rlnPipeLineProcessStatus'][myjobnr])
if status == 2:
print(" RELION_IT: job in", wait_for_this_job, "has finished now")
return
else:
CheckForExit()
time.sleep(seconds_wait)
def find_split_job_output(prefix, n, max_digits=6):
import os.path
for i in range(max_digits):
filename = prefix + str(n).rjust(i, '0') + '.star'
if os.path.isfile(filename):
return filename
return None
def line_fit(xs, ys):
n = len(xs)
assert n == len(ys)
mean_x = 0.0
mean_y = 0.0
for x, y in zip(xs, ys):
mean_x += x
mean_y += y
mean_x /= n
mean_y /= n
var_x = 0.0
cov_xy = 0.0
for x, y in zip(xs, ys):
var_x += (x - mean_x) ** 2
cov_xy += (x - mean_x) * (y - mean_y)
slope = cov_xy / var_x
intercept = mean_y - slope * mean_x
return slope, intercept
def get_postprocess_result(post_star):
result = load_star(post_star)['general']
resolution = float(result['rlnFinalResolution'])
pp_bfactor = float(result['rlnBfactorUsedForSharpening'])
return resolution, pp_bfactor
def run_pipeline(opts):
"""
Configure and run the RELION 3 pipeline with the given options.
Args:
opts: options for the pipeline, as a RelionItOptions object.
"""
# Write RUNNING_RELION_IT file, when deleted, this script will stop
with open(RUNNING_FILE, 'w'):
pass
### Prepare the list of queue arguments for later use
queue_options = ['Submit to queue? == Yes',
'Queue name: == {}'.format(opts.queue_name),
'Queue submit command: == {}'.format(opts.queue_submit_command),
'Standard submission script: == {}'.format(opts.queue_submission_template),
'Minimum dedicated cores per node: == {}'.format(opts.queue_minimum_dedicated)]
# Get the original STAR file
refine3d_run_file = opts.input_refine3d_job+'job.star'
all_particles_star_file = None
if os.path.exists(refine3d_run_file):
for line in open(refine3d_run_file,'r'):
if 'fn_img' in line:
all_particles_star_file = line.split()[1].replace('\n','')
break
else:
refine3d_run_file = opts.input_refine3d_job+'run.job' # old style
for line in open(refine3d_run_file,'r'):
if 'Input images STAR file' in line:
all_particles_star_file = line.split(' == ')[1].replace('\n','')
break
if all_particles_star_file is None:
print(' ERROR: cannot find input STAR file in', refine3d_run_file)
exit(1)
all_particles = load_star(all_particles_star_file)
all_nr_particles = len(all_particles['particles']['rlnImageName'])
all_particles_resolution, all_particles_bfactor = get_postprocess_result(opts.input_postprocess_job + 'postprocess.star')
nr_particles = []
resolutions = []
pp_bfactors = []
current_nr_particles = opts.minimum_nr_particles
while current_nr_particles <= opts.maximum_nr_particles and current_nr_particles < all_nr_particles:
schedule_name = 'batch_' + str(current_nr_particles)
# A. Split the STAR file
split_options = ['OR select from particles.star: == {}'.format(all_particles_star_file),
'OR: split into subsets? == Yes',
'Subset size: == {}'.format(current_nr_particles),
'Randomise order before making subsets?: == Yes',
'OR: number of subsets: == 1']
split_job_name = 'split_job_' + str(current_nr_particles)
split_alias = opts.prefix + 'split_' + str(current_nr_particles)
split_job, already_had_it = addJob('Select', split_job_name, SETUP_CHECK_FILE, split_options, None, split_alias)
if not already_had_it:
RunJobs([split_job], 1, 0, schedule_name)
WaitForJob(split_job, 30)
# B. Run Refine3D
split_filename = find_split_job_output('{}particles_split'.format(split_job), 1)
assert split_filename is not None
refine_options = ['Input images STAR file: == {}'.format(split_filename),
'Number of pooled particles: == {}'.format(opts.refine_nr_pool),
'Which GPUs to use: == {}'.format(opts.refine_gpu),
'Number of MPI procs: == {}'.format(opts.refine_mpi),
'Initial low-pass filter (A): == {}'.format(opts.refine_ini_lowpass),
'Number of threads: == {}'.format(opts.refine_threads)]
if opts.refine_skip_padding:
refine_options.append('Skip padding? == Yes')
else:
refine_options.append('Skip padding? == No')
if opts.refine_do_gpu:
refine_options.append('Use GPU acceleration? == Yes')
else:
refine_options.append('Use GPU acceleration? == No')
