1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
|
#!/usr/bin/env python2.7
"""
relion_it.py
============
Script for automated, on-the-fly single-particle analysis in RELION 3
Authors: Sjors H.W. Scheres, Takanori Nakane & Colin M. Palmer
Usage:
relion_it.py [extra_options.py [extra_options2.py ....] ] [--gui] [--continue]
To get started, go to the intended location of your RELION project directory and make sure your micrographs are
accessible from within it (e.g. in a subdirectory called `Movies/' - use a symlink if necessary). Then run this
script, providing the names of files containing options if needed. (To call the script, you'll need to enter the full
path to it, put the directory containing it on your PATH environment variable, or put a copy of the script in the
current directory.)
Run with the `--gui' option to launch a simple GUI which will set up a run from a few basic options. (The GUI can
also be used to save a complete options file that you can then edit as required.)
Once the script is running, open a normal RELION GUI to see what's happening and visualise the results.
See below for full instructions including how to handle errors. If you have any problems, please edit the script as
needed, call on your local Python expert or email the CCP-EM mailing list (https://www.jiscmail.ac.uk/ccpem).
Overview
--------
relion_it.py creates a number of RELION jobs and then runs one or more `relion_pipeliner' processes to schedule them
(exactly like using the "Schedule" button in the RELION GUI). Instructions and information are printed to the terminal
by relion_it.py as it runs.
relion_it.py uses a large number of options to control how the jobs are run. It's designed to be very flexible and so
these options can be changed in a number of ways:
- The easiest way is to use the simple GUI (enabled by passing the `--gui' argument), which allows you to set a few
simple options. These are then used to calculate appropriate values for the complete set of options. (See "Using the
GUI" below for more information on this.)
- For more control, options can be put into one or more Python files (with a simple "option_name = value" format or
with more complicated calculations - see "Options files" below for more information). The names of these options
files can passed as command line arguments to relion_it.py.
- For maximum control, you can make your own copy of this script and change the option values and the code itself
however you want.
Before running relion_it.py, you need to make sure you're in your intended RELION project directory, and that your
movie files are accessible by relative paths within that directory (as usual for a RELION project). You could do this
by moving the files from the microscope straight into the project directory, using a symlink from your project
directory to the real location of the data, or running a script to create a new symlink to each micrograph as it is
collected.
Options files
-------------
relion_it.py uses a large number of options for controlling both the flow of the script and the parameters for
individual jobs. These options can be read from Python script files when relion_it.py is started.
The options are all listed the body of the script below, with a comment to explain each option. One way to use this
script is to copy it in its entirety into your project directory, edit the options directly in the script and then
run it (with no command line arguments). However, it's often better to keep the script in the RELION source directory
(where it can be updated easily) and use options files to configure it.
An example of a simple options file is:
angpix = 1.06
This would override the default pixel size value, but leave all other options at their defaults.
The options files are read and interpreted as Python scripts. A simple list of "option_name = value" lines is all
that is needed, though you can also use any Python commands you like to do more complex calculations. To generate
an example file containing all of the options, run "relion_it.py --gui" and then click the "Save options" button,
which will save all the current options to a file called `relion_it_options.py' in the working directory.
The options are named descriptively so you can probably understand what most of them do quite easily. For more help on
any particular option, look at the comment above its definition in this script, or search the script's code to see
how it is used.
Options files can be useful as templates. As an example, at Diamond Light Source's eBIC facility, we have a template
file called `dls_cluster_options.py' that contains the necessary settings to make relion_it.py submit most of its jobs
to run on the DLS GPU cluster. You could also set up standard templates for a particular microscope (say, voltage and
Cs settings) or for a particular project or computer configuration.
When relion_it.py starts, it reads all options files in the order they are given on the command line. Subsequent files
will override earlier ones, so the last value given for any particular option will be the value that is used.
If you start relion_it.py with the `--continue' argument, it will automatically add `relion_it_options.py' to the end
of the list of options files. This means that if you are in a project directory where the relion_it.py GUI has
previously been used, all options will be defined in the relion_it_options.py file and they will override any other
options files given on the command line. (This is very useful for restarting the script after a problem, but it would
be pointless to combine `--continue' with any options template files.)
Note that if relion_it.py finds option names that it doesn't recognise while it's reading an options file, it will
print a warning (but continue anyway). If you've been editing options files by hand, you should check the output from
relion_it.py when it starts to make sure there are no typos in the options you wanted to set. (If you're using local
variables for intermediate Python calculations in an options file, it's a good idea to use names starting with a
leading underscore so you can immediately tell them apart from warnings about genuine spelling mistakes.)
Using the GUI
-------------
The GUI provides a simple way to start new projects with relion_it.py. If you want to use it, prepare your project
directory as described above, then start the GUI with "relion_it.py --gui". (If you're using any template options
files, you can give those too, for example "relion_it.py /path/to/site/options.py --gui".)
The window that appears should be self-explanatory. Fill in the options as needed for your project, and use the check
boxes on the right to control what processing steps will be done. When you're ready, click either "Save options" or
"Save & run". The program will check the values you've entered and then use them to calculate a few extra options for
relion_it.py. The options will then be saved to a file called `relion_it_options.py', and if you clicked "Save & run"
the processing run will start immediately.
If any of the entered values are invalid (for example, if there are letters in a field which should be a number), the
GUI will display a message box with an error when you click one of the buttons. It will also display a warning if any
values appear to be incorrect (but you can choose to ignore the warning by clicking "OK").
The GUI will try to calculate some extra options from the values you enter using the following rules:
1. If a 3D reference is given, use a single pass with reference-based autopicking, minimum distance between particles
of 0.7 times the particle size, and a batch size of 100,000 particles.
2. If no 3D reference is given, run a first pass with reference-free LoG autopicking and a batch size of 10,000, and
then a second pass with reference-based autopicking and a batch size of 100,000.
These options should be sensible in many cases, but if you'd like to change them, save the options from the GUI using
the "Save options" button, close the GUI, and edit the `relion_it_options.py' file to change the option values as
needed. You can then start the processing run with "relion_it.py --continue".
Running the pipelines
---------------------
relion_it.py uses several different scheduling pipelines to run its jobs. While each one is running, a file is
created in the project directory called `RUNNING_PIPELINER_<name>'. A log of the jobs run by that pipeline is stored
in `pipeline_<name>.log'.
If you want to stop one of the pipelines for any reason, delete its `RUNNING_' file and within a minute or two the
pipeliner will notice that the file has been removed and stop.
relion_it.py itself uses a similar file called `RUNNING_RELION_IT', and you can delete this to stop the script (which
will not affect any pipelines that are already running). It keeps a list of all of the jobs it has submitted in a
file called `RELION_IT_SUBMITTED_JOBS'. This file can be edited manually if necessary (but not while the script is
running!) Most of the jobs are run by the `preprocessing' pipeline. This will do the following:
1. Import movies
2. Motion correction
3. CTF estimation
4. Particle auto-picking
5. Particle extraction
6. Batch selection
After a number of particles have been extracted (1,000 by default), a 2D classification job will be run to provide
feedback on the quality of the data collection and particle picking.
Particles are split into batches of a fixed size (default 10,000 for the first pass with no reference, or 100,000
otherwise). The first batch is special: as it grows, the 2D classification job is re-run repeatedly to provide early
feedback on the quality of the data. For subsequent batches, the script waits for each batch to be complete before
running 2D classification on it.
You can provide reference structures for auto-picking and 3D classification. (If you provide a 3D reference in the
GUI it will automatically be used for both tasks.)
If you do not provide a reference for auto-picking, reference-free LoG picking will be used. If you do not provide a
reference for classification, relion_it.py will run the preprocessing pipeline twice. In the first pass, an initial
model will be generated, and then a second pass of preprocessing will be done using the initial model as a reference
for auto-picking and classification.
relion_it.py makes an effort to try to identify a suitable reference to use from the classes produced by the
InitialModel job, but if it selects an inappropriate reference, you can change it by stopping the pipelines and
script ("rm RUNNING_*"), updating the reference filename stored in the file named `RELION_IT_2NDPASS_3DREF', deleting
the relevant jobs (`autopick2_job' and those following) from the `RELION_IT_SUBMITTED_JOBS' file, then restarting the
pipeline with "relion_it.py --continue".
Fixing problems
---------------
One-off job failure
```````````````````
Occasionally, a single job can fail with an isolated error, for example if there are temporary network problems while
working on a remote filesystem. If this happens, RELION will wait forever for the files to appear that would indicate
the job has finished. In the meantime, no new jobs will be run, which can cause a backlog of micrographs to build up.
To fix this (for a preprocessing job), you can just try to re-run the job from the RELION GUI. Select the job in the
"Running jobs" list, then click "Job actions" -> "Mark as finished". Select the job again in the "Finished jobs"
list, then click "Continue!" to re-start the job.
That approach should work for preprocessing jobs, but probably won't work for classification or inital model
generation jobs, since those cannot be continued and must instead be restarted from the beginning. The best way to do
that is to restart the job manually, outside the RELION GUI, and then when the job finishes RELION should continue as
if the job had never failed.
For example, with a failed local job:
ps -e | grep relion # to check if the job is still active
kill <process_id> # to stop the job
# now re-run the commands from the job's `note.txt' file
or with a job that was submitted to an SGE cluster queue:
qstat # to check if the job is still active in the queue
qdel <job_id> # to remove the job from the queue
qsub job_type/job_directory/run_submit.script # to re-submit the job
The other option is to just run a new job from the RELION GUI in the normal way (select the job you want to "copy" in
the jobs list, make a "new" job by clicking on the job type in the list in the top-left of the GUI, then click
"Run!"). However, if you do this, relion_it.py will not know about the new job and will not run any further
downstream processing based on it. In this situation, you can either continue to process your data manually in RELION,
or you could edit the `RELION_IT_SUBMITTED_JOBS' file to replace the failed job with the manual one, and delete the
jobs that followed the original one. After that, if you re-run the script it should continue as normal from that
job onwards.
Repeated job failure
````````````````````
If a job fails repeatedly, it usually indicates that there is some problem with the job parameters or the files that
the job needs to access.
In favourable cases, it's possible you could fix the problem by selecting the job in the RELION GUI, changing one of
the parameters that is not greyed out, then clicking "Continue!". Often, though, the problem will be with one of the
parameters that can't be changed for a job that already exists, so the job will need to be deleted and recreated with
a different set of parameters.
To handle this situation, stop all of the pipelines and the relion_it.py script ("rm RUNNING_*"), then identify and
fix the problem. Often, the problem will be an error in one of the job parameters, which can usually be fixed by
changing one of the script options (for example by changing the settings in `relion_it_options.py', if you originally
used the GUI to start the run).
If the problem is caused by missing files from an upstream job, you might need to check the output of previous jobs
and look in the job directories to figure out what the problem is. Again, if it's an error in the parameters for a
job, you can probably fix it by editing `relion_it_options.py'.
After changing any script options, you'll need to use the RELION GUI to delete the affected job and all jobs
downstream of it, and also remove them from the list in the `RELION_IT_SUBMITTED_JOBS' file. Then you should be able
to restart the pipelines by running "relion_it.py --continue".
If you still can't get a particular job to run without errors, you can at least continue to run the upstream jobs
that are working properly. You can do this either by changing the options for relion_it.py (there are options to
switch off 2D or 3D classification, or to stop after CTF estimation), or by manually scheduling the jobs you want
using the RELION GUI. Remember that after running relion_it.py, you have a normal RELION project, so if the script
can't do what you want, you can simply stop it and then use all of RELION's normal job management and scheduling
abilities.
