File: eer_trajectory_handler.py

package info (click to toggle)
relion 3.1.3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 16,304 kB
  • sloc: cpp: 153,130; ansic: 4,359; python: 1,834; sh: 161; makefile: 36; csh: 1
file content (230 lines) | stat: -rw-r--r-- 8,887 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/bin/env python3

import argparse
from collections import OrderedDict
from math import floor
import numpy as np
import os
import sys

def load_star(filename):
    datasets = OrderedDict()
    current_data = None
    current_colnames = None
    
    in_loop = 0 # 0: outside 1: reading colnames 2: reading data

    for line in open(filename):
        line = line.strip()
        
        # remove comments
        comment_pos = line.find('#')
        if comment_pos > 0:
            line = line[:comment_pos]

        if line == "":
            if in_loop == 2:
                in_loop = 0
            continue

        if line.startswith("data_"):
            in_loop = 0

            data_name = line[5:]
            current_data = OrderedDict()
            datasets[data_name] = current_data

        elif line.startswith("loop_"):
            current_colnames = []
            in_loop = 1

        elif line.startswith("_"):
            if in_loop == 2:
                in_loop = 0

            elems = line[1:].split()
            if in_loop == 1:
                current_colnames.append(elems[0])
                current_data[elems[0]] = []
            else:
                current_data[elems[0]] = elems[1]

        elif in_loop > 0:
            in_loop = 2
            elems = line.split()

            assert len(elems) == len(current_colnames)
            for idx, e in enumerate(elems):
                current_data[current_colnames[idx]].append(e)        
        
    return datasets

def write_star(filename, datasets):
    f = open(filename, "w")

    for data_name, data in datasets.items():
        f.write( "\ndata_" + data_name + "\n\n")
        
        col_names = list(data.keys())
        need_loop = isinstance(data[col_names[0]], list)
        if need_loop:
            f.write("loop_\n")
            for idx, col_name in enumerate(col_names):
                f.write("_%s #%d\n" % (col_name, idx + 1))
            
            nrow = len(data[col_names[0]])
            for row in range(nrow):
                f.write("\t".join([data[x][row] for x in col_names]))
                f.write("\n")
        else:
            for col_name, value in data.items():
                f.write("_%s\t%s\n" % (col_name, value))
        
        f.write("\n")
    f.close()
    
def interpolate_trajectory(traj_star, eer_grouping, old_grouping):
    nz = int(traj_star['general']['rlnImageSizeZ'])
    if (old_grouping <= 0):
        if 'rlnEERGrouping' not in traj_star['general']:
            sys.stderr.write("ERROR: The trajectory STAR file does not contain rlnEERGrouping. You have to specify the old grouping as --old_group.\n")
            sys.exit(-1)
        old_grouping = float(traj_star['general']['rlnEERGrouping'])
    new_nz = int(floor(nz * old_grouping / eer_grouping))
    scale = eer_grouping / old_grouping

    traj_star['general']['rlnImageSizeZ'] = str(new_nz)
    traj_star['general']['rlnMicrographDoseRate'] = str(float(traj_star['general']['rlnMicrographDoseRate']) * scale)
    traj_star['general']['rlnEERGrouping'] = eer_grouping
 
    xs = np.array(traj_star['global_shift']['rlnMicrographShiftX'], dtype=np.float)
    ys = np.array(traj_star['global_shift']['rlnMicrographShiftY'], dtype=np.float)

    new_xs = np.zeros(new_nz)
    new_ys = np.zeros(new_nz)

    # This interpolation is not very accurate. We should take
    # the MIDDLE, not the start of a range, as an observation point.
    # However, such small error should be corrected in Polish anyway.
    for i in range(new_nz):
        src = i * scale

        src1 = int(floor(src))
        src2 = src1 + 1

        frac = src - src1
        #print(i, src, src1, src2)
        if src2 >= nz: # be lazy; don't extrapolate
            new_xs[i] = xs[nz - 1]
            new_ys[i] = ys[nz - 1]
        else:
            new_xs[i] = xs[src1] * (1 - frac) + xs[src2] * frac
            new_ys[i] = ys[src1] * (1 - frac) + ys[src2] * frac

    traj_star['global_shift']['rlnMicrographFrameNumber'] = list(np.linspace(1, new_nz, num=new_nz).astype(np.int).astype(np.str0))
    traj_star['global_shift']['rlnMicrographShiftX'] = list(new_xs.astype(np.str0))
    traj_star['global_shift']['rlnMicrographShiftY'] = list(new_ys.astype(np.str0))
 