if opts.refine_preread_images:
refine_options.append('Pre-read all particles into RAM? == Yes')
refine_options.append('Copy particles to scratch directory: == ')
else:
refine_options.append('Pre-read all particles into RAM? == No')
refine_options.append('Copy particles to scratch directory: == {}'.format(opts.refine_scratch_disk))
if opts.refine_submit_to_queue:
refine_options.extend(queue_options)
else:
refine_options.append('Submit to queue? == No')
refine_job_name = 'refine_job_' + str(current_nr_particles)
refine_alias = opts.prefix + str(current_nr_particles)
refine_job, already_had_it = addJob('Refine3D', refine_job_name, SETUP_CHECK_FILE, refine_options, refine3d_run_file, refine_alias)
if not already_had_it:
RunJobs([refine_job], 1, 0, schedule_name)
WaitForJob(refine_job, 30)
halfmap_filename = None
try:
job_star = load_star(refine_job + "job_pipeline.star")
for output_file in job_star["pipeline_output_edges"]['rlnPipeLineEdgeToNode']:
if output_file.endswith("half1_class001_unfil.mrc"):
halfmap_filename = output_file
break
assert halfmap_filename != None
except:
print(" RELION_IT: Refinement job " + refine_job + " does not contain expected output maps.")
print(" RELION_IT: This job should have finished, but you may continue it from the GUI.")
print(" RELION_IT: For now, making the plot without this job.")
if halfmap_filename is not None:
# C. Run PostProcess
postprocess_run_file = opts.input_postprocess_job+'job.star'
if not os.path.exists(postprocess_run_file):
postprocess_run_file = opts.input_postprocess_job+'run.job'
post_options = ['One of the 2 unfiltered half-maps: == {}'.format(halfmap_filename)]
post_job_name = 'post_job_' + str(current_nr_particles)
post_alias = opts.prefix + str(current_nr_particles)
post_job, already_had_it = addJob('PostProcess', post_job_name, SETUP_CHECK_FILE, post_options, postprocess_run_file, post_alias)
if not already_had_it:
RunJobs([post_job], 1, 0, schedule_name)
WaitForJob(post_job, 30)
# Get resolution from
post_star = post_job + 'postprocess.star'
try:
resolution, pp_bfactor = get_postprocess_result(post_star)
nr_particles.append(current_nr_particles)
resolutions.append(resolution)
pp_bfactors.append(pp_bfactor)
except:
print(' RELION_IT: WARNING: Failed to get post-processed resolution for {} particles'.format(current_nr_particles))
# Update the current number of particles
current_nr_particles = 2 * current_nr_particles
# Also include the result from the original PostProcessing job
if all_nr_particles <= opts.maximum_nr_particles:
nr_particles.append(all_nr_particles)
resolutions.append(all_particles_resolution)
pp_bfactors.append(all_particles_bfactor)
# Now already make preliminary plots here, e.g
print()
print('NrParticles Ln(NrParticles) Resolution(A) 1/Resolution^2 PostProcessBfactor')
xs = []
ys = []
for n_particles, resolution, pp_bfactor in zip(nr_particles, resolutions, pp_bfactors):
log_n_particles = log(n_particles)
inv_d2 = 1.0 / (resolution * resolution)
print('{0:11d} {1:15.3f} {2:13.2f} {3:14.4f} {4:18.2f}'.format(n_particles,log_n_particles, resolution, inv_d2, -pp_bfactor))
xs.append(log_n_particles)
ys.append(inv_d2)
slope, intercept = line_fit(xs, ys)
b_factor = 2.0 / slope
print()
print(" RELION_IT: ESTIMATED B-FACTOR from {0:d} points is {1:.2f}".format(len(xs), b_factor))
print(" RELION_IT: The fitted line is: Resolution = 1 / Sqrt(2 / {0:.3f} * Log_e(#Particles) + {1:.3f})".format(b_factor, intercept))
print(" RELION_IT: IF this trend holds, you will get:")
for x in (1.5, 2, 4, 8):
current_nr_particles = int(all_nr_particles * x)
resolution = 1 / sqrt(slope * log(current_nr_particles) + intercept)
print(" RELION_IT: {0:.2f} A from {1:d} particles ({2:d} % of the current number of particles)".format(resolution, current_nr_particles, int(x * 100)))
if True:#try: # Try plotting
import matplotlib as mpl
mpl.use('pdf')
import matplotlib.pyplot as plt
import numpy as np
fitted = []
for x in xs:
fitted.append(x * slope + intercept)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(xs, ys, '.')