Advanced usage
--------------
It's possible to customise many aspects of the way relion_it.py works, but the details go beyond the scope of this
introduction. Simple customisation can be done by setting appropriate option values (see "Option files" above). For
more substantial changes, you might need to edit the script's Python code to get the behaviour you want. Most of the
important logic is in the `run_pipeline()' function so that's a good place to start. Good luck!
"""
from __future__ import print_function
from __future__ import division # always use float division
import argparse
import glob
import inspect
import math
import os
import runpy
import time
import traceback
try:
import Tkinter as tk
import tkMessageBox
import tkFileDialog
except ImportError:
# The GUI is optional. If the user requests it, it will fail when it tries
# to open so we can ignore the error for now.
pass
# Constants
PIPELINE_STAR = 'default_pipeline.star'
RUNNING_FILE = 'RUNNING_RELION_IT'
SECONDPASS_REF3D_FILE = 'RELION_IT_2NDPASS_3DREF'
SETUP_CHECK_FILE = 'RELION_IT_SUBMITTED_JOBS'
PREPROCESS_SCHEDULE_PASS1 = 'PREPROCESS'
PREPROCESS_SCHEDULE_PASS2 = 'PREPROCESS_PASS2'
OPTIONS_FILE = 'relion_it_options.py'
class RelionItOptions(object):
"""
Options for the relion_it pipeline setup script.
When initialised, this contains default values for all options. Call
``update_from()`` to override the defaults with a dictionary of new values.
"""
#############################################################################
# Change the parameters below to reflect your experiment #
# Current defaults reflect cryo-ARM betagal data set of RELION-3.0 tutorial #
#############################################################################
### General parameters
# Pixel size in Angstroms in the input movies
angpix = 0.885
# Acceleration voltage (in kV)
voltage = 200
# Polara = 2.0; Talos/Krios = 2.7; some Cryo-ARM = 1.4
Cs = 1.4
### Import images (Linux wild card; movies as *.mrc, *.mrcs, *.tiff or *.tif; single-frame micrographs as *.mrc)
import_images = 'Movies/*.tiff'
# Are these multi-frame movies? Set to False for single-frame micrographs (and motion-correction will be skipped)
images_are_movies = True
### MotionCorrection parameters
# Dose in electrons per squared Angstrom per fraction
motioncor_doseperframe = 1.277
# Gain-reference image in MRC format (only necessary if input movies are not yet gain-corrected, e.g. compressed TIFFs from K2)
motioncor_gainreference = 'Movies/gain.mrc'
# EER upsampling (1 = 4K, 2 = 8K). If you use 8K rendering, the pixel size (angpix) MUST be the half of the physical pixel size and the motioncor_binning should be 2.
eer_upsampling = 1
# EER fractionation. The dose rate (motioncor_doseperframe) is e/A2/fraction after this fractionation.
eer_grouping = 20
### CTF estimation parameters
# Most cases won't need changes here...
### Autopick parameters
# Use reference-free Laplacian-of-Gaussian picking (otherwise use reference-based template matching instead)
autopick_do_LoG = True
# Minimum and maximum diameter in Angstrom for the LoG filter
autopick_LoG_diam_min = 150
autopick_LoG_diam_max = 180
# Use positive values (0-1) to pick fewer particles; use negative values (-1-0) to pick more particles
autopick_LoG_adjust_threshold = 0.0
autopick_LoG_upper_threshold = 999.0
#
# OR:
#
# References for reference-based picking (when autopick_do_LoG = False)
autopick_2dreferences = ''
# OR: provide a 3D references for reference-based picking (when autopick_do_LoG = False)
autopick_3dreference = ''
# Threshold for reference-based autopicking (threshold 0 will pick too many particles. Default of 0.4 is hopefully better. Ultimately, just hope classification will sort it all out...)
autopick_refs_threshold = 0.4
# Minimum inter-particle distance for reference-based picking (~70% of particle diameter often works well)
autopick_refs_min_distance = 120
#
# For both LoG and refs:
#
# Use this to remove false positives from carbon edges (useful range: 1.0-1.2, -1 to switch off)
autopick_stddev_noise = -1
# Use this to remove false positives from carbon edges (useful range: -0.5-0.0; -999 to switch off)
autopick_avg_noise = -999
### Extract parameters
# Box size of particles in the averaged micrographs (in pixels)
extract_boxsize = 256
# Down-scale the particles upon extraction?
extract_downscale = False
# Box size of the down-scaled particles (in pixels)
extract_small_boxsize = 64
# In second pass, down-scale the particles upon extraction?
extract2_downscale = False
# In second pass, box size of the down-scaled particles (in pixels)
extract2_small_boxsize = 128
### Now perform 2D and/or 3D classification with the extracted particles?
do_class2d = True
# And/or perform 3D classification?
do_class3d = True
# Repeat 2D and/or 3D-classification for batches of this many particles
batch_size = 10000
# Number of 2D classes to use
class2d_nr_classes = 50
# Diameter of the mask used for 2D/3D classification (in Angstrom)
mask_diameter = 190
# Symmetry group (when using SGD for initial model generation, C1 may work best)
symmetry = 'C1'
#
### 3D-classification parameters
# Number of 3D classes to use
class3d_nr_classes = 4
# Have initial 3D model? If not, calculate one using SGD initial model generation
have_3d_reference = False
# Initial reference model
class3d_reference = ''
# Is reference on correct greyscale?
class3d_ref_is_correct_greyscale = False
# Has the initial reference been CTF-corrected?
class3d_ref_is_ctf_corrected = True
# Initial lowpass filter on reference
class3d_ini_lowpass = 40
### Use the largest 3D class from the first batch as a 3D reference for a second pass of autopicking? (only when do_class3d is True)
do_second_pass = True
# Only move on to template-based autopicking if the 3D references achieves this resolution (in A)
minimum_resolution_3dref_2ndpass = 20
# In the second pass, perform 2D classification?
do_class2d_pass2 = True
# In the second pass, perform 3D classification?
do_class3d_pass2 = False
# Batch size in the second pass
batch_size_pass2 = 100000
###################################################################################
############ Often the parameters below can be kept the same for a given set-up
###################################################################################
### Repeat settings for entire pipeline
# Repeat the pre-processing runs this many times (or until RUNNING_PIPELINER_default_PREPROCESS file is deleted)
preprocess_repeat_times = 999
# Wait at least this many minutes between each repeat cycle
preprocess_repeat_wait = 1
### Stop after CTF estimation? I.e., skip autopicking, extraction, 2D/3D classification, etc?
stop_after_ctf_estimation = False
# Check every this many minutes if enough particles have been extracted for a new batch of 2D-classification
batch_repeat_time = 1
### MotionCorrection parameters
# Use RELION's own implementation of motion-correction (CPU-only) instead of the UCSF implementation?
motioncor_do_own = True
# The number of threads (only for RELION's own implementation) is optimal when nr_movie_frames/nr_threads = integer
motioncor_threads = 6
# Exectutable of UCSF MotionCor2
motioncor_exe = '/public/EM/MOTIONCOR2/MotionCor2'
# On which GPU(s) to execute UCSF MotionCor2
motioncor_gpu = '0'
# How many MPI processes to use for running motion correction?
motioncor_mpi = 4
# Local motion-estimation patches for MotionCor2
motioncor_patches_x = 4
motioncor_patches_y = 4
# B-factor in A^2 for downweighting of high-spatial frequencies
motioncor_bfactor = 150
# Use binning=2 for super-resolution movies
motioncor_binning = 1
# Provide a defect file for your camera if you have one
motioncor_defectfile = ''
# orientation of the gain-reference w.r.t your movies (if input movies are not yet gain-corrected, e.g. TIFFs)
motioncor_gainflip = 'No flipping (0)'
motioncor_gainrot = 'No rotation (0)'
# Other arguments for MotionCor2
motioncor_other_args = ''
# Submit motion correction job to the cluster?
motioncor_submit_to_queue = False
### CTF estimation parameters
# Amplitude contrast (Q0)
ampl_contrast = 0.1
# CTFFIND-defined parameters
ctffind_boxsize = 512
ctffind_astigmatism = 100
ctffind_maxres = 5
ctffind_minres = 30
ctffind_defocus_max = 50000
ctffind_defocus_min = 5000
ctffind_defocus_step = 500
# For Gctf: ignore parameters on the 'Searches' tab?
ctffind_do_ignore_search_params = True
# For Gctf: perform equi-phase averaging?
ctffind_do_EPA = True
# Also estimate phase shifts (for VPP data)
ctffind_do_phaseshift = False
# Executable to Kai Zhang's Gctf
gctf_exe = '/public/EM/Gctf/bin/Gctf'
# On which GPU(s) to execute Gctf
gctf_gpu = '0'
# Use Alexis Rohou's CTFFIND4 (CPU-only) instead?
use_ctffind_instead = True
# Executable for Alexis Rohou's CTFFIND4
ctffind4_exe = '/public/EM/ctffind/ctffind.exe'
# How many MPI processes to use for running CTF estimation?
ctffind_mpi = 8
# Submit CTF estimation job to the cluster?
ctffind_submit_to_queue = False
### Autopick parameters
# Use GPU-acceleration for autopicking?
autopick_do_gpu = True
# Which GPU(s) to use for autopicking
autopick_gpu = '0'
# Low-pass filter for auto-picking the micrographs
autopick_lowpass = 20
# Shrink factor for faster picking (0 = fastest; 1 = slowest)
autopick_shrink_factor = 0
# How many MPI processes to use for running auto-picking?
autopick_mpi = 1
# Additional arguments for autopicking
autopick_other_args = ''
# Submit Autopick job to the cluster?
autopick_submit_to_queue = False
# Are the references CTF-corrected?
autopick_refs_are_ctf_corrected = True
# Do the references have inverted contrast wrt the micrographs?
autopick_refs_have_inverted_contrast = True
# Ignore CTFs until the first peak
autopick_refs_ignore_ctf1stpeak = False
# Diameter of mask for the references (in A; negative value for automated detection of mask diameter)
autopick_refs_mask_diam = -1
# In-plane angular sampling interval
autopick_inplane_sampling = 10
# Symmetry of the 3D reference for autopicking
autopick_3dref_symmetry = 'C1'
# 3D angular sampling for generating projections of the 3D reference for autopicking (30 degrees is usually enough)
autopick_3dref_sampling = '30 degrees'
# Pixel size in the provided 2D/3D references (negative for same as in motion-corrected movies)
autopick_ref_angpix = -1
### Extract parameters
# Diameter for background normalisation (in pixels; negative value: default is 75% box size)
extract_bg_diameter = -1
# How many MPI processes to use for running particle extraction?
extract_mpi = 1
# Submit Extract job to the cluster?
extract_submit_to_queue = False
## Discard particles based on average/stddev values? (this may be important for SGD initial model generation)
do_discard_on_image_statistics = False
# Discard images that have average/stddev values that are more than this many sigma away from the ensemble average
discard_sigma = 4
# Submit discard job to the cluster?
discard_submit_to_queue = False
#### Common relion_refine paremeters used for 2D/3D classification and initial model generation
# Read all particles in one batch into memory?
refine_preread_images = False
# Or copy particles to scratch disk?
refine_scratch_disk = ''
# Number of pooled particles?
refine_nr_pool = 10
# Use GPU-acceleration?
refine_do_gpu = True
# Which GPU to use (different from GPU used for pre-processing?)
refine_gpu = '1'
