File: moon.c

package info (click to toggle)
remind 03.03.01-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,096 kB
  • sloc: ansic: 17,507; sh: 3,962; perl: 828; lisp: 343; makefile: 178
file content (578 lines) | stat: -rw-r--r-- 21,138 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/***************************************************************/
/*                                                             */
/*  MOON.C                                                     */
/*                                                             */
/*  Calculations for figuring out moon phases.                 */
/*                                                             */
/*  This file is part of REMIND.                               */
/*  Copyright (C) 1992-2020 by Dianne Skoll                    */
/*                                                             */
/***************************************************************/

#include "config.h"

/* All of these routines were adapted from the program "moontool"
   by John Walker, February 1988.  Here's the blurb from moontool:

   ... The information is generally accurate to within ten
   minutes.

   The algorithms used in this program to calculate the positions Sun and
   Moon as seen from the Earth are given in the book "Practical Astronomy
   With Your Calculator" by Peter Duffett-Smith, Second Edition,
   Cambridge University Press, 1981. Ignore the word "Calculator" in the
   title; this is an essential reference if you're interested in
   developing software which calculates planetary positions, orbits,
   eclipses, and the like. If you're interested in pursuing such
   programming, you should also obtain:

   "Astronomical Formulae for Calculators" by Jean Meeus, Third Edition,
   Willmann-Bell, 1985. A must-have.

   "Planetary Programs and Tables from -4000 to +2800" by Pierre
   Bretagnon and Jean-Louis Simon, Willmann-Bell, 1986. If you want the
   utmost (outside of JPL) accuracy for the planets, it's here.

   "Celestial BASIC" by Eric Burgess, Revised Edition, Sybex, 1985. Very
   cookbook oriented, and many of the algorithms are hard to dig out of
   the turgid BASIC code, but you'll probably want it anyway.

   Many of these references can be obtained from Willmann-Bell, P.O. Box
   35025, Richmond, VA 23235, USA. Phone: (804) 320-7016. In addition
   to their own publications, they stock most of the standard references
   for mathematical and positional astronomy.

   This program was written by:

      John Walker
      Autodesk, Inc.
      2320 Marinship Way
      Sausalito, CA 94965
      (415) 332-2344 Ext. 829

      Usenet: {sun!well}!acad!kelvin

   This program is in the public domain: "Do what thou wilt shall be the
   whole of the law". I'd appreciate receiving any bug fixes and/or
   enhancements, which I'll incorporate in future versions of the
   program. Please leave the original attribution information intact so
   that credit and blame may be properly apportioned.

*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include "types.h"
#include "protos.h"
#include "expr.h"
#include "globals.h"
#include "err.h"

/* Function prototypes */
static long jdate (int y, int mon, int day);
static double jtime (int y, int mon, int day, int hour, int min, int sec);
static void jyear (double td, int *yy, int *mm, int *dd);
static void jhms (double j, int *h, int *m, int *s);
static double meanphase (double sdate, double phase, double *usek);
static double truephase (double k, double phase);
static double kepler (double m, double ecc);
static double phase (double, double *, double *, double *, double *, double *, double *);


/*  Astronomical constants  */

#define epoch	    2444238.5	   /* 1980 January 0.0 */

/*  Constants defining the Sun's apparent orbit  */

#define elonge	    278.833540	   /* Ecliptic longitude of the Sun
				      at epoch 1980.0 */
#define elongp	    282.596403	   /* Ecliptic longitude of the Sun at
				      perigee */
#define eccent      0.016718       /* Eccentricity of Earth's orbit */
#define sunsmax     1.495985e8     /* Semi-major axis of Earth's orbit, km */
#define sunangsiz   0.533128       /* Sun's angular size, degrees, at
				      semi-major axis distance */

/*  Elements of the Moon's orbit, epoch 1980.0  */

#define mmlong      64.975464      /* Moon's mean lonigitude at the epoch */
#define mmlongp     349.383063	   /* Mean longitude of the perigee at the
				      epoch */
#define mlnode	    151.950429	   /* Mean longitude of the node at the
				      epoch */
#define minc        5.145396       /* Inclination of the Moon's orbit */
#define mecc        0.054900       /* Eccentricity of the Moon's orbit */
#define mangsiz     0.5181         /* Moon's angular size at distance a
				      from Earth */
#define msmax       384401.0       /* Semi-major axis of Moon's orbit in km */
#define mparallax   0.9507	   /* Parallax at distance a from Earth */
#define synmonth    29.53058868    /* Synodic month (new Moon to new Moon) */
#define lunatbase   2423436.0      /* Base date for E. W. Brown's numbered
				      series of lunations (1923 January 16) */