ax1.plot(xs, fitted)
ax1.set_xlabel("ln(#particles)")
ax1.set_ylabel("1/Resolution$^2$ in 1/$\AA^2$")
ax1.set_title("Rosenthal & Henderson plot: B = 2.0 / slope = {:.1f}".format(b_factor));
ax2 = ax1.twiny()
ax2.xaxis.set_ticks_position("bottom")
ax2.xaxis.set_label_position("bottom")
ax2.set_xlim(ax1.get_xlim())
ax2.spines["bottom"].set_position(("axes", -0.15)) # In matplotlib 1.2, the order seems to matter
ax2.set_xlabel("#particles")
ax2.set_xticklabels(np.exp(ax1.get_xticks()).astype(np.int))
ax3 = ax1.twinx()
ax3.set_ylabel("Resolution in $\AA$")
ax3.set_ylim(ax1.get_ylim())
ax3.yaxis.set_ticks_position("right")
ax3.yaxis.set_label_position("right")
yticks = ax1.get_yticks()
yticks[yticks <= 0] = 1.0 / (999 * 999) # to avoid zero division and negative sqrt
ndigits = 1
if np.max(yticks) > 0.25:
ndigits = 2
ax3.set_yticklabels(np.sqrt(1 / yticks).round(ndigits))
output_name = opts.prefix + "rosenthal-henderson-plot.pdf"
plt.savefig(output_name, bbox_inches='tight')
print(" RELION_IT: Plot written to " + output_name)
else:#except:
print('WARNING: Failed to plot. Probably matplotlib and/or numpy is missing.')
if os.path.isfile(RUNNING_FILE):
os.remove(RUNNING_FILE)
print(' RELION_IT: exiting now... ')
def main():
"""
Run the RELION 3 pipeline.
Options files given as command line arguments will be opened in order and
used to update the default options.
"""
global RUNNING_FILE
global SETUP_CHECK_FILE
opts = RelionItOptions()
for user_opt_file in sys.argv[1:]:
print(' RELION_IT: reading options from {}'.format(user_opt_file))
user_opts = runpy.run_path(user_opt_file)
opts.update_from(user_opts)
SETUP_CHECK_FILE = opts.prefix + SETUP_CHECK_FILE
RUNNING_FILE = opts.prefix + RUNNING_FILE
# Make sure no other version of this script are running...
if os.path.isfile(RUNNING_FILE):
print(" RELION_IT: ERROR:", RUNNING_FILE, "is already present: delete this file and make sure no other copy of this script is running. Exiting now ...")
exit(0)
print(' RELION_IT: -------------------------------------------------------------------------------------------------------------------')
print(' RELION_IT: Script for automated Bfactor-plot generation in RELION (>= 3.1)')
print(' RELION_IT: Authors: Sjors H.W. Scheres & Takanori Nakane')
print(' RELION_IT: ')
print(' RELION_IT: Usage: ./bfactor_plot.py [extra_options.py ...]')
print(' RELION_IT: ')
print(' RELION_IT: This script keeps track of already submitted jobs in a filed called', SETUP_CHECK_FILE)
print(' RELION_IT: upon a restart, jobs present in this file will be ignored.')
print(' RELION_IT: If you would like to re-do a specific job from scratch (e.g. because you changed its parameters)')
print(' RELION_IT: remove that job, and those that depend on it, from the', SETUP_CHECK_FILE)
print(' RELION_IT: -------------------------------------------------------------------------------------------------------------------')
print(' RELION_IT: ')
run_pipeline(opts)
if __name__ == "__main__":
main()
|