File: pyconversion.h

package info (click to toggle)
renderdoc 1.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 79,584 kB
  • sloc: cpp: 491,671; ansic: 285,823; python: 12,617; java: 11,345; cs: 7,181; makefile: 6,703; yacc: 5,682; ruby: 4,648; perl: 3,461; php: 2,119; sh: 2,068; lisp: 1,835; tcl: 1,068; ml: 747; xml: 137
file content (679 lines) | stat: -rw-r--r-- 15,832 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/******************************************************************************
 * The MIT License (MIT)
 *
 * Copyright (c) 2017-2018 Baldur Karlsson
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 ******************************************************************************/

#pragma once

#include <algorithm>
#include <map>
#include <type_traits>

// struct to allow partial specialisation for enums
template <typename T, bool isEnum = std::is_enum<T>::value>
struct TypeConversion
{
  static swig_type_info *GetTypeInfo()
  {
    static swig_type_info *cached_type_info = NULL;

    if(cached_type_info)
      return cached_type_info;

    std::string baseTypeName = TypeName<T>();
    baseTypeName += " *";
    cached_type_info = SWIG_TypeQuery(baseTypeName.c_str());

    return cached_type_info;
  }

  static int ConvertFromPy(PyObject *in, T &out)
  {
    swig_type_info *type_info = GetTypeInfo();
    if(type_info == NULL)
      return SWIG_ERROR;

    T *ptr = NULL;
    int res = SWIG_ConvertPtr(in, (void **)&ptr, type_info, 0);
    if(SWIG_IsOK(res))
      out = *ptr;

    return res;
  }

  static PyObject *ConvertToPy(const T &in)
  {
    swig_type_info *type_info = GetTypeInfo();
    if(type_info == NULL)
      return NULL;

    T *pyCopy = new T(in);
    return SWIG_InternalNewPointerObj((void *)pyCopy, type_info, SWIG_POINTER_OWN);
  }
};

// specialisations for Python object that just increments the refcount. Only useful if we're doing
// something quite special and manually converting outside from some type we don't want to expose to
// python (this is used for QVariant conversion in python callback arguments).
template <>
struct TypeConversion<PyObject *, false>
{
  static int ConvertFromPy(PyObject *in, PyObject *&out)
  {
    out = in;
    Py_XINCREF(out);

    return 0;
  }

  static PyObject *ConvertToPy(PyObject *in)
  {
    Py_XINCREF(in);
    return in;
  }
};

// specialisations for pointer types (opaque handles to be moved not copied)
template <typename Opaque>
struct TypeConversion<Opaque *, false>
{
  static swig_type_info *GetTypeInfo()
  {
    static swig_type_info *cached_type_info = NULL;

    if(cached_type_info)
      return cached_type_info;

    std::string baseTypeName = TypeName<Opaque>();
    baseTypeName += " *";
    cached_type_info = SWIG_TypeQuery(baseTypeName.c_str());

    return cached_type_info;
  }

  static int ConvertFromPy(PyObject *in, Opaque *&out)
  {
    swig_type_info *type_info = GetTypeInfo();
    if(type_info == NULL)
      return SWIG_ERROR;

    Opaque *ptr = NULL;
    int res = SWIG_ConvertPtr(in, (void **)&ptr, type_info, 0);
    if(SWIG_IsOK(res))
      out = ptr;

    return res;
  }

  static PyObject *ConvertToPy(const Opaque *&in)
  {
    swig_type_info *type_info = GetTypeInfo();
    if(type_info == NULL)
      return NULL;

    return SWIG_InternalNewPointerObj((void *)in, type_info, 0);
  }

  static PyObject *ConvertToPy(Opaque *in) { return ConvertToPy((const Opaque *&)in); }
};

// specialisations for basic types
template <>
struct TypeConversion<bool, false>
{
  static int ConvertFromPy(PyObject *in, bool &out)
  {
    if(!PyBool_Check(in))
      return SWIG_TypeError;

    if(in == Py_True)
      out = true;
    else
      out = false;

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const bool &in)
  {
    if(in)
    {
      Py_IncRef(Py_True);
      return Py_True;
    }
    else
    {
      Py_IncRef(Py_False);
      return Py_False;
    }
  }
};

template <>
struct TypeConversion<uint8_t, false>
{
  static int ConvertFromPy(PyObject *in, uint8_t &out)
  {
    if(!PyLong_Check(in))
      return SWIG_TypeError;

    uint32_t longval = PyLong_AsUnsignedLong(in);

    if(PyErr_Occurred() || longval > 0xff)
      return SWIG_OverflowError;

    out = uint8_t(longval & 0xff);

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const uint8_t &in) { return PyLong_FromUnsignedLong(in); }
};

template <>
struct TypeConversion<uint16_t, false>
{
  static int ConvertFromPy(PyObject *in, uint16_t &out)
  {
    if(!PyLong_Check(in))
      return SWIG_TypeError;

    uint32_t longval = PyLong_AsUnsignedLong(in);

    if(PyErr_Occurred() || longval > 0xffff)
      return SWIG_OverflowError;

    out = uint16_t(longval & 0xff);