/*  Properties of the Earth  */

#define earthrad    6378.16	   /* Radius of Earth in kilometres */
#ifdef PI
#undef PI
#endif

#define PI 3.14159265358979323846

/*  Handy mathematical functions  */

#ifdef sgn
#undef sgn
#endif
#define sgn(x) (((x) < 0) ? -1 : ((x) > 0 ? 1 : 0))	  /* Extract sign */

#ifdef abs
#undef abs
#endif
#define abs(x) ((x) < 0 ? (-(x)) : (x)) 		  /* Absolute val */

#define fixangle(a) ((a) - 360.0 * (floor((a) / 360.0)))  /* Fix angle	  */
#define torad(d) ((d) * (PI / 180.0))			  /* Deg->Rad	  */
#define todeg(d) ((d) * (180.0 / PI))			  /* Rad->Deg	  */
#define dsin(x) (sin(torad((x))))			  /* Sin from deg */
#define dcos(x) (cos(torad((x))))			  /* Cos from deg */

/***************************************************************/
/*                                                             */
/*  jdate                                                      */
/*                                                             */
/*  Convert a date and time to Julian day and fraction.        */
/*                                                             */
/***************************************************************/
static long jdate(int y, int mon, int day)
{
    long c, m;

    m = mon+1;
    if (m>2) {
	m -= 3;
    } else {
	m += 9;
	y--;
    }
    c = y/100L;   /* Century */
    y -= 100L * c;
    return day + (c*146097L)/4 + (y*1461L)/4 + (m*153L+2)/5 + 1721119L;
}

/***************************************************************/
/*                                                             */
/*  jtime                                                      */
/*                                                             */
/*  Convert a GMT date and time to astronomical Julian time,   */
/*  i.e. Julian date plus day fraction, expressed as a double  */
/*                                                             */
/***************************************************************/
static double jtime(int y, int mon, int day, int hour, int min, int sec)
{
    return (jdate(y, mon, day)-0.5) +
	(sec + 60L * (long) min + 3600L * (long) hour) / 86400.0;
}

/***************************************************************/
/*                                                             */
/*  jyear                                                      */
/*                                                             */
/*  Convert a Julian date to year, month, day.                 */
/*                                                             */
/***************************************************************/
static void jyear(double td, int *yy, int *mm, int *dd)
{
    double j, d, y, m;

    td += 0.5;         /* Astronomical to civil */
    j = floor(td);
    j = j - 1721119.0;
    y = floor(((4 * j) - 1) / 146097.0);
    j = (j * 4.0) - (1.0 + (146097.0 * y));
    d = floor(j / 4.0);
    j = floor(((4.0 * d) + 3.0) / 1461.0);
    d = ((4.0 * d) + 3.0) - (1461.0 * j);
    d = floor((d + 4.0) / 4.0);
    m = floor(((5.0 * d) - 3) / 153.0);
    d = (5.0 * d) - (3.0 + (153.0 * m));
    d = floor((d + 5.0) / 5.0);
    y = (100.0 * y) + j;
    if (m < 10.0)
	m = m + 2;
    else {
	m = m - 10;
	y = y + 1;
    }
    *yy = y;
    *mm = m;
    *dd = d;
}

/***************************************************************/
/*                                                             */
/*  jhms                                                       */
/*                                                             */
/*  Convert a Julian time to hour, minutes and seconds.        */
/*                                                             */
/***************************************************************/
static void jhms(double j, int *h, int *m, int *s)
{
    long ij;

    j += 0.5;         /* Astronomical to civil */
    ij = (j - floor(j)) * 86400.0;
    *h = ij / 3600L;
    *m = (ij / 60L) % 60L;
    *s = ij % 60L;
}

