1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/******************************************************************************
* The MIT License (MIT)
*
* Copyright (c) 2017-2018 Baldur Karlsson
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
******************************************************************************/
#pragma once
#include <frameobject.h>
// this is defined elsewhere for managing the opaque global_handle object
extern "C" PyThreadState *GetExecutingThreadState(PyObject *global_handle);
extern "C" PyObject *GetCurrentGlobalHandle();
extern "C" void HandleException(PyObject *global_handle);
extern "C" bool IsThreadBlocking(PyObject *global_handle);
extern "C" void SetThreadBlocking(PyObject *global_handle, bool block);
struct ExceptionHandling
{
bool failFlag = false;
PyObject *exObj = NULL;
PyObject *valueObj = NULL;
PyObject *tracebackObj = NULL;
};
// this function handles failures in callback functions. If we're synchronously calling the callback
// from within an execute scope, then we can assign to failflag and let the error propagate upwards.
// If we're not, then the callback is being executed on another thread with no knowledge of python,
// so we need to use the global handle to try and emit the exception through the context. None of
// this is multi-threaded because we're inside the GIL at all times
inline void HandleCallbackFailure(PyObject *global_handle, ExceptionHandling &exHandle)
{
// if there's no global handle assume we are not running in the usual environment, so there are no
// external-to-python threads.
// Specifically this is when we're imported as a module directly into python with none of our
// harness, so this is running as pure glue code.
if(!global_handle)
{
exHandle.failFlag = true;
return;
}
PyThreadState *current = PyGILState_GetThisThreadState();
PyThreadState *executing = GetExecutingThreadState(global_handle);
// we are executing synchronously, set the flag and return
if(current == executing)
{
exHandle.failFlag = true;
return;
}
// if we have the blocking flag set, then we may be on another thread but we can still propagate
// up the error
if(IsThreadBlocking(global_handle))
{
exHandle.failFlag = true;
// we need to rethrow the exception to that thread, so fetch (and clear it) on this thread.
//
// Note that the exception can only propagate up to one place. However since we know that python
// is inherently single threaded, so if we're doing this blocking funciton call on another
// thread then we *know* there isn't python further up the stack. Therefore we're safe to
// swallow the exception here (since there's nowhere for it to bubble up to anyway) and rethrow
// on the python thread.
PyErr_Fetch(&exHandle.exObj, &exHandle.valueObj, &exHandle.tracebackObj);
return;
}
// in this case we are executing asynchronously, and must handle the exception manually as there's
// nothing above us that knows about python exceptions
HandleException(global_handle);
}
template <typename T>
inline T get_return(const char *funcname, PyObject *result, PyObject *global_handle,
ExceptionHandling &exHandle)
{
T val = T();
int res = ConvertFromPy(result, val);
if(!SWIG_IsOK(res))
{
HandleCallbackFailure(global_handle, exHandle);
PyErr_Format(PyExc_TypeError, "Unexpected type for return value of callback in %s", funcname);
}
Py_XDECREF(result);
return val;
}
template <>
inline void get_return(const char *funcname, PyObject *result, PyObject *global_handle,
ExceptionHandling &exHandle)
{
Py_XDECREF(result);
}
struct PyObjectRefCounter
{
PyObjectRefCounter(PyObject *o) : obj(o) { Py_INCREF(obj); }
PyObjectRefCounter(const PyObjectRefCounter &o)
{
obj = o.obj;
Py_INCREF(obj);
}
~PyObjectRefCounter()
{
// in non-release, check that we're currently executing if we're about to delete the object.
#if !defined(RELEASE)
if(obj->ob_refcnt == 1 && PyGILState_Check() == 0)
{
RENDERDOC_LogMessage(LogType::Error, "QTRD", __FILE__, __LINE__,
"Deleting PyObjectRefCounter without python executing on this thread");
// return and leak the object rather than crashing
return;
}
#endif
Py_DECREF(obj);
}
PyObject *obj;
};
template <typename rettype, typename... paramTypes>
struct varfunc
{
varfunc(const char *funcname, paramTypes... params)
{
args = PyTuple_New(sizeof...(paramTypes));
currentarg = 0;
// avoid unused parameter errors when calling a parameter-less function
(void)funcname;
using expand_type = int[];
(void)expand_type{0, (push_arg(funcname, params), 0)...};
}
template <typename T>
void push_arg(const char *funcname, const T &arg)
{
if(!args)
return;
PyObject *obj = ConvertToPy(arg);
if(!obj)
{
Py_DecRef(args);
args = NULL;
PyErr_Format(PyExc_TypeError, "Unexpected type for arg %d of callback in %s", currentarg + 1,
funcname);
return;
}
PyTuple_SetItem(args, currentarg++, obj);
}
~varfunc() { Py_XDECREF(args); }
rettype call(const char *funcname, PyObject *func, PyObject *global_handle,
ExceptionHandling &exHandle)
{
if(!func || !PyCallable_Check(func) || !args)
{
HandleCallbackFailure(global_handle, exHandle);
return rettype();
}
PyObject *result = PyObject_Call(func, args, 0);
if(result == NULL)
HandleCallbackFailure(global_handle, exHandle);
Py_DECREF(args);
return get_return<rettype>(funcname, result, global_handle, exHandle);
}
int currentarg = 0;
PyObject *args;
};
struct ScopedFuncCall
{
ScopedFuncCall(PyObject *h)
{
handle = h;
Py_XINCREF(handle);
gil = PyGILState_Ensure();
}
~ScopedFuncCall()
{
Py_XDECREF(handle);
PyGILState_Release(gil);
}
PyObject *handle;
PyGILState_STATE gil;
};
template <typename funcType>
funcType ConvertFunc(const char *funcname, PyObject *func, ExceptionHandling &exHandle)
{
// allow None to indicate no callback
if(func == Py_None)
return funcType();
// add a reference to the global object so it stays alive while we execute, in case this is an
// async call
PyObject *global_internal_handle = NULL;
// walk the frames until we find one with _renderdoc_internal. If we call a function in another
// module the globals may not have the entry, but the root level is expected to.
{
_frame *frame = PyEval_GetFrame();
while(frame)
{
global_internal_handle = PyDict_GetItemString(frame->f_globals, "_renderdoc_internal");
if(global_internal_handle)
break;
frame = frame->f_back;
}
}
if(!global_internal_handle)
global_internal_handle = GetCurrentGlobalHandle();
// create a copy that will keep the function object alive as long as the lambda is
PyObjectRefCounter funcptr(func);
return [global_internal_handle, funcname, funcptr, &exHandle](auto... param) {
ScopedFuncCall gil(global_internal_handle);
varfunc<typename funcType::result_type, decltype(param)...> f(funcname, param...);
return f.call(funcname, funcptr.obj, global_internal_handle, exHandle);
};
}
|