# How many MPI processes to use
refine_mpi = 1
# How many threads to use
refine_threads = 6
# Skip padding?
refine_skip_padding = False
# Submit jobs to the cluster?
refine_submit_to_queue = False
# Use fast subsets in 2D/3D classification when batch_size is bigger than this
refine_batchsize_for_fast_subsets = 10000
### 2D classification parameters
# Wait with the first 2D classification batch until at least this many particles are extracted
minimum_batch_size = 10000
# Number of iterations to perform in 2D classification
# Must be at least 20 for fast subsets
class2d_nr_iter = 20
# Rotational search step (in degrees)
class2d_angle_step = 6
# Offset search range (in pixels)
class2d_offset_range = 5
# Offset search step (in pixels)
class2d_offset_step = 1
# Option to ignore the CTFs until their first peak (try this if all particles go into very few classes)
class2d_ctf_ign1stpeak = False
# Additional arguments to pass to relion-refine
class2d_other_args = ''
### 3D classification parameters
# Number of iterations to perform in 3D classification
# Must be at least 20 for fast subsets
class3d_nr_iter = 20
# Reference mask
class3d_reference_mask = ''
# Option to ignore the CTFs until their first peak (try this if all particles go into very few classes)
class3d_ctf_ign1stpeak = False
# Regularisation parameter (T)
class3d_T_value = 4
# Angular sampling step
class3d_angle_step = '7.5 degrees'
# Offset search range (in pixels)
class3d_offset_range = 5
# Offset search step (in pixels)
class3d_offset_step = 1
# Additional arguments to pass to relion-refine
class3d_other_args = ''
## SGD initial model generation
# Number of models to generate simulatenously (K>1 may be useful for getting rid of outliers in the particle images)
inimodel_nr_classes = 4
# Ignore CTFs until first peak?
inimodel_ctf_ign1stpeak = False
# Enforce non-negative solvent?
inimodel_solvent_flatten = True
# Initial angular sampling
inimodel_angle_step = '15 degrees'
# Initial search range (in pixels)
inimodel_offset_range = 6
# Initial offset search step (in pixels)
inimodel_offset_step = 2
# Number of initial iterations
inimodel_nr_iter_initial = 50
# Number of in-between iterations
inimodel_nr_iter_inbetween = 200
# Number of final iterations
inimodel_nr_iter_final = 50
# Frequency to write out information
inimodel_freq_writeout = 10
# Initial resolution (in A)
inimodel_resol_ini = 35
# Final resolution (in A)
inimodel_resol_final = 15
# Initial mini-batch size
inimodel_batchsize_ini = 100
# Final mini-batch size
inimodel_batchsize_final = 500
# Increased noise variance half-life (off, i.e. -1, by default; values of ~1000 have been observed to be useful in difficult cases)
inimodel_sigmafudge_halflife = -1
# Additional arguments to pass to relion_refine (skip annealing to get rid of outlier particles)
inimodel_other_args = ' --sgd_skip_anneal '
### Cluster submission settings
# Name of the queue to which to submit the job
queue_name = 'openmpi'
# Name of the command used to submit scripts to the queue
queue_submit_command = 'qsub'
# The template for your standard queue job submission script
queue_submission_template = '/public/EM/RELION/relion/bin/qsub.csh'
# Minimum number of dedicated cores that need to be requested on each node
queue_minimum_dedicated = 1
### End of options
#######################################################################
############ typically no need to change anything below this line
#######################################################################
def update_from(self, other):
"""
Update this RelionItOptions object from a dictionary.
Special values (with names like '__xxx__') are removed, allowing this
method to be given a dictionary containing the namespace from a script
run with ``runpy``.
"""
while len(other) > 0:
key, value = other.popitem()
if not (key.startswith('__') and key.endswith('__')): # exclude __name__, __builtins__ etc.
if hasattr(self, key):
setattr(self, key, value)
else:
print(" RELION_IT: Unrecognised option '{}'".format(key))
def print_options(self, out_file=None):
"""
Print the current options.
This method prints the options in the same format as they are read,
allowing options to be written to a file and re-used.
Args:
out_file: A file object (optional). If supplied, options will be
written to this file, otherwise they will be printed to
sys.stdout.
Raises:
ValueError: If there is a problem printing the options.
"""
out_file.write("# Options file for relion_it.py\n\n")
seen_start = False
option_names = [key for key in dir(self) if (not (key.startswith('__') and key.endswith('__'))
and not callable(getattr(self, key)))]
# Parse the source code for this class, and write out all comments along with option lines containing new values
for line in inspect.getsourcelines(RelionItOptions)[0]:
line = line.strip()
if not seen_start:
if line != "### General parameters":
# Ignore lines until this one
continue
seen_start = True
if line == "### End of options":
# Stop here
break
if line.startswith('#') or len(line) == 0:
# Print comments or blank lines as-is
out_file.write(line + "\n");
else:
# Assume all other lines define an option name and value. Replace with new value.
equals_index = line.find('=')
if equals_index > 0:
option_name = line[:equals_index].strip()
if option_name in option_names:
out_file.write('{} = {}\n'.format(option_name, repr(getattr(self, option_name))))
option_names.remove(option_name)
else:
# This error should not occur. If it does, there is probably a programming error.
raise ValueError("Unrecognised option name '{}'".format(option_name))
if len(option_names) > 0:
# This error should not occur. If it does, there is probably a programming error.
raise ValueError("Some options were not written to the output file: {}".format(option_names))
class RelionItGui(object):
def __init__(self, main_window, options):
self.main_window = main_window
self.options = options
# Convenience function for making file browser buttons
def new_browse_button(master, var_to_set, filetypes=(('MRC file', '*.mrc'), ('All files', '*'))):
def browse_command():
chosen_file = tkFileDialog.askopenfilename(filetypes=filetypes)
if chosen_file is not None:
# Make path relative if it's in the current directory
if chosen_file.startswith(os.getcwd()):
chosen_file = os.path.relpath(chosen_file)
var_to_set.set(chosen_file)
return tk.Button(master, text="Browse...", command=browse_command)
### Create GUI
main_frame = tk.Frame(main_window)
main_frame.pack(fill=tk.BOTH, expand=1)
left_frame = tk.Frame(main_frame)
left_frame.pack(side=tk.LEFT, anchor=tk.N, fill=tk.X, expand=1)
right_frame = tk.Frame(main_frame)
right_frame.pack(side=tk.LEFT, anchor=tk.N, fill=tk.X, expand=1)
###
expt_frame = tk.LabelFrame(left_frame, text="Experimental details", padx=5, pady=5)
expt_frame.pack(padx=5, pady=5, fill=tk.X, expand=1)
tk.Grid.columnconfigure(expt_frame, 1, weight=1)
row = 0
tk.Label(expt_frame, text="Voltage (kV):").grid(row=row, sticky=tk.W)
self.voltage_entry = tk.Entry(expt_frame)
self.voltage_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.voltage_entry.insert(0, str(options.voltage))
row += 1
tk.Label(expt_frame, text="Cs (mm):").grid(row=row, sticky=tk.W)
self.cs_entry = tk.Entry(expt_frame)
self.cs_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.cs_entry.insert(0, str(options.Cs))
row += 1
tk.Label(expt_frame, text="Phase plate?").grid(row=row, sticky=tk.W)
self.phaseplate_var = tk.IntVar()
phaseplate_button = tk.Checkbutton(expt_frame, var=self.phaseplate_var)
phaseplate_button.grid(row=row, column=1, sticky=tk.W)
if options.ctffind_do_phaseshift:
phaseplate_button.select()
row += 1
tk.Label(expt_frame, text=u"Pixel size (\u212B):").grid(row=row, sticky=tk.W)
self.angpix_var = tk.StringVar() # for data binding
self.angpix_entry = tk.Entry(expt_frame, textvariable=self.angpix_var)
self.angpix_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.angpix_entry.insert(0, str(options.angpix))
row += 1
tk.Label(expt_frame, text=u"Exposure rate (e\u207B / \u212B\u00B2 / frame):").grid(row=row, sticky=tk.W)
self.exposure_entry = tk.Entry(expt_frame)
self.exposure_entry.grid(row=row, column=1, sticky=tk.W + tk.E)
self.exposure_entry.insert(0, str(options.motioncor_doseperframe))
###
particle_frame = tk.LabelFrame(left_frame, text="Particle details", padx=5, pady=5)
particle_frame.pack(padx=5, pady=5, fill=tk.X, expand=1)
tk.Grid.columnconfigure(particle_frame, 1, weight=1)
row = 0
tk.Label(particle_frame, text=u"Longest diameter (\u212B):").grid(row=row, sticky=tk.W)
self.particle_max_diam_var = tk.StringVar() # for data binding
self.particle_max_diam_entry = tk.Entry(particle_frame, textvariable=self.particle_max_diam_var)
self.particle_max_diam_entry.grid(row=row, column=1, sticky=tk.W+tk.E, columnspan=2)
self.particle_max_diam_entry.insert(0, str(options.autopick_LoG_diam_max))
row += 1
tk.Label(particle_frame, text=u"Shortest diameter (\u212B):").grid(row=row, sticky=tk.W)
self.particle_min_diam_entry = tk.Entry(particle_frame)
self.particle_min_diam_entry.grid(row=row, column=1, sticky=tk.W+tk.E, columnspan=2)
self.particle_min_diam_entry.insert(0, str(options.autopick_LoG_diam_min))
row += 1
tk.Label(particle_frame, text="3D reference (optional):").grid(row=row, sticky=tk.W)
self.ref_3d_var = tk.StringVar() # for data binding
self.ref_3d_entry = tk.Entry(particle_frame, textvariable=self.ref_3d_var)
self.ref_3d_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.ref_3d_entry.insert(0, str(options.autopick_3dreference))
new_browse_button(particle_frame, self.ref_3d_var).grid(row=row, column=2)
row += 1
tk.Label(particle_frame, text=u"Mask diameter (\u212B):").grid(row=row, sticky=tk.W)
self.mask_diameter_var = tk.StringVar() # for data binding
self.mask_diameter_entry = tk.Entry(particle_frame, textvariable=self.mask_diameter_var)
self.mask_diameter_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.mask_diameter_entry.insert(0, str(options.mask_diameter))
self.mask_diameter_px = tk.Label(particle_frame, text="= NNN px")
self.mask_diameter_px.grid(row=row, column=2,sticky=tk.W)
row += 1
tk.Label(particle_frame, text="Box size (px):").grid(row=row, sticky=tk.W)
self.box_size_var = tk.StringVar() # for data binding
self.box_size_entry = tk.Entry(particle_frame, textvariable=self.box_size_var)
self.box_size_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.box_size_entry.insert(0, str(options.extract_boxsize))
self.box_size_in_angstrom = tk.Label(particle_frame, text=u"= NNN \u212B")