/***************************************************************/
/*                                                             */
/*  meanphase                                                  */
/*                                                             */
/*  Calculates mean phase of the Moon for a                    */
/*  given base date and desired phase:			       */
/*     0.0   New Moon					       */
/*     0.25  First quarter				       */
/*     0.5   Full moon					       */
/*     0.75  Last quarter				       */
/*  Beware!!!  This routine returns meaningless		       */
/*  results for any other phase arguments.  Don't	       */
/*  attempt to generalise it without understanding	       */
/*  that the motion of the moon is far more complicated	       */
/*  than this calculation reveals.			       */
/*                                                             */
/***************************************************************/
static double meanphase(double sdate, double phase, double *usek)
{
    double k, t, t2, t3, nt1;

/*** The following was the original code:  It gave roundoff errors
  causing moonphase info to fail for Dec 1994.  ***/
/*    jyear(sdate, &yy, &mm, &dd);
      k = (yy + (mm/12.0) - 1900) * 12.368531; */

/*** The next line is the replacement ***/
    k = (sdate - 2415020.0) / synmonth;

    /* Time in Julian centuries from 1900 January 0.5 */
    t = (sdate - 2415020.0) / 36525.0;
    t2 = t * t;		   /* Square for frequent use */
    t3 = t2 * t;		   /* Cube for frequent use */

    *usek = k = floor(k) + phase;
    nt1 = 2415020.75933 + synmonth * k
	+ 0.0001178 * t2
	- 0.000000155 * t3
	+ 0.00033 * dsin(166.56 + 132.87 * t - 0.009173 * t2);

    return nt1;
}

/***************************************************************/
/*                                                             */
/*  truephase                                                  */
/*                                                             */
/*  Given a K value used to determine the                      */
/*  mean phase of the new moon, and a phase                    */
/*  selector (0.0, 0.25, 0.5, 0.75), obtain                    */
/*  the true, corrected phase time.                            */
/*                                                             */
/***************************************************************/
static double truephase(double k, double phase)
{
    double t, t2, t3, pt, m, mprime, f;
    int apcor = 0;

    k += phase;		   /* Add phase to new moon time */
    t = k / 1236.8531;	   /* Time in Julian centuries from
   			      1900 January 0.5 */
    t2 = t * t;		   /* Square for frequent use */
    t3 = t2 * t;		   /* Cube for frequent use */
    pt = 2415020.75933	   /* Mean time of phase */
        + synmonth * k
        + 0.0001178 * t2
        - 0.000000155 * t3
        + 0.00033 * dsin(166.56 + 132.87 * t - 0.009173 * t2);

    m = 359.2242               /* Sun's mean anomaly */
	+ 29.10535608 * k
	- 0.0000333 * t2
	- 0.00000347 * t3;
    mprime = 306.0253          /* Moon's mean anomaly */
	+ 385.81691806 * k
	+ 0.0107306 * t2
	+ 0.00001236 * t3;
    f = 21.2964                /* Moon's argument of latitude */
	+ 390.67050646 * k
	- 0.0016528 * t2
	- 0.00000239 * t3;
    if ((phase < 0.01) || (abs(phase - 0.5) < 0.01)) {

	/* Corrections for New and Full Moon */

	pt +=     (0.1734 - 0.000393 * t) * dsin(m)
   	    + 0.0021 * dsin(2 * m)
   	    - 0.4068 * dsin(mprime)
   	    + 0.0161 * dsin(2 * mprime)
   	    - 0.0004 * dsin(3 * mprime)
   	    + 0.0104 * dsin(2 * f)
   	    - 0.0051 * dsin(m + mprime)
   	    - 0.0074 * dsin(m - mprime)
   	    + 0.0004 * dsin(2 * f + m)
   	    - 0.0004 * dsin(2 * f - m)
   	    - 0.0006 * dsin(2 * f + mprime)
   	    + 0.0010 * dsin(2 * f - mprime)
   	    + 0.0005 * dsin(m + 2 * mprime);
	apcor = 1;
    } else if ((abs(phase - 0.25) < 0.01 || (abs(phase - 0.75) < 0.01))) {
	pt +=     (0.1721 - 0.0004 * t) * dsin(m)
   	    + 0.0021 * dsin(2 * m)
   	    - 0.6280 * dsin(mprime)
   	    + 0.0089 * dsin(2 * mprime)
   	    - 0.0004 * dsin(3 * mprime)
   	    + 0.0079 * dsin(2 * f)
   	    - 0.0119 * dsin(m + mprime)
   	    - 0.0047 * dsin(m - mprime)
   	    + 0.0003 * dsin(2 * f + m)
   	    - 0.0004 * dsin(2 * f - m)
   	    - 0.0006 * dsin(2 * f + mprime)
   	    + 0.0021 * dsin(2 * f - mprime)
   	    + 0.0003 * dsin(m + 2 * mprime)
   	    + 0.0004 * dsin(m - 2 * mprime)
   	    - 0.0003 * dsin(2 * m + mprime);
	if (phase < 0.5)
	    /* First quarter correction */
	    pt += 0.0028 - 0.0004 * dcos(m) + 0.0003 * dcos(mprime);
	else
	    /* Last quarter correction */
	    pt += -0.0028 + 0.0004 * dcos(m) - 0.0003 * dcos(mprime);
	apcor = 1;
    }
    if (!apcor) return 0.0;
    return pt;
}

