1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#!/bin/env python3
import argparse
from collections import OrderedDict
from math import floor
import numpy as np
import os
import sys
def load_star(filename):
datasets = OrderedDict()
current_data = None
current_colnames = None
in_loop = 0 # 0: outside 1: reading colnames 2: reading data
for line in open(filename):
line = line.strip()
# remove comments
comment_pos = line.find('#')
if comment_pos > 0:
line = line[:comment_pos]
if line == "":
if in_loop == 2:
in_loop = 0
continue
if line.startswith("data_"):
in_loop = 0
data_name = line[5:]
current_data = OrderedDict()
datasets[data_name] = current_data
elif line.startswith("loop_"):
current_colnames = []
in_loop = 1
elif line.startswith("_"):
if in_loop == 2:
in_loop = 0
elems = line[1:].split()
if in_loop == 1:
current_colnames.append(elems[0])
current_data[elems[0]] = []
else:
current_data[elems[0]] = elems[1]
elif in_loop > 0:
in_loop = 2
elems = line.split()
assert len(elems) == len(current_colnames)
for idx, e in enumerate(elems):
current_data[current_colnames[idx]].append(e)
return datasets
def write_star(filename, datasets):
f = open(filename, "w")
for data_name, data in datasets.items():
f.write( "\ndata_" + data_name + "\n\n")
col_names = list(data.keys())
need_loop = isinstance(data[col_names[0]], list)
if need_loop:
f.write("loop_\n")
for idx, col_name in enumerate(col_names):
f.write("_%s #%d\n" % (col_name, idx + 1))
nrow = len(data[col_names[0]])
for row in range(nrow):
f.write("\t".join([data[x][row] for x in col_names]))
f.write("\n")
else:
for col_name, value in data.items():
f.write("_%s\t%s\n" % (col_name, value))
f.write("\n")
f.close()
def interpolate_trajectory(traj_star, eer_grouping, old_grouping):
nz = int(traj_star['general']['rlnImageSizeZ'])
if (old_grouping <= 0):
if 'rlnEERGrouping' not in traj_star['general']:
sys.stderr.write("ERROR: The trajectory STAR file does not contain rlnEERGrouping. You have to specify the old grouping as --old_group.\n")
sys.exit(-1)
old_grouping = float(traj_star['general']['rlnEERGrouping'])
new_nz = int(floor(nz * old_grouping / eer_grouping))
scale = eer_grouping / old_grouping
traj_star['general']['rlnImageSizeZ'] = str(new_nz)
traj_star['general']['rlnMicrographDoseRate'] = str(float(traj_star['general']['rlnMicrographDoseRate']) * scale)
traj_star['general']['rlnEERGrouping'] = eer_grouping
xs = np.array(traj_star['global_shift']['rlnMicrographShiftX'], dtype=np.float)
ys = np.array(traj_star['global_shift']['rlnMicrographShiftY'], dtype=np.float)
new_xs = np.zeros(new_nz)
new_ys = np.zeros(new_nz)
# This interpolation is not very accurate. We should take
# the MIDDLE, not the start of a range, as an observation point.
# However, such small error should be corrected in Polish anyway.
for i in range(new_nz):
src = i * scale
src1 = int(floor(src))
src2 = src1 + 1
frac = src - src1
#print(i, src, src1, src2)
if src2 >= nz: # be lazy; don't extrapolate
new_xs[i] = xs[nz - 1]
new_ys[i] = ys[nz - 1]
else:
new_xs[i] = xs[src1] * (1 - frac) + xs[src2] * frac
new_ys[i] = ys[src1] * (1 - frac) + ys[src2] * frac
traj_star['global_shift']['rlnMicrographFrameNumber'] = list(np.linspace(1, new_nz, num=new_nz).astype(np.int).astype(np.str0))
traj_star['global_shift']['rlnMicrographShiftX'] = list(new_xs.astype(np.str0))
traj_star['global_shift']['rlnMicrographShiftY'] = list(new_ys.astype(np.str0))