self.box_size_in_angstrom.grid(row=row, column=2,sticky=tk.W)
row += 1
tk.Label(particle_frame, text="Down-sample to (px):").grid(row=row, sticky=tk.W)
self.extract_small_boxsize_var = tk.StringVar() # for data binding
self.extract_small_boxsize_entry = tk.Entry(particle_frame, textvariable=self.extract_small_boxsize_var)
self.extract_small_boxsize_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.extract_small_boxsize_entry.insert(0, str(options.extract_small_boxsize))
self.extract_angpix = tk.Label(particle_frame, text=u"= NNN \u212B/px")
self.extract_angpix.grid(row=row, column=2,sticky=tk.W)
row += 1
tk.Label(particle_frame, text="Calculate for me:").grid(row=row, sticky=tk.W)
self.auto_boxsize_var = tk.IntVar()
auto_boxsize_button = tk.Checkbutton(particle_frame, var=self.auto_boxsize_var)
auto_boxsize_button.grid(row=row, column=1, sticky=tk.W)
auto_boxsize_button.select()
###
project_frame = tk.LabelFrame(right_frame, text="Project details", padx=5, pady=5)
project_frame.pack(padx=5, pady=5, fill=tk.X, expand=1)
tk.Grid.columnconfigure(project_frame, 1, weight=1)
row = 0
tk.Label(project_frame, text="Project directory:").grid(row=row, sticky=tk.W)
tk.Label(project_frame, text=os.getcwd(), anchor=tk.W).grid(row=row, column=1, sticky=tk.W, columnspan=2)
row += 1
tk.Label(project_frame, text="Pattern for movies:").grid(row=row, sticky=tk.W)
self.import_images_var = tk.StringVar() # for data binding
self.import_images_entry = tk.Entry(project_frame, textvariable=self.import_images_var)
self.import_images_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.import_images_entry.insert(0, self.options.import_images)
import_button = new_browse_button(project_frame, self.import_images_var,
filetypes=(('Image file', '{*.mrc, *.mrcs, *.tif, *.tiff}'), ('All files', '*')))
import_button.grid(row=row, column=2)
row += 1
tk.Label(project_frame, text="Gain reference (optional):").grid(row=row, sticky=tk.W)
self.gainref_var = tk.StringVar() # for data binding
self.gainref_entry = tk.Entry(project_frame, textvariable=self.gainref_var)
self.gainref_entry.grid(row=row, column=1, sticky=tk.W+tk.E)
self.gainref_entry.insert(0, self.options.motioncor_gainreference)
new_browse_button(project_frame, self.gainref_var).grid(row=row, column=2)
###
pipeline_frame = tk.LabelFrame(right_frame, text="Pipeline control", padx=5, pady=5)
pipeline_frame.pack(padx=5, pady=5, fill=tk.X, expand=1)
tk.Grid.columnconfigure(expt_frame, 1, weight=1)
row = 0
tk.Label(pipeline_frame, text="Stop after CTF estimation?").grid(row=row, sticky=tk.W)
self.stop_after_ctf_var = tk.IntVar()
stop_after_ctf_button = tk.Checkbutton(pipeline_frame, var=self.stop_after_ctf_var)
stop_after_ctf_button.grid(row=row, column=1, sticky=tk.W)
if options.stop_after_ctf_estimation:
stop_after_ctf_button.select()
row += 1
tk.Label(pipeline_frame, text="Do 2D classification?").grid(row=row, sticky=tk.W)
self.class2d_var = tk.IntVar()
class2d_button = tk.Checkbutton(pipeline_frame, var=self.class2d_var)
class2d_button.grid(row=row, column=1, sticky=tk.W)
if options.do_class2d:
class2d_button.select()
row += 1
tk.Label(pipeline_frame, text="Do 3D classification?").grid(row=row, sticky=tk.W)
self.class3d_var = tk.IntVar()
class3d_button = tk.Checkbutton(pipeline_frame, var=self.class3d_var)
class3d_button.grid(row=row, column=1, sticky=tk.W)
if options.do_class3d:
class3d_button.select()
row += 1
tk.Label(pipeline_frame, text="Do second pass? (only if no 3D ref)").grid(row=row, sticky=tk.W)
self.second_pass_var = tk.IntVar()
second_pass_button = tk.Checkbutton(pipeline_frame, var=self.second_pass_var)
second_pass_button.grid(row=row, column=1, sticky=tk.W)
if options.do_second_pass:
second_pass_button.select()
row += 1
tk.Label(pipeline_frame, text="Do 2D classification (2nd pass)?").grid(row=row, sticky=tk.W)
self.class2d_pass2_var = tk.IntVar()
class2d_pass2_button = tk.Checkbutton(pipeline_frame, var=self.class2d_pass2_var)
class2d_pass2_button.grid(row=row, column=1, sticky=tk.W)
class2d_pass2_button.select()
if options.do_class2d_pass2:
class2d_pass2_button.select()
row += 1
tk.Label(pipeline_frame, text="Do 3D classification (2nd pass)?").grid(row=row, sticky=tk.W)
self.class3d_pass2_var = tk.IntVar()
class3d_pass2_button = tk.Checkbutton(pipeline_frame, var=self.class3d_pass2_var)
class3d_pass2_button.grid(row=row, column=1, sticky=tk.W)
if options.do_class3d_pass2:
class3d_pass2_button.select()
### Add logic to the box size boxes
def calculate_box_size(particle_size_pixels):
# Use box 20% larger than particle and ensure size is even
box_size_exact = 1.2 * particle_size_pixels
box_size_int = int(math.ceil(box_size_exact))
return box_size_int + box_size_int % 2
def calculate_downscaled_box_size(box_size_pix, angpix):
for small_box_pix in (48, 64, 96, 128, 160, 192, 256, 288, 300, 320, 360,
384, 400, 420, 450, 480, 512, 640, 768, 896, 1024):
# Don't go larger than the original box
if small_box_pix > box_size_pix:
return box_size_pix
# If Nyquist freq. is better than 8.5 A, use this downscaled box, otherwise continue to next size up
small_box_angpix = angpix * box_size_pix / small_box_pix
if small_box_angpix < 4.25:
return small_box_pix
# Fall back to a warning message
return "Box size is too large!"
def update_box_size_labels(*args_ignored, **kwargs_ignored):
try:
angpix = float(self.angpix_entry.get())
except ValueError:
# Can't update any of the labels without angpix
self.mask_diameter_px.config(text="= NNN px")
self.box_size_in_angstrom.config(text=u"= NNN \u212B")
self.extract_angpix.config(text=u"= NNN \u212B/px")
return
try:
mask_diameter = float(self.mask_diameter_entry.get())
mask_diameter_px = mask_diameter / angpix
self.mask_diameter_px.config(text="= {:.1f} px".format(mask_diameter_px))
except (ValueError, ZeroDivisionError):
self.mask_diameter_px.config(text="= NNN px")
# Don't return - an error here doesn't stop us calculating the other labels
try:
box_size = float(self.box_size_entry.get())
box_angpix = angpix * box_size
self.box_size_in_angstrom.config(text=u"= {:.1f} \u212B".format(box_angpix))
except ValueError:
# Can't update these without the box size
self.box_size_in_angstrom.config(text=u"= NNN \u212B")
self.extract_angpix.config(text=u"= NNN \u212B/px")
return
try:
extract_small_boxsize = float(self.extract_small_boxsize_entry.get())
small_box_angpix = box_angpix / extract_small_boxsize
self.extract_angpix.config(text=u"= {:.3f} \u212B/px".format(small_box_angpix))
except (ValueError, ZeroDivisionError):
# Can't update the downscaled pixel size unless the downscaled box size is valid
self.extract_angpix.config(text=u"= NNN \u212B/px")
def update_box_sizes(*args_ignored, **kwargs_ignored):
# Always activate entry boxes - either we're activating them anyway, or we need to edit the text.
# For text editing we need to activate the box first then deactivate again afterwards.
self.mask_diameter_entry.config(state=tk.NORMAL)
self.box_size_entry.config(state=tk.NORMAL)
self.extract_small_boxsize_entry.config(state=tk.NORMAL)
if self.get_var_as_bool(self.auto_boxsize_var):
try:
particle_size_angstroms = float(self.particle_max_diam_entry.get())
mask_diameter = 1.1 * particle_size_angstroms
self.mask_diameter_entry.delete(0, tk.END)
self.mask_diameter_entry.insert(0, str(mask_diameter))
angpix = float(self.angpix_entry.get())
particle_size_pixels = particle_size_angstroms / angpix
box_size = calculate_box_size(particle_size_pixels)
self.box_size_entry.delete(0, tk.END)
self.box_size_entry.insert(0, str(box_size))
small_boxsize = calculate_downscaled_box_size(int(box_size), angpix)
self.extract_small_boxsize_entry.delete(0, tk.END)
self.extract_small_boxsize_entry.insert(0, str(small_boxsize))
except:
# Ignore errors - they will be picked up if the user tries to save the options
pass
self.mask_diameter_entry.config(state=tk.DISABLED)
self.box_size_entry.config(state=tk.DISABLED)
self.extract_small_boxsize_entry.config(state=tk.DISABLED)
update_box_size_labels()
self.box_size_var.trace('w', update_box_size_labels)
self.extract_small_boxsize_var.trace('w', update_box_size_labels)
self.angpix_var.trace('w', update_box_sizes)
self.particle_max_diam_var.trace('w', update_box_sizes)
auto_boxsize_button.config(command=update_box_sizes)
### Add logic to the check boxes
def update_pipeline_control_state(*args_ignored, **kwargs_ignored):
new_state = tk.DISABLED if self.stop_after_ctf_var.get() else tk.NORMAL
class2d_button.config(state=new_state)
class3d_button.config(state=new_state)
self.particle_max_diam_entry.config(state=new_state)
self.particle_min_diam_entry.config(state=new_state)
self.ref_3d_entry.config(state=new_state)
# Update the box size controls with care to avoid activating them when we shouldn't
auto_boxsize_button.config(state=new_state)
if new_state == tk.DISABLED:
self.mask_diameter_entry.config(state=new_state)
self.box_size_entry.config(state=new_state)
self.extract_small_boxsize_entry.config(state=new_state)
else:
update_box_sizes()
can_do_second_pass = (self.class3d_var.get()
and len(self.ref_3d_var.get()) == 0
and not self.stop_after_ctf_var.get())
second_pass_button.config(state=tk.NORMAL if can_do_second_pass else tk.DISABLED)
will_do_second_pass = can_do_second_pass and self.second_pass_var.get()
class2d_pass2_button.config(state=tk.NORMAL if will_do_second_pass else tk.DISABLED)
class3d_pass2_button.config(state=tk.NORMAL if will_do_second_pass else tk.DISABLED)
stop_after_ctf_button.config(command=update_pipeline_control_state)
class3d_button.config(command=update_pipeline_control_state)
second_pass_button.config(command=update_pipeline_control_state)
self.ref_3d_var.trace('w', update_pipeline_control_state)
###
button_frame = tk.Frame(right_frame)
button_frame.pack(padx=5, pady=5, fill=tk.X, expand=1)
self.run_button = tk.Button(button_frame, text="Save & run", command=self.run_pipeline)
self.run_button.pack(padx=5, pady=5, side=tk.RIGHT)
self.save_button = tk.Button(button_frame, text="Save options", command=self.save_options)
self.save_button.pack(padx=5, pady=5, side=tk.RIGHT)
# Show initial pixel sizes
update_box_sizes()
def get_var_as_bool(self, var):
"""Helper function to convert a Tk IntVar (linked to a checkbox) to a boolean value"""
return True if var.get() == 1 else False
def fetch_options_from_gui(self):
"""
Fetch the current values from the GUI widgets and store them in the options object.
Returns:
A list of warning messages about possible incorrect option values.
Raises:
ValueError: If an option value is invalid.