/***************************************************************/
/*                                                             */
/*  kepler                                                     */
/*                                                             */
/*  Solve the equation of Kepler.                              */
/*                                                             */
/***************************************************************/
static double kepler(double m, double ecc)
{
    double e, delta;
#define EPSILON 1E-6

    e = m = torad(m);
    do {
	delta = e - ecc * sin(e) - m;
	e -= delta / (1 - ecc * cos(e));
    } while (abs(delta) > EPSILON);
    return e;
}
/***************************************************************/
/*                                                             */
/*  PHASE  --  Calculate phase of moon as a fraction:          */
/*                                                             */
/*   The argument is the time for which the phase is   	       */
/*   Requested, expressed as a Julian date and		       */
/*   fraction.  Returns the terminator phase angle as a	       */
/*   percentage of a full circle (i.e., 0 to 1), and	       */
/*   stores into pointer arguments the illuminated	       */
/*   fraction of the Moon's disc, the Moon's age in	       */
/*   days and fraction, the distance of the Moon from	       */
/*   the centre of the Earth, and the angular diameter	       */
/*   subtended by the Moon as seen by an observer at	       */
/*   the centre of the Earth.				       */
/*                                                             */
/***************************************************************/
static double phase(double pdate,
		    double *pphase,
		    double *mage,
		    double *dist,
		    double *angdia,
		    double *sudist,
		    double *suangdia)
{

    double Day, N, M, Ec, Lambdasun, ml, MM, MN, Ev, Ae, A3, MmP,
	mEc, A4, lP, V, lPP, NP, y, x, Lambdamoon,
	MoonAge, MoonPhase,
	MoonDist, MoonDFrac, MoonAng,
	F, SunDist, SunAng;

    /* Calculation of the Sun's position */

    Day = pdate - epoch;	    /* Date within epoch */
    N = fixangle((360 / 365.2422) * Day); /* Mean anomaly of the Sun */
    M = fixangle(N + elonge - elongp);    /* Convert from perigee
					     co-ordinates to epoch 1980.0 */
    Ec = kepler(M, eccent);     /* Solve equation of Kepler */
    Ec = sqrt((1 + eccent) / (1 - eccent)) * tan(Ec / 2);
    Ec = 2 * todeg(atan(Ec));   /* 1 anomaly */
    Lambdasun = fixangle(Ec + elongp);  /* Sun's geocentric ecliptic
					   longitude */
    /* Orbital distance factor */
    F = ((1 + eccent * cos(torad(Ec))) / (1 - eccent * eccent));
    SunDist = sunsmax / F;	    /* Distance to Sun in km */
    SunAng = F * sunangsiz;     /* Sun's angular size in degrees */


    /* Calculation of the Moon's position */

    /* Moon's mean longitude */
    ml = fixangle(13.1763966 * Day + mmlong);

    /* Moon's mean anomaly */
    MM = fixangle(ml - 0.1114041 * Day - mmlongp);

    /* Moon's ascending node mean longitude */
    MN = fixangle(mlnode - 0.0529539 * Day);

    /* Evection */
    Ev = 1.2739 * sin(torad(2 * (ml - Lambdasun) - MM));

    /* Annual equation */
    Ae = 0.1858 * sin(torad(M));

    /* Correction term */
    A3 = 0.37 * sin(torad(M));

    /* Corrected anomaly */
    MmP = MM + Ev - Ae - A3;

    /* Correction for the equation of the centre */
    mEc = 6.2886 * sin(torad(MmP));