# z is not normalized, so have to be patched.
if "local_motion_model" in traj_star:
coeffs = np.array(traj_star['local_motion_model']['rlnMotionModelCoeff'], dtype=np.float)
coeffs *= scale # 1st-order in time(z)
coeffs[1::3] *= scale # 2nd-order
coeffs[2::3] *= scale # 3rd-order
traj_star['local_motion_model']['rlnMotionModelCoeff'] = list(coeffs.astype(np.str0))
return traj_star
def resample_image(traj_star, eer_upsampling):
orig_size = int(traj_star['general']['rlnImageSizeX'])
assert orig_size == int(traj_star['general']['rlnImageSizeY'])
if (orig_size == 4096 and eer_upsampling == 2):
scale = 2.0
elif (orig_size == 8192 and eer_upsampling == 1):
scale = 0.5
else:
raise "Illegal eer_upsampling"
traj_star['general']['rlnImageSizeX'] = str(int(orig_size * scale))
traj_star['general']['rlnImageSizeY'] = str(int(orig_size * scale))
traj_star['general']['rlnMicrographBinning'] = str(eer_upsampling)
traj_star['general']['rlnEERUpsampling'] = str(eer_upsampling)
traj_star['general']['rlnMicrographOriginalPixelSize'] = str(float(traj_star['general']['rlnMicrographOriginalPixelSize']) / scale)
xs = np.array(traj_star['global_shift']['rlnMicrographShiftX'], dtype=np.float) * scale
ys = np.array(traj_star['global_shift']['rlnMicrographShiftY'], dtype=np.float) * scale
traj_star['global_shift']['rlnMicrographShiftX'] = list(xs.astype(np.str0))
traj_star['global_shift']['rlnMicrographShiftY'] = list(ys.astype(np.str0))
# Hot pixels
if 'hot_pixels' in traj_star:
hot_xs = np.array(traj_star['hot_pixels']['rlnCoordinateX'], dtype=np.float)
hot_ys = np.array(traj_star['hot_pixels']['rlnCoordinateY'], dtype=np.float)
if scale == 2:
hot_xs = np.hstack([2 * hot_xs, 2 * hot_xs, 2 * hot_xs + 1, 2 * hot_xs + 1])
hot_ys = np.hstack([2 * hot_ys, 2 * hot_ys + 1, 2 * hot_ys, 2 * hot_ys + 1])
elif scale == 0.5:
tmp = np.floor(np.vstack([hot_xs, hot_ys]) / 2.0).astype(np.int)
tmp = np.unique(tmp, axis = 1)
hot_xs = tmp[0, :]
hot_ys = tmp[1, :]
traj_star['hot_pixels']['rlnCoordinateX'] = list(hot_xs.astype(np.str0))
traj_star['hot_pixels']['rlnCoordinateY'] = list(hot_ys.astype(np.str0))
return traj_star
def add_suffix(filename, suffix):
tmp = os.path.splitext(filename)
return "%s_%s%s" % (tmp[0], suffix, tmp[1])
parser = argparse.ArgumentParser(description='Tweak motion trajectory STAR files for EER movies')
parser.add_argument('--i', type=str, nargs='?', metavar='corrected_micrographs.star', required=True,
help='Motion correction STAR file')
parser.add_argument('--o', type=str, nargs='?', metavar='suffix', required=True,
help='Suffix for output files')
parser.add_argument('--old_group', type=int, nargs='?', metavar='group', default=0,
help='Old EER grouping (must be specified when not recorded in the STAR file)')
parser.add_argument('--regroup', type=int, nargs='?', metavar='group', default=0,
help='Regroup to this number of physical frames / fraction')
parser.add_argument('--resample', type=int, nargs='?', metavar='sampling', default=0,
help='Resample to this level. 1=4K, 2=8K (super-res)')
args = parser.parse_args()
#print(args)
fn_motioncorr_star = args.i
suffix = args.o
if (args.resample == 0 and args.regroup == 0):
sys.stderr.write("Error: Nothing to do. Please specify --resample and/or --regroup.\n")
sys.exit(-1)
motioncorr_star = load_star(fn_motioncorr_star)
print("Read %s" % fn_motioncorr_star)
print("Found %d movies" % len(motioncorr_star['micrographs']['rlnMicrographMetadata']))
for idx, fn_traj in enumerate(motioncorr_star['micrographs']['rlnMicrographMetadata']):
fn_out = add_suffix(fn_traj, suffix)
motioncorr_star['micrographs']['rlnMicrographMetadata'][idx] = fn_out
print("Processing %s => %s" % (fn_traj, fn_out))
traj_star = load_star(fn_traj)
if (args.regroup > 0):
interpolate_trajectory(traj_star, args.regroup, args.old_group)
if (args.resample > 0):
resample_image(traj_star, args.resample)
# local_shift table is not updated, because it is not used by Polish.
# To avoid confusion, delete it.
if 'local_shift' in traj_star:
del traj_star['local_shift']
write_star(fn_out, traj_star)
#break
fn_out = add_suffix(fn_motioncorr_star, suffix)
write_star(fn_out, motioncorr_star)
print("Written %s" % fn_out)
|