"""
opts = self.options
warnings = []
opts.stop_after_ctf_estimation = self.get_var_as_bool(self.stop_after_ctf_var)
opts.do_class2d = self.get_var_as_bool(self.class2d_var)
opts.do_class3d = self.get_var_as_bool(self.class3d_var)
opts.do_second_pass = self.get_var_as_bool(self.second_pass_var)
opts.do_class2d_pass2 = self.get_var_as_bool(self.class2d_pass2_var)
opts.do_class3d_pass2 = self.get_var_as_bool(self.class3d_pass2_var)
try:
opts.voltage = float(self.voltage_entry.get())
except ValueError:
raise ValueError("Voltage must be a number")
if opts.voltage <= 0.0:
warnings.append("- Voltage should be a positive number")
try:
opts.Cs = float(self.cs_entry.get())
except ValueError:
raise ValueError("Cs must be a number")
opts.ctffind_do_phaseshift = self.get_var_as_bool(self.phaseplate_var)
try:
opts.angpix = float(self.angpix_entry.get())
except ValueError:
raise ValueError("Pixel size must be a number")
if opts.angpix <= 0.0:
warnings.append("- Pixel size should be a positive number")
try:
opts.motioncor_doseperframe = float(self.exposure_entry.get())
except ValueError:
raise ValueError("Exposure rate must be a number")
if opts.motioncor_doseperframe <= 0.0:
warnings.append("- Exposure rate should be a positive number")
try:
opts.autopick_LoG_diam_max = float(self.particle_max_diam_entry.get())
except ValueError:
if len(self.particle_max_diam_entry.get()) == 0 and opts.stop_after_ctf_estimation:
# This was left blank and won't be used, set to zero to avoid errors in calculations later
opts.autopick_LoG_diam_max = 0.0
else:
raise ValueError("Particle longest diameter must be a number")
try:
opts.autopick_LoG_diam_min = float(self.particle_min_diam_entry.get())
except ValueError:
if len(self.particle_min_diam_entry.get()) == 0 and opts.stop_after_ctf_estimation:
# This was left blank and won't be used, set to zero to avoid errors in calculations later
opts.autopick_LoG_diam_min = 0.0
else:
raise ValueError("Particle shortest diameter must be a number")
opts.autopick_3dreference = self.ref_3d_entry.get()
if len(opts.autopick_3dreference) > 0 and not os.path.isfile(opts.autopick_3dreference):
warnings.append("- 3D reference file '{}' does not exist".format(opts.autopick_3dreference))
try:
opts.mask_diameter = float(self.mask_diameter_entry.get())
except ValueError:
raise ValueError("Mask diameter must be a number")
if opts.mask_diameter <= 0:
warnings.append("- Mask diameter should be a positive number")
try:
opts.extract_boxsize = int(self.box_size_entry.get())
except ValueError:
raise ValueError("Box size must be a number")
if opts.extract_boxsize <= 0:
warnings.append("- Box size should be a positive number")
try:
opts.extract_small_boxsize = int(self.extract_small_boxsize_entry.get())
opts.extract2_small_boxsize = opts.extract_small_boxsize
opts.extract_downscale = True
opts.extract2_downscale = True
except ValueError:
raise ValueError("Down-sampled box size must be a number")
if opts.extract_small_boxsize <= 0:
warnings.append("- Down-sampled box size should be a positive number")
opts.import_images = self.import_images_entry.get()
if opts.import_images.startswith(('/', '..')):
warnings.append("- Movies should be located inside the project directory")
if '*' not in opts.import_images:
warnings.append("- Pattern for input movies should normally contain a '*' to select more than one file")
opts.motioncor_gainreference = self.gainref_entry.get()
if len(opts.motioncor_gainreference) > 0 and not os.path.isfile(opts.motioncor_gainreference):
warnings.append("- Gain reference file '{}' does not exist".format(opts.motioncor_gainreference))
return warnings
def calculate_full_options(self):
"""
Update the options from the values that have been fetched from the GUI.
This method uses the values that the user has set in the GUI to calculate a number of other options for the
script.
"""
opts = self.options
# If we have a 3D reference, do a single pass with a large batch size
if len(opts.autopick_3dreference) > 0:
opts.autopick_do_LoG = False
opts.autopick_refs_min_distance = opts.autopick_LoG_diam_max * 0.7
opts.class3d_reference = opts.autopick_3dreference
opts.do_second_pass = False
else:
# No 3D reference - do LoG autopicking in the first pass
opts.autopick_do_LoG = True
opts.class3d_reference = ''
# Now set a sensible batch size (leaving batch_size_pass2 at its default 100,000)
if opts.do_second_pass:
opts.batch_size = 10000
else:
opts.batch_size = 100000
def save_options(self):
"""
Update the full set of options from the values in the GUI, and save them to a file.
Returns:
True if the options were valid and saved successfully, otherwise False.
"""
try:
warnings = self.fetch_options_from_gui()
if len(warnings) == 0 or tkMessageBox.askokcancel("Warning", "\n".join(warnings), icon='warning',
default=tkMessageBox.CANCEL):
self.calculate_full_options()
print(" RELION_IT: Writing all options to {}".format(OPTIONS_FILE))
if os.path.isfile(OPTIONS_FILE):
print(" RELION_IT: File {0} already exists; renaming old copy to {0}~".format(OPTIONS_FILE))
os.rename(OPTIONS_FILE, OPTIONS_FILE + '~')
with open(OPTIONS_FILE, 'w') as optfile:
self.options.print_options(optfile)
return True
except Exception as ex:
tkMessageBox.showerror("Error", ex.message)
traceback.print_exc()
return False
def run_pipeline(self):
"""
Update the full set of options from the values in the GUI, close the GUI and run the pipeline.
"""
if self.save_options():
self.main_window.destroy()
run_pipeline(self.options)
def safe_load_star(filename, max_try=5, wait=10, expected=[]):
for _ in range(max_try):
try:
star = load_star(filename)
entry = star
# make sure the expected key is present
for key in expected:
entry = entry[key]
return star
except:
print("safe_load_star is retrying to read: ", filename, ", expected key:", expected)
import time
time.sleep(wait)
assert False, "Failed to read a star file: " + filename
def load_star(filename):
from collections import OrderedDict
datasets = OrderedDict()
current_data = None
current_colnames = None
in_loop = 0 # 0: outside 1: reading colnames 2: reading data
for line in open(filename):
line = line.strip()
# remove comments
comment_pos = line.find('#')
if comment_pos > 0:
line = line[:comment_pos]
if line == "":
if in_loop == 2:
in_loop = 0
continue
if line.startswith("data_"):
in_loop = 0
data_name = line[5:]
current_data = OrderedDict()
datasets[data_name] = current_data
elif line.startswith("loop_"):
current_colnames = []
in_loop = 1
elif line.startswith("_"):
if in_loop == 2:
in_loop = 0
elems = line[1:].split()
if in_loop == 1:
current_colnames.append(elems[0])
current_data[elems[0]] = []
else:
current_data[elems[0]] = elems[1]
elif in_loop > 0:
in_loop = 2
elems = line.split()
assert len(elems) == len(current_colnames), ("Error in STAR file {}, number of elements in {} does not match number of column names {}"
.format(filename, elems, current_colnames))
for idx, e in enumerate(elems):
current_data[current_colnames[idx]].append(e)
return datasets
# Don't get stuck in infinite while True loops....
def CheckForExit():
if not os.path.isfile(RUNNING_FILE):
print(" RELION_IT:", RUNNING_FILE, "file no longer exists, exiting now ...")
exit(0)
# Allow direct progressing to the second pass
def getSecondPassReference():
if os.path.isfile(SECONDPASS_REF3D_FILE):
with open(SECONDPASS_REF3D_FILE, 'r') as myfile:
filename, angpix = myfile.readlines()
else:
filename = ''
angpix = '0'
return filename.replace('\n',''), angpix.replace('\n','')
def getJobName(name_in_script, done_file):
jobname = None
# See if we've done this job before, i.e. whether it is in the done_file
if (os.path.isfile(done_file)):
f = open(done_file,'r')
for line in f:
elems = line.split()
if len(elems) < 3: continue
if elems[0] == name_in_script:
jobname = elems[2]
break
f.close()
return jobname
def addJob(jobtype, name_in_script, done_file, options, alias=None):
jobname = getJobName(name_in_script, done_file)
# If we hadn't done it before, add it now
if (jobname is not None):
already_had_it = True
else:
already_had_it = False
optionstring = ''
for opt in options[:]:
optionstring += opt + ';'
command = 'relion_pipeliner --addJob ' + jobtype + ' --addJobOptions "' + optionstring + '"'
if alias is not None:
command += ' --setJobAlias "' + alias + '"'
#print("DEBUG: Running " + command)
os.system(command)
pipeline = safe_load_star(PIPELINE_STAR, expected=['pipeline_processes', 'rlnPipeLineProcessName'])
jobname = pipeline['pipeline_processes']['rlnPipeLineProcessName'][-1]
# Now add the jobname to the done_file
f = open(done_file,'a')
f.write(name_in_script + ' = ' + jobname + '\n')
f.close()
# return the name of the job in the RELION pipeline, e.g. 'Import/job001/'
return jobname, already_had_it
def RunJobs(jobs, repeat, wait, schedulename):
runjobsstring = ''
for job in jobs[:]:
runjobsstring += job + ' '
command = 'relion_pipeliner --schedule ' + schedulename + ' --repeat ' + str(repeat) + ' --min_wait ' + str(wait) + ' --RunJobs "' + runjobsstring + '" &'
os.system(command)
def WaitForJob(wait_for_this_job, seconds_wait):
time.sleep(seconds_wait)
print(" RELION_IT: waiting for job to finish in", wait_for_this_job)
while True:
pipeline = safe_load_star(PIPELINE_STAR, expected=['pipeline_processes', 'rlnPipeLineProcessName'])
myjobnr = -1
for jobnr in range(0,len(pipeline['pipeline_processes']['rlnPipeLineProcessName'])):
jobname = pipeline['pipeline_processes']['rlnPipeLineProcessName'][jobnr]
if jobname == wait_for_this_job:
myjobnr = jobnr
if myjobnr < 0:
print(" ERROR: cannot find ", wait_for_this_job, " in ", PIPELINE_STAR)
exit(1)
status = int(pipeline['pipeline_processes']['rlnPipeLineProcessStatus'][myjobnr])
if status == 2:
print(" RELION_IT: job in", wait_for_this_job, "has finished now")
return
else:
CheckForExit()
time.sleep(seconds_wait)
def find_split_job_output(prefix, n, max_digits=6):
import os.path
for i in range(max_digits):
filename = prefix + str(n).rjust(i, '0') + '.star'
if os.path.isfile(filename):
return filename
return None
def writeManualPickingGuiFile(my_part_diam):
if not os.path.isfile('.gui_manualpickrun.job'):
with open('.gui_manualpickrun.job', 'w') as g:
g.write("""job_type == 3
Pixel size (A) == -1
Black value: == 0
Blue value: == 0
MetaDataLabel for color: == rlnParticleSelectZScore
Scale for CTF image: == 1
Particle diameter (A): == {}
Blue<>red color particles? == No
Highpass filter (A) == -1
Lowpass filter (A) == 20
Scale for micrographs: == 0.2
Red value: == 2
Sigma contrast: == 3
White value: == 0
""".format(my_part_diam))
return
def findBestClass(model_star_file, use_resol=True):
model_star = safe_load_star(model_star_file)
best_resol = 999
best_size = 0
best_class = 0
for iclass in range(0, len(model_star['model_classes']['rlnReferenceImage'])):
mysize = float(model_star['model_classes']['rlnClassDistribution'][iclass])
myresol = float(model_star['model_classes']['rlnEstimatedResolution'][iclass])
if (not use_resol and (mysize > best_size or (mysize == best_size and myresol < best_resol))) \
or (use_resol and (myresol < best_resol or (myresol == best_resol and mysize > best_size))):
best_size = mysize
best_class = model_star['model_classes']['rlnReferenceImage'][iclass]
best_resol = myresol
print(" RELION_IT: found best class:",best_class,"with class size of",best_size,"and resolution of",best_resol)
return best_class, best_resol, model_star['model_general']['rlnPixelSize']
def findOutputModelStar(job_dir):
found = None
try:
job_star = safe_load_star(job_dir + "job_pipeline.star", expected=['pipeline_output_edges', 'rlnPipeLineEdgeToNode'])
for output_file in job_star["pipeline_output_edges"]['rlnPipeLineEdgeToNode']:
if output_file.endswith("_model.star"):
found = output_file
break
except:
pass
return found
def run_pipeline(opts):
"""
Configure and run the RELION 3 pipeline with the given options.