    # z is not normalized, so have to be patched.
    if "local_motion_model" in traj_star:
        coeffs = np.array(traj_star['local_motion_model']['rlnMotionModelCoeff'], dtype=np.float)
        coeffs *= scale       # 1st-order in time(z)
        coeffs[1::3] *= scale # 2nd-order
        coeffs[2::3] *= scale # 3rd-order
        traj_star['local_motion_model']['rlnMotionModelCoeff'] = list(coeffs.astype(np.str0))

    return traj_star

def resample_image(traj_star, eer_upsampling):
    orig_size = int(traj_star['general']['rlnImageSizeX'])
    assert orig_size == int(traj_star['general']['rlnImageSizeY'])

    if (orig_size == 4096 and eer_upsampling == 2):
        scale = 2.0
    elif (orig_size == 8192 and eer_upsampling == 1):
        scale = 0.5
    else:
        raise "Illegal eer_upsampling"

    traj_star['general']['rlnImageSizeX'] = str(int(orig_size * scale))
    traj_star['general']['rlnImageSizeY'] = str(int(orig_size * scale))
    traj_star['general']['rlnMicrographBinning'] = str(eer_upsampling)
    traj_star['general']['rlnEERUpsampling'] = str(eer_upsampling)

    traj_star['general']['rlnMicrographOriginalPixelSize'] = str(float(traj_star['general']['rlnMicrographOriginalPixelSize']) / scale)

    xs = np.array(traj_star['global_shift']['rlnMicrographShiftX'], dtype=np.float) * scale
    ys = np.array(traj_star['global_shift']['rlnMicrographShiftY'], dtype=np.float) * scale
    traj_star['global_shift']['rlnMicrographShiftX'] = list(xs.astype(np.str0))
    traj_star['global_shift']['rlnMicrographShiftY'] = list(ys.astype(np.str0))

    # Hot pixels
    if 'hot_pixels' in traj_star:
        hot_xs = np.array(traj_star['hot_pixels']['rlnCoordinateX'], dtype=np.float)
        hot_ys = np.array(traj_star['hot_pixels']['rlnCoordinateY'], dtype=np.float)
        if scale == 2:
            hot_xs = np.hstack([2 * hot_xs, 2 * hot_xs, 2 * hot_xs + 1, 2 * hot_xs + 1])
            hot_ys = np.hstack([2 * hot_ys, 2 * hot_ys + 1, 2 * hot_ys, 2 * hot_ys + 1])
        elif scale == 0.5:
            tmp = np.floor(np.vstack([hot_xs, hot_ys]) / 2.0).astype(np.int)
            tmp = np.unique(tmp, axis = 1)
            hot_xs = tmp[0, :]
            hot_ys = tmp[1, :]

        traj_star['hot_pixels']['rlnCoordinateX'] = list(hot_xs.astype(np.str0))
        traj_star['hot_pixels']['rlnCoordinateY'] = list(hot_ys.astype(np.str0))

    return traj_star

def add_suffix(filename, suffix):
    tmp = os.path.splitext(filename)
    return "%s_%s%s" % (tmp[0], suffix, tmp[1])

parser = argparse.ArgumentParser(description='Tweak motion trajectory STAR files for EER movies')
parser.add_argument('--i', type=str, nargs='?', metavar='corrected_micrographs.star', required=True,
                    help='Motion correction STAR file')
parser.add_argument('--o', type=str, nargs='?', metavar='suffix', required=True,
                    help='Suffix for output files')
parser.add_argument('--old_group', type=int, nargs='?', metavar='group', default=0,
                    help='Old EER grouping (must be specified when not recorded in the STAR file)')
parser.add_argument('--regroup', type=int, nargs='?', metavar='group', default=0,
                    help='Regroup to this number of physical frames / fraction')
parser.add_argument('--resample', type=int, nargs='?', metavar='sampling', default=0,
                    help='Resample to this level. 1=4K, 2=8K (super-res)')

args = parser.parse_args()
#print(args)
fn_motioncorr_star = args.i
suffix = args.o

if (args.resample == 0 and args.regroup == 0):
    sys.stderr.write("Error: Nothing to do. Please specify --resample and/or --regroup.\n")
    sys.exit(-1)

motioncorr_star = load_star(fn_motioncorr_star)
print("Read %s" % fn_motioncorr_star)
print("Found %d movies" % len(motioncorr_star['micrographs']['rlnMicrographMetadata']))

for idx, fn_traj in enumerate(motioncorr_star['micrographs']['rlnMicrographMetadata']):
    fn_out = add_suffix(fn_traj, suffix)
    motioncorr_star['micrographs']['rlnMicrographMetadata'][idx] = fn_out
    print("Processing %s => %s" % (fn_traj, fn_out))

    traj_star = load_star(fn_traj)

    if (args.regroup > 0):
        interpolate_trajectory(traj_star, args.regroup, args.old_group)
    if (args.resample > 0):
        resample_image(traj_star, args.resample)

    # local_shift table is not updated, because it is not used by Polish.
    # To avoid confusion, delete it.
    if 'local_shift' in traj_star:
        del traj_star['local_shift']

    write_star(fn_out, traj_star)
    #break

fn_out = add_suffix(fn_motioncorr_star, suffix)
write_star(fn_out, motioncorr_star)
print("Written %s" % fn_out)