    /* Another correction term */
    A4 = 0.214 * sin(torad(2 * MmP));

    /* Corrected longitude */
    lP = ml + Ev + mEc - Ae + A4;

    /* Variation */
    V = 0.6583 * sin(torad(2 * (lP - Lambdasun)));

    /* 1 longitude */
    lPP = lP + V;

    /* Corrected longitude of the node */
    NP = MN - 0.16 * sin(torad(M));

    /* Y inclination coordinate */
    y = sin(torad(lPP - NP)) * cos(torad(minc));

    /* X inclination coordinate */
    x = cos(torad(lPP - NP));

    /* Ecliptic longitude */
    Lambdamoon = todeg(atan2(y, x));
    Lambdamoon += NP;

    /* Calculation of the phase of the Moon */

    /* Age of the Moon in degrees */
    MoonAge = lPP - Lambdasun;

    /* Phase of the Moon */
    MoonPhase = (1 - cos(torad(MoonAge))) / 2;

    /* Calculate distance of moon from the centre of the Earth */

    MoonDist = (msmax * (1 - mecc * mecc)) /
	(1 + mecc * cos(torad(MmP + mEc)));

    /* Calculate Moon's angular diameter */

    MoonDFrac = MoonDist / msmax;
    MoonAng = mangsiz / MoonDFrac;

    if(pphase)   *pphase = MoonPhase;
    if(mage)     *mage = synmonth * (fixangle(MoonAge) / 360.0);
    if(dist)     *dist = MoonDist;
    if(angdia)   *angdia = MoonAng;
    if(sudist)   *sudist = SunDist;
    if(suangdia) *suangdia = SunAng;
    return fixangle(MoonAge) / 360.0;
}

/***************************************************************/
/*                                                             */
/*  MoonPhase                                                  */
/*                                                             */
/*  Interface routine dealing in Remind representations.       */
/*  Given a local date and time, returns the moon phase at     */
/*  that date and time as a number from 0 to 360.              */
/*                                                             */
/***************************************************************/
int MoonPhase(int date, int time)
{
    int utcd, utct;
    int y, m, d;
    double jd, mp;

    /* Convert from local to UTC */
    LocalToUTC(date, time, &utcd, &utct);

    /* Convert from Remind representation to year/mon/day */
    FromJulian(utcd, &y, &m, &d);

    /* Convert to a true Julian date -- sorry for the name clashes! */
    jd = jtime(y, m, d, (utct / 60), (utct % 60), 0);   

    /* Calculate moon phase */
    mp = 360.0 * phase(jd, NULL, NULL, NULL, NULL, NULL, NULL);
    return (int) mp;
}

/***************************************************************/
/*                                                             */
/*  HuntPhase                                                  */
/*                                                             */
/*  Given a starting date and time and a target phase, find    */
/*  the first date on or after the starting date and time when */
/*  the moon hits the specified phase.  Phase must be from     */
/*  0 to 3 for new, 1stq, full, 3rdq                           */
/*                                                             */
/***************************************************************/
void HuntPhase(int startdate, int starttim, int phas, int *date, int *time)
{
    int utcd, utct;
    int y, m, d;
    int h, min, s;
    int d1, t1;
    double k1, k2, jd, jdorig;
    double nt1, nt2;

    /* Convert from local to UTC */
    LocalToUTC(startdate, starttim, &utcd, &utct);

    /* Convert from Remind representation to year/mon/day */
    FromJulian(utcd, &y, &m, &d);
    /* Convert to a true Julian date -- sorry for the name clashes! */
    jdorig = jtime(y, m, d, (utct / 60), (utct % 60), 0);   
    jd = jdorig - 45.0;
    nt1 = meanphase(jd, 0.0, &k1);
    while(1) {
	jd += synmonth;
	nt2 = meanphase(jd, 0.0, &k2);
	if (nt1 <= jdorig && nt2 > jdorig) break;
	nt1 = nt2;
	k1 = k2;
    }
    jd = truephase(k1, phas/4.0);
    if (jd < jdorig) jd = truephase(k2, phas/4.0);

    /* Convert back to Remind format */
    jyear(jd, &y, &m, &d);
    jhms(jd, &h, &min, &s);

    d1 = Julian(y, m, d);
    t1 = h*60 + min;
    UTCToLocal(d1, t1, date, time);
}