Args:
opts: options for the pipeline, as a RelionItOptions object.
"""
# if this really necessary? dont think so...
if (os.path.isfile(PIPELINE_STAR) == False):
g = open(PIPELINE_STAR,'w')
g.write('data_pipeline_general\n')
g.write('_rlnPipeLineJobCounter 1\n')
g.close()
# Write RUNNING_RELION_IT file, when deleted, this script will stop
with open(RUNNING_FILE, 'w'):
pass
# Write mainGUI project file, so GUI won't ask to set up a project
with open('.gui_projectdir', 'w'):
pass
#### Set up GUI file for Manualpick job to allow easy viewing of autopick results
if opts.autopick_do_LoG:
my_part_diam = opts.autopick_LoG_diam_min
else:
my_part_diam = opts.autopick_refs_min_distance
writeManualPickingGuiFile(my_part_diam)
### Prepare the list of queue arguments for later use
queue_options = ['Submit to queue? == Yes',
'Queue name: == {}'.format(opts.queue_name),
'Queue submit command: == {}'.format(opts.queue_submit_command),
'Standard submission script: == {}'.format(opts.queue_submission_template),
'Minimum dedicated cores per node: == {}'.format(opts.queue_minimum_dedicated)]
# If we're only doing motioncorr and ctf estimation, then forget about the second pass and the batch processing
if opts.stop_after_ctf_estimation:
opts.do_class2d = False
opts.do_class3d = False
opts.do_second_pass = False
if opts.do_second_pass:
nr_passes = 2
else:
nr_passes = 1
# if SECONDPASS_REF3D_FILE exists, go straight into the second pass
first_pass = 0
if opts.do_second_pass:
secondpass_ref3d, secondpass_ref3d_angpix = getSecondPassReference()
if not secondpass_ref3d == '':
print(' RELION_IT: found', secondpass_ref3d,'with angpix=',secondpass_ref3d_angpix,'as a 3D reference for second pass in file',SECONDPASS_REF3D_FILE)
print(' RELION_IT: if the automatic selection of the reference turned out to be unsatisfactory,')
print(' RELION_IT: you can re-run the second pass with another reference by:')
print(' RELION_IT: stopping the pipeline by deleting RUNNING_*')
print(' RELION_IT: updating the reference filename in',SECONDPASS_REF3D_FILE)
print(' RELION_IT: deleting relevant jobs (autopick2_job and followings) in',SETUP_CHECK_FILE)
print(' RELION_IT: and restarting the pipeline.')
first_pass = 1
opts.autopick_3dreference = secondpass_ref3d
opts.autopick_ref_angpix = secondpass_ref3d_angpix
opts.autopick_2dreferences = ''
opts.autopick_do_LoG = False
opts.class3d_reference = secondpass_ref3d
opts.have_3d_reference = True
# Allow to perform two passes through the entire pipeline (PREPROCESS and CLASS2D/3D batches)
# The second pass, a 3D reference generated in the first pass will be used for template-based autopicking
for ipass in range(first_pass, nr_passes):
#### Set up the Import job
import_options = ['Raw input files: == {}'.format(opts.import_images),
'Import raw movies/micrographs? == Yes',
'Pixel size (Angstrom): == {}'.format(opts.angpix),
'Voltage (kV): == {}'.format(opts.voltage),
'Spherical aberration (mm): == {}'.format(opts.Cs),
'Amplitude contrast: == {}'.format(opts.ampl_contrast)]
if opts.images_are_movies:
import_options.append('Are these multi-frame movies? == Yes')
else:
import_options.append('Are these multi-frame movies? == No')
import_job, already_had_it = addJob('Import','import_job', SETUP_CHECK_FILE, import_options)
if opts.images_are_movies:
#### Set up the MotionCor job
motioncorr_options = ['Input movies STAR file: == {}movies.star'.format(import_job),
'MOTIONCOR2 executable: == {}'.format(opts.motioncor_exe),
'Defect file: == {}'.format(opts.motioncor_defectfile),
'Gain-reference image: == {}'.format(opts.motioncor_gainreference),
'Gain flip: == {}'.format(opts.motioncor_gainflip),
'Gain rotation: == {}'.format(opts.motioncor_gainrot),
'Do dose-weighting? == Yes',
'Dose per frame (e/A2): == {}'.format(opts.motioncor_doseperframe),
'Number of patches X: == {}'.format(opts.motioncor_patches_x),
'Number of patches Y: == {}'.format(opts.motioncor_patches_y),
'Bfactor: == {}'.format(opts.motioncor_bfactor),
'Binning factor: == {}'.format(opts.motioncor_binning),
'Which GPUs to use: == {}'.format(opts.motioncor_gpu),
'Other MOTIONCOR2 arguments == {}'.format(opts.motioncor_other_args),
'Number of threads: == {}'.format(opts.motioncor_threads),
'Number of MPI procs: == {}'.format(opts.motioncor_mpi),
'Additional arguments: == --eer_upsampling {} --eer_grouping {}'.format(opts.eer_upsampling, opts.eer_grouping)]
if (opts.motioncor_do_own):
motioncorr_options.append('Use RELION\'s own implementation? == Yes')
if opts.use_ctffind_instead:
motioncorr_options.append('Save sum of power spectra? == Yes')
else:
motioncorr_options.append('Save sum of power spectra? == No')
else:
motioncorr_options.append('Use RELION\'s own implementation? == No')
if opts.motioncor_submit_to_queue:
motioncorr_options.extend(queue_options)
motioncorr_job, already_had_it = addJob('MotionCorr', 'motioncorr_job', SETUP_CHECK_FILE, motioncorr_options)
#### Set up the CtfFind job
ctffind_options = ['Amount of astigmatism (A): == {}'.format(opts.ctffind_astigmatism),
'FFT box size (pix): == {}'.format(opts.ctffind_boxsize),
'Maximum defocus value (A): == {}'.format(opts.ctffind_defocus_max),
'Minimum defocus value (A): == {}'.format(opts.ctffind_defocus_min),
'Defocus step size (A): == {}'.format(opts.ctffind_defocus_step),
'Maximum resolution (A): == {}'.format(opts.ctffind_maxres),
'Minimum resolution (A): == {}'.format(opts.ctffind_minres),
'Gctf executable: == {}'.format(opts.gctf_exe),
'Which GPUs to use: == {}'.format(opts.gctf_gpu),
'CTFFIND-4.1 executable: == {}'.format(opts.ctffind4_exe),
'Number of MPI procs: == {}'.format(opts.ctffind_mpi)]
if opts.images_are_movies:
ctffind_options.append('Input micrographs STAR file: == {}{}'.format(motioncorr_job, 'corrected_micrographs.star'))
else:
ctffind_options.append('Input micrographs STAR file: == {}{}'.format(import_job, 'micrographs.star'))
if opts.use_ctffind_instead:
ctffind_options.append('Use CTFFIND-4.1? == Yes')
ctffind_options.append('Use Gctf instead? == No')
ctffind_options.append('Use power spectra from MotionCorr job? == Yes')
else:
ctffind_options.append('Use CTFFIND-4.1? == No')
ctffind_options.append('Use Gctf instead? == Yes')
ctffind_options.append('Use power spectra from MotionCorr job? == No')
if (opts.ctffind_do_ignore_search_params):
ctffind_options.append('Ignore \'Searches\' parameters? == Yes')
else:
ctffind_options.append('Ignore \'Searches\' parameters? == No')
if (opts.ctffind_do_EPA):
ctffind_options.append('Perform equi-phase averaging? == Yes')
else:
ctffind_options.append('Perform equi-phase averaging? == No')
if opts.ctffind_do_phaseshift:
ctffind_options.append('Estimate phase shifts? == Yes')
else:
ctffind_options.append('Estimate phase shifts? == No')
if opts.ctffind_submit_to_queue:
ctffind_options.extend(queue_options)
ctffind_job, already_had_it = addJob('CtfFind', 'ctffind_job', SETUP_CHECK_FILE, ctffind_options)
runjobs = [import_job]
if opts.images_are_movies:
runjobs.append(motioncorr_job)
runjobs.append(ctffind_job)
# There is an option to stop on-the-fly processing after CTF estimation
if not opts.stop_after_ctf_estimation:
autopick_options = ['Input micrographs for autopick: == {}micrographs_ctf.star'.format(ctffind_job),
'Min. diameter for LoG filter (A) == {}'.format(opts.autopick_LoG_diam_min),
'Max. diameter for LoG filter (A) == {}'.format(opts.autopick_LoG_diam_max),
'Maximum resolution to consider (A) == {}'.format(opts.autopick_lowpass),
'Adjust default threshold (stddev): == {}'.format(opts.autopick_LoG_adjust_threshold),
'Upper threshold (stddev): == {}'.format(opts.autopick_LoG_upper_threshold),
'2D references: == {}'.format(opts.autopick_2dreferences),
'3D reference: == {}'.format(opts.autopick_3dreference),
'Symmetry: == {}'.format(opts.autopick_3dref_symmetry),
'Pixel size in references (A) == {}'.format(opts.autopick_ref_angpix),
'3D angular sampling: == {}'.format(opts.autopick_3dref_sampling),
'In-plane angular sampling (deg) == {}'.format(opts.autopick_inplane_sampling),
'Picking threshold: == {}'.format(opts.autopick_refs_threshold),
'Minimum inter-particle distance (A): == {}'.format(opts.autopick_refs_min_distance),
'Mask diameter (A) == {}'.format(opts.autopick_refs_mask_diam),
'Maximum stddev noise: == {}'.format(opts.autopick_stddev_noise),
'Minimum avg noise: == {}'.format(opts.autopick_avg_noise),
'Shrink factor: == {}'.format(opts.autopick_shrink_factor),
'Which GPUs to use: == {}'.format(opts.autopick_gpu),
'Additional arguments: == {}'.format(opts.autopick_other_args),
'Number of MPI procs: == {}'.format(opts.autopick_mpi)]
if not opts.autopick_3dreference == '':
autopick_options.append('OR: provide a 3D reference? == Yes')
else:
autopick_options.append('OR: provide a 3D reference? == No')
if opts.autopick_do_LoG:
autopick_options.append('OR: use Laplacian-of-Gaussian? == Yes')
else:
autopick_options.append('OR: use Laplacian-of-Gaussian? == No')
if opts.autopick_refs_are_ctf_corrected:
autopick_options.append('Are References CTF corrected? == Yes')
else:
autopick_options.append('Are References CTF corrected? == No')
if opts.autopick_refs_have_inverted_contrast:
autopick_options.append('References have inverted contrast? == Yes')
else:
autopick_options.append('References have inverted contrast? == No')
if opts.autopick_refs_ignore_ctf1stpeak:
autopick_options.append('Ignore CTFs until first peak? == Yes')
else:
autopick_options.append('Ignore CTFs until first peak? == No')
if opts.autopick_do_gpu and (not opts.autopick_do_LoG):
autopick_options.append('Use GPU acceleration? == Yes')
else:
autopick_options.append('Use GPU acceleration? == No')
if opts.autopick_submit_to_queue:
autopick_options.extend(queue_options)
if ipass == 0:
autopick_job_name = 'autopick_job'
autopick_alias = 'pass 1'
else:
autopick_job_name = 'autopick2_job'
autopick_alias = 'pass 2'
autopick_job, already_had_it = addJob('AutoPick', autopick_job_name, SETUP_CHECK_FILE, autopick_options, alias=autopick_alias)
runjobs.append(autopick_job)
#### Set up the Extract job
extract_options = ['Input coordinates: == {}coords_suffix_autopick.star'.format(autopick_job),
'micrograph STAR file: == {}micrographs_ctf.star'.format(ctffind_job),
'Diameter background circle (pix): == {}'.format(opts.extract_bg_diameter),
'Particle box size (pix): == {}'.format(opts.extract_boxsize),
'Number of MPI procs: == {}'.format(opts.extract_mpi)]
if ipass == 0:
if opts.extract_downscale:
extract_options.append('Rescale particles? == Yes')
extract_options.append('Re-scaled size (pixels): == {}'.format(opts.extract_small_boxsize))
else:
if opts.extract2_downscale:
extract_options.append('Rescale particles? == Yes')
extract_options.append('Re-scaled size (pixels): == {}'.format(opts.extract2_small_boxsize))
if opts.extract_submit_to_queue:
extract_options.extend(queue_options)
if ipass == 0:
extract_job_name = 'extract_job'
extract_alias = 'pass 1'
else:
extract_job_name = 'extract2_job'
extract_alias = 'pass 2'
extract_job, already_had_it = addJob('Extract', extract_job_name, SETUP_CHECK_FILE, extract_options, alias=extract_alias)
runjobs.append(extract_job)
if (ipass == 0 and (opts.do_class2d or opts.do_class3d)) or (ipass == 1 and (opts.do_class2d_pass2 or opts.do_class3d_pass2)):
#### Set up the Select job to split the particle STAR file into batches
split_options = ['OR select from particles.star: == {}particles.star'.format(extract_job),
'OR: split into subsets? == Yes',
'OR: number of subsets: == -1']
if ipass == 0:
split_job_name = 'split_job'
split_options.append('Subset size: == {}'.format(opts.batch_size))
split_alias = 'into {}'.format(opts.batch_size)
else:
split_job_name = 'split2_job'
split_options.append('Subset size: == {}'.format(opts.batch_size_pass2))
split_alias = 'into {}'.format(opts.batch_size_pass2)
split_job, already_had_it = addJob('Select', split_job_name, SETUP_CHECK_FILE, split_options, alias=split_alias)
# Now start running stuff
runjobs.append(split_job)
# Now execute the entire preprocessing pipeliner
if ipass == 0:
preprocess_schedule_name = PREPROCESS_SCHEDULE_PASS1
else:
preprocess_schedule_name = PREPROCESS_SCHEDULE_PASS2
RunJobs(runjobs, opts.preprocess_repeat_times, opts.preprocess_repeat_wait, preprocess_schedule_name)
print(' RELION_IT: submitted',preprocess_schedule_name,'pipeliner with', opts.preprocess_repeat_times,'repeats of the preprocessing jobs')
print(' RELION_IT: this pipeliner will run in the background of your shell. You can stop it by deleting the file RUNNING_PIPELINER_'+preprocess_schedule_name)
########## From now on, process extracted particles in batches for 2D or 3D classification, only perform SGD inimodel for first batch and if no 3D reference is available
# There is again an option to stop here...
if (ipass == 0 and (opts.do_class2d or opts.do_class3d)) or (ipass == 1 and (opts.do_class2d_pass2 or opts.do_class3d_pass2)):
### If necessary, rescale the 3D reference in the second pass!
# TODO: rescale initial reference if different from movies?
if ipass == 1 and (opts.extract_downscale or opts.extract2_downscale):
particles_angpix = opts.angpix
if opts.images_are_movies:
particles_angpix = particles_angpix * opts.motioncor_binning
if opts.extract2_downscale:
particles_angpix = particles_angpix * opts.extract_boxsize / opts.extract2_small_boxsize
particles_boxsize = opts.extract2_small_boxsize
else:
particles_boxsize = opts.extract_boxsize
if abs(float(particles_angpix) - float(opts.autopick_ref_angpix)) > 0.01:
# Now rescale the reference for 3D classification
opts.class3d_reference = opts.autopick_3dreference.replace('.mrc','_rescaled.mrc')
print(' RELION_IT: rescaling the 3D reference from pixel size',opts.autopick_ref_angpix,'to',particles_angpix,'and saving the new reference as',opts.class3d_reference)
command = 'relion_image_handler --i ' + opts.autopick_3dreference + ' --o ' + opts.class3d_reference + ' --angpix ' + str(opts.autopick_ref_angpix) + ' --rescale_angpix ' + str(particles_angpix) + ' --new_box ' + str(particles_boxsize)
os.system(command)
print(' RELION_IT: now entering an infinite loop for batch-processing of particles. You can stop this loop by deleting the file', RUNNING_FILE)
# It could be that this is a restart, so check previous_batch1_size in the output directory.
# Also check the presence of class2d_job_batch_001 in case the first job was not submitted yet.
first_split_file = find_split_job_output(split_job + 'particles_split', 1)
if getJobName("class2d_job_batch_001", SETUP_CHECK_FILE) is not None and \
first_split_file is not None:
batch1 = safe_load_star(first_split_file, expected=['particles', 'rlnMicrographName'])
previous_batch1_size = len(batch1['particles']['rlnMicrographName'])
else:
previous_batch1_size = 0
continue_this_pass = True
while continue_this_pass:
have_new_batch = False
nr_batches = len(glob.glob(split_job + "particles_split*.star"))
for ibatch in range(0, nr_batches):
iibatch = ibatch + 1
batch_name = find_split_job_output(split_job + "particles_split", iibatch)
batch = safe_load_star(batch_name, expected=['particles', 'rlnMicrographName'])
batch_size = len(batch['particles']['rlnMicrographName'])
rerun_batch1 = False
if ( iibatch == 1 and batch_size > previous_batch1_size and batch_size > opts.minimum_batch_size ):
previous_batch1_size = batch_size
rerun_batch1 = True
particles_star_file = batch_name
# The first batch is special: perform 2D classification with smaller batch size (but at least minimum_batch_size) and keep overwriting in the same output directory
if ( rerun_batch1 or batch_size == opts.batch_size):
# Discard particles with odd average/stddev values
if opts.do_discard_on_image_statistics:
#### Run a Select job to get rid of particles with outlier average/stddev values...
discard_options = ['OR select from particles.star: == {}'.format(batch_name),
'OR: select on image statistics? == Yes',
'Sigma-value for discarding images: == {}'.format(opts.discard_sigma),
'Metadata label for images: == rlnImageName']
if ipass == 0:
discard_job_name = 'discard_job'
else:
discard_job_name = 'discard2_job'
if opts.discard_submit_to_queue:
discard_options.extend(queue_options)
discard_job, already_had_it = addJob('Select', discard_job_name, SETUP_CHECK_FILE, discard_options)
if ((not already_had_it) or rerun_batch1):
have_new_batch = True
RunJobs([discard_job], 1, 1, 'DISCARD')
print(" RELION_IT: submitted job to discard based on image statistics for", batch_size ,"particles in", batch_name)
# Wait here until this Discard job is finished. Check every thirty seconds
WaitForJob(discard_job, 30)
particles_star_file = discard_job + 'particles.star'
# 2D classification
if (ipass == 0 and opts.do_class2d) or (ipass == 1 and opts.do_class2d_pass2):
class2d_options = ['Input images STAR file: == {}'.format(particles_star_file),
'Number of classes: == {}'.format(opts.class2d_nr_classes),
'Mask diameter (A): == {}'.format(opts.mask_diameter),
'Number of iterations: == {}'.format(opts.class2d_nr_iter),
'Angular search range - psi (deg): == {}'.format(opts.class2d_angle_step),
'Offset search range (pix): == {}'.format(opts.class2d_offset_range),
'Offset search step (pix): == {}'.format(opts.class2d_offset_step),
'Number of pooled particles: == {}'.format(opts.refine_nr_pool),
'Which GPUs to use: == {}'.format(opts.refine_gpu),
'Number of MPI procs: == {}'.format(opts.refine_mpi),
'Number of threads: == {}'.format(opts.refine_threads),
'Copy particles to scratch directory: == {}'.format(opts.refine_scratch_disk),
'Additional arguments: == {}'.format(opts.class2d_other_args)]
if batch_size > opts.refine_batchsize_for_fast_subsets:
class2d_options.append('Use fast subsets (for large data sets)? == Yes')
else:
class2d_options.append('Use fast subsets (for large data sets)? == No')
if opts.refine_do_gpu:
class2d_options.append('Use GPU acceleration? == Yes')
else:
class2d_options.append('Use GPU acceleration? == No')
if opts.class2d_ctf_ign1stpeak:
class2d_options.append('Ignore CTFs until first peak? == Yes')
else:
class2d_options.append('Ignore CTFs until first peak? == No')
if opts.refine_preread_images:
class2d_options.append('Pre-read all particles into RAM? == Yes')
else:
class2d_options.append('Pre-read all particles into RAM? == No')
if opts.refine_submit_to_queue:
class2d_options.extend(queue_options)
if ipass == 0:
jobname = 'class2d_job_batch_{:03d}'.format(iibatch)
alias = 'pass1_batch_{:03d}'.format(iibatch)
else:
jobname = 'class2d_pass2_job_batch_{:03d}'.format(iibatch)
alias = 'pass2_batch_{:03d}'.format(iibatch)
class2d_job, already_had_it = addJob('Class2D', jobname, SETUP_CHECK_FILE, class2d_options, alias=alias)
if ((not already_had_it) or rerun_batch1):
have_new_batch = True
RunJobs([class2d_job], 1, 1, 'CLASS2D')
print(" RELION_IT: submitted 2D classification with", batch_size ,"particles in", class2d_job)
# Wait here until this Class2D job is finished. Check every thirty seconds
WaitForJob(class2d_job, 30)
# Perform 3D classification
if (ipass == 0 and opts.do_class3d) or (ipass == 1 and opts.do_class3d_pass2):
# Do SGD initial model generation only in the first pass, when no reference is provided AND only for the first (complete) batch, for subsequent batches use that model
if (not opts.have_3d_reference) and ipass == 0 and iibatch == 1 and batch_size == opts.batch_size:
inimodel_options = ['Input images STAR file: == {}'.format(particles_star_file),
'Symmetry: == {}'.format(opts.symmetry),
'Mask diameter (A): == {}'.format(opts.mask_diameter),
'Number of classes: == {}'.format(opts.inimodel_nr_classes),
'Initial angular sampling: == {}'.format(opts.inimodel_angle_step),
'Offset search range (pix): == {}'.format(opts.inimodel_offset_range),
'Offset search step (pix): == {}'.format(opts.inimodel_offset_step),
'Number of initial iterations: == {}'.format(opts.inimodel_nr_iter_initial),
'Number of in-between iterations: == {}'.format(opts.inimodel_nr_iter_inbetween),
'Number of final iterations: == {}'.format(opts.inimodel_nr_iter_final),
'Write-out frequency (iter): == {}'.format(opts.inimodel_freq_writeout),
'Initial resolution (A): == {}'.format(opts.inimodel_resol_ini),
'Final resolution (A): == {}'.format(opts.inimodel_resol_final),
'Initial mini-batch size: == {}'.format(opts.inimodel_batchsize_ini),
'Final mini-batch size: == {}'.format(opts.inimodel_batchsize_final),
'Increased noise variance half-life: == {}'.format(opts.inimodel_sigmafudge_halflife),
'Number of pooled particles: == 1',
'Which GPUs to use: == {}'.format(opts.refine_gpu),
'Number of MPI procs: == {}'.format(opts.refine_mpi),
'Number of threads: == {}'.format(opts.refine_threads),
'Copy particles to scratch directory: == {}'.format(opts.refine_scratch_disk),
'Additional arguments: == {}'.format(opts.inimodel_other_args)]
if opts.inimodel_solvent_flatten:
inimodel_options.append('Flatten and enforce non-negative solvent? == Yes')
else:
inimodel_options.append('Flatten and enforce non-negative solvent? == No')
if opts.refine_skip_padding:
inimodel_options.append('Skip padding? == Yes')
else:
inimodel_options.append('Skip padding? == No')
if opts.refine_do_gpu:
inimodel_options.append('Use GPU acceleration? == Yes')
else:
inimodel_options.append('Use GPU acceleration? == No')
if opts.inimodel_ctf_ign1stpeak:
inimodel_options.append('Ignore CTFs until first peak? == Yes')
else:
inimodel_options.append('Ignore CTFs until first peak? == No')
if opts.refine_preread_images:
inimodel_options.append('Pre-read all particles into RAM? == Yes')
else:
inimodel_options.append('Pre-read all particles into RAM? == No')
if opts.refine_submit_to_queue:
inimodel_options.extend(queue_options)
inimodel_job, already_had_it = addJob('InitialModel', 'inimodel', SETUP_CHECK_FILE, inimodel_options)
if (not already_had_it):
have_new_batch = True
RunJobs([inimodel_job], 1, 1, 'INIMODEL')
print(" RELION_IT: submitted initial model generation with", batch_size ,"particles in", inimodel_job)
# Wait here until this inimodel job is finished. Check every thirty seconds
WaitForJob(inimodel_job, 30)
sgd_model_star = findOutputModelStar(inimodel_job)
if sgd_model_star is None:
print(" RELION_IT: Initial model generation " + inimodel_job + " does not contain expected output maps.")
print(" RELION_IT: This job should have finished, but you may continue it from the GUI.")
raise Exception("ERROR!! quitting the pipeline.") # TODO: MAKE MORE ROBUST
# Use the model of the largest class for the 3D classification below
total_iter = opts.inimodel_nr_iter_initial + opts.inimodel_nr_iter_inbetween + opts.inimodel_nr_iter_final
best_inimodel_class, best_inimodel_resol, best_inimodel_angpix = findBestClass(sgd_model_star, use_resol=True)
opts.class3d_reference = best_inimodel_class
opts.class3d_ref_is_correct_greyscale = True
opts.class3d_ref_is_ctf_corrected = True
opts.have_3d_reference = True
if opts.have_3d_reference:
# Now perform the actual 3D classification
class3d_options = ['Input images STAR file: == {}'.format(particles_star_file),
'Reference map: == {}'.format(opts.class3d_reference),
'Initial low-pass filter (A): == {}'.format(opts.class3d_ini_lowpass),
'Symmetry: == {}'.format(opts.symmetry),
'Regularisation parameter T: == {}'.format(opts.class3d_T_value),
'Reference mask (optional): == {}'.format(opts.class3d_reference_mask),
'Number of classes: == {}'.format(opts.class3d_nr_classes),
'Mask diameter (A): == {}'.format(opts.mask_diameter),
'Number of iterations: == {}'.format(opts.class3d_nr_iter),
'Angular sampling interval: == {}'.format(opts.class3d_angle_step),
'Offset search range (pix): == {}'.format(opts.class3d_offset_range),
'Offset search step (pix): == {}'.format(opts.class3d_offset_step),
'Number of pooled particles: == {}'.format(opts.refine_nr_pool),
'Which GPUs to use: == {}'.format(opts.refine_gpu),
'Number of MPI procs: == {}'.format(opts.refine_mpi),
'Number of threads: == {}'.format(opts.refine_threads),
'Copy particles to scratch directory: == {}'.format(opts.refine_scratch_disk),
'Additional arguments: == {}'.format(opts.class3d_other_args)]
if batch_size > opts.refine_batchsize_for_fast_subsets:
class3d_options.append('Use fast subsets (for large data sets)? == Yes')
else:
class3d_options.append('Use fast subsets (for large data sets)? == No')
if opts.class3d_ref_is_correct_greyscale:
class3d_options.append('Ref. map is on absolute greyscale? == Yes')
else:
class3d_options.append('Ref. map is on absolute greyscale? == No')
if opts.class3d_ref_is_ctf_corrected:
class3d_options.append('Has reference been CTF-corrected? == Yes')
else:
class3d_options.append('Has reference been CTF-corrected? == No')
if opts.refine_skip_padding:
class3d_options.append('Skip padding? == Yes')
else:
class3d_options.append('Skip padding? == No')
if opts.refine_do_gpu:
class3d_options.append('Use GPU acceleration? == Yes')
else:
class3d_options.append('Use GPU acceleration? == No')
if opts.class3d_ctf_ign1stpeak:
class3d_options.append('Ignore CTFs until first peak? == Yes')
else:
class3d_options.append('Ignore CTFs until first peak? == No')
if opts.refine_preread_images:
class3d_options.append('Pre-read all particles into RAM? == Yes')
else:
class3d_options.append('Pre-read all particles into RAM? == No')
if opts.refine_submit_to_queue:
class3d_options.extend(queue_options)
if ipass == 0:
jobname = 'class3d_job_batch_{:03d}'.format(iibatch)
alias = 'pass1_batch_{:03d}'.format(iibatch)
else:
jobname = 'class3d2_job_batch_{:03d}'.format(iibatch)
alias = 'pass2_batch_{:03d}'.format(iibatch)
class3d_job, already_had_it = addJob('Class3D', jobname, SETUP_CHECK_FILE, class3d_options, alias=alias)
if ((not already_had_it) or rerun_batch1):
have_new_batch = True
RunJobs([class3d_job], 1, 1, 'CLASS3D')
print(' RELION_IT: submitted 3D classification with', batch_size ,'particles in', class3d_job)
# Wait here until this Class2D job is finished. Check every thirty seconds
WaitForJob(class3d_job, 30)
class3d_model_star = findOutputModelStar(class3d_job)
if class3d_model_star is None:
print(" RELION_IT: 3D Classification " + class3d_job + " does not contain expected output maps.")
print(" RELION_IT: This job should have finished, but you may continue it from the GUI.")
raise Exception("ERROR!! quitting the pipeline.") # TODO: MAKE MORE ROBUST
best_class3d_class, best_class3d_resol, best_class3d_angpix = findBestClass(class3d_model_star, use_resol=True)
# Once the first batch in the first pass is completed: move on to the second pass
if (ipass == 0 and opts.do_second_pass and iibatch == 1 and best_class3d_resol < opts.minimum_resolution_3dref_2ndpass):
opts.autopick_3dreference = best_class3d_class
opts.autopick_ref_angpix = best_class3d_angpix
opts.autopick_2dreferences = ''
opts.autopick_do_LoG = False
opts.class3d_reference = best_class3d_class
opts.have_3d_reference = True
opts.autopick_3dref_symmetry = opts.symmetry
# Stop the PREPROCESS pipeliner of the first pass by removing its RUNNING file
filename_to_remove = 'RUNNING_PIPELINER_'+preprocess_schedule_name
if os.path.isfile(filename_to_remove):
print(' RELION_IT: removing file',filename_to_remove,'to stop the pipeliner from the first pass')
os.remove(filename_to_remove)
# Generate a file to indicate we're in the second pass, so that restarts of the python script will be smooth
g = open(SECONDPASS_REF3D_FILE,'w')
g.write(str(best_class3d_class)+'\n'+str(best_class3d_angpix)+'\n')
g.close()
# Move out of this ipass of the passes loop....
ibatch = nr_batches+1
continue_this_pass = False
print(' RELION_IT: moving on to the second pass using',opts.autopick_3dreference,'for template-based autopicking')
# break out of the for-loop over the batches
break
if not have_new_batch:
CheckForExit()
# The following prevents checking the particles.star file too often
time.sleep(60*opts.batch_repeat_time)
def main():
"""
Run the RELION 3 pipeline.
Options files given as command line arguments will be opened in order and
used to update the default options.
"""
# Start by parsing arguments
# (If --help is given, the program will print a usage message and exit)
parser = argparse.ArgumentParser()
parser.add_argument("extra_options", nargs="*", metavar="extra_options.py",
help="Python files containing options for relion_it.py")
parser.add_argument("--gui", action="store_true", help="launch a simple GUI to set options")
parser.add_argument("--continue", action="store_true", dest="continue_",
help="continue a previous run by loading options from ./relion_it_options.py")
args = parser.parse_args()
print(' RELION_IT: -------------------------------------------------------------------------------------------------------------------')
print(' RELION_IT: script for automated, on-the-fly single-particle analysis in RELION (>= 3.1)')
print(' RELION_IT: authors: Sjors H.W. Scheres, Takanori Nakane & Colin M. Palmer')
print(' RELION_IT: ')
print(' RELION_IT: usage: ./relion_it.py [extra_options.py [extra_options2.py ....] ] [--gui] [--continue]')
print(' RELION_IT: ')
print(' RELION_IT: this script will check whether processes are still running using files with names starting with RUNNING')
print(' RELION_IT: you can restart this script after stopping previous processes by deleting all RUNNING files')
print(' RELION_IT: this script keeps track of already submitted jobs in a filed called',SETUP_CHECK_FILE)
print(' RELION_IT: upon a restart, jobs present in this file will be continued (for preprocessing), or ignored when already finished')
print(' RELION_IT: if you would like to re-do a specific job from scratch (e.g. because you changed its parameters)')
print(' RELION_IT: remove that job, and those that depend on it, from the',SETUP_CHECK_FILE)
print(' RELION_IT: -------------------------------------------------------------------------------------------------------------------')
print(' RELION_IT: ')
# Make sure no other version of this script are running...
if os.path.isfile(RUNNING_FILE):
print(" RELION_IT: ERROR:", RUNNING_FILE, "is already present: delete this file and make sure no other copy of this script is running. Exiting now ...")
exit(0)
# Also make sure the preprocessing pipeliners are stopped before re-starting this script
for checkfile in ('RUNNING_PIPELINER_'+PREPROCESS_SCHEDULE_PASS1, 'RUNNING_PIPELINER_'+PREPROCESS_SCHEDULE_PASS2):
if os.path.isfile(checkfile):
print(" RELION_IT: ERROR:", checkfile, "is already present: delete this file and make sure no relion_pipeliner job is still running. Exiting now ...")
exit(0)
if args.continue_:
print(' RELION_IT: continuing a previous run. Options will be loaded from ./relion_it_options.py')
args.extra_options.append(OPTIONS_FILE)
opts = RelionItOptions()
for user_opt_file in args.extra_options:
print(' RELION_IT: reading options from {}'.format(user_opt_file))
user_opts = runpy.run_path(user_opt_file)
opts.update_from(user_opts)
if args.gui:
print(' RELION_IT: launching GUI...')
tk_root = tk.Tk()
tk_root.title("relion_it.py setup")
RelionItGui(tk_root, opts)
tk_root.mainloop()
else:
run_pipeline(opts)
if __name__ == "__main__":
main()
|