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const uint16_t &in) { return PyLong_FromUnsignedLong(in); }
};

template <>
struct TypeConversion<uint32_t, false>
{
  static int ConvertFromPy(PyObject *in, uint32_t &out)
  {
    if(!PyLong_Check(in))
      return SWIG_TypeError;

    out = PyLong_AsUnsignedLong(in);

    if(PyErr_Occurred())
      return SWIG_OverflowError;

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const uint32_t &in) { return PyLong_FromUnsignedLong(in); }
};

template <>
struct TypeConversion<int32_t, false>
{
  static int ConvertFromPy(PyObject *in, int32_t &out)
  {
    if(!PyLong_Check(in))
      return SWIG_TypeError;

    out = PyLong_AsLong(in);

    if(PyErr_Occurred())
      return SWIG_OverflowError;

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const int32_t &in) { return PyLong_FromLong(in); }
};

template <>
struct TypeConversion<uint64_t, false>
{
  static int ConvertFromPy(PyObject *in, uint64_t &out)
  {
    if(!PyLong_Check(in))
      return SWIG_TypeError;

    out = PyLong_AsUnsignedLongLong(in);

    if(PyErr_Occurred())
      return SWIG_OverflowError;

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const uint64_t &in) { return PyLong_FromUnsignedLongLong(in); }
};

template <>
struct TypeConversion<float, false>
{
  static int ConvertFromPy(PyObject *in, float &out)
  {
    if(!PyFloat_Check(in))
      return SWIG_TypeError;

    out = (float)PyFloat_AsDouble(in);

    if(PyErr_Occurred())
      return SWIG_OverflowError;

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const float &in) { return PyFloat_FromDouble(in); }
};

template <>
struct TypeConversion<double, false>
{
  static int ConvertFromPy(PyObject *in, double &out)
  {
    if(!PyFloat_Check(in))
      return SWIG_TypeError;

    out = PyFloat_AsDouble(in);

    if(PyErr_Occurred())
      return SWIG_OverflowError;

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const double &in) { return PyFloat_FromDouble(in); }
};

// partial specialisation for enums, we just convert as their underlying type,
// whatever integer size that happens to be
template <typename T>
struct TypeConversion<T, true>
{
  typedef typename std::underlying_type<T>::type etype;

  static int ConvertFromPy(PyObject *in, T &out)
  {
    etype int_out = 0;
    int ret = TypeConversion<etype>::ConvertFromPy(in, int_out);
    out = T(int_out);
    return ret;
  }

  static PyObject *ConvertToPy(const T &in)
  {
    return TypeConversion<etype>::ConvertToPy(etype(in));
  }
};

// specialisation for datetime
template <>
struct TypeConversion<rdcdatetime, false>
{
  static int ConvertFromPy(PyObject *in, rdcdatetime &out)
  {
    if(!PyDateTime_Check(in))
      return SWIG_TypeError;

    out.year = PyDateTime_GET_YEAR(in);
    out.month = PyDateTime_GET_MONTH(in);
    out.day = PyDateTime_GET_DAY(in);
    out.hour = PyDateTime_DATE_GET_HOUR(in);
    out.minute = PyDateTime_DATE_GET_MINUTE(in);
    out.second = PyDateTime_DATE_GET_SECOND(in);
    out.microsecond = PyDateTime_TIME_GET_MICROSECOND(in);

    return SWIG_OK;
  }

  static PyObject *ConvertToPy(const rdcdatetime &in)
  {
    return PyDateTime_FromDateAndTime(in.year, in.month, in.day, in.hour, in.minute, in.second,
                                      in.microsecond);
  }
};

// specialisation for pair
template <typename A, typename B>
struct TypeConversion<rdcpair<A, B>, false>
{
  static int ConvertFromPy(PyObject *in, rdcpair<A, B> &out, int *failIdx)
  {
    if(!PyTuple_Check(in))
      return SWIG_TypeError;

    Py_ssize_t size = PyTuple_Size(in);

    if(size != 2)
      return SWIG_TypeError;

    int ret = TypeConversion<A>::ConvertFromPy(PyTuple_GetItem(in, 0), out.first);

    if(!SWIG_IsOK(ret))
    {
      if(failIdx)
        *failIdx = 0;
      return ret;
    }

    ret = TypeConversion<B>::ConvertFromPy(PyTuple_GetItem(in, 1), out.second);

    if(!SWIG_IsOK(ret))
    {
      if(failIdx)
        *failIdx = 1;
      return ret;
    }

    return ret;
  }

  static int ConvertFromPy(PyObject *in, rdcpair<A, B> &out)
  {
    return ConvertFromPy(in, out, NULL);
  }

  static PyObject *ConvertToPy(const rdcpair<A, B> &in, int *failIdx)
  {
    PyObject *first = TypeConversion<A>::ConvertToPy(in.first);
    if(!first)
    {
      if(failIdx)
        *failIdx = 0;
      return NULL;
    }

    PyObject *second = TypeConversion<B>::ConvertToPy(in.second);
    if(!second)
    {
      if(failIdx)
        *failIdx = 1;
      return NULL;
    }

    PyObject *ret = PyTuple_New(2);
    if(!ret)
      return NULL;

    PyTuple_SetItem(ret, 0, first);
    PyTuple_SetItem(ret, 1, second);

    return ret;
  }

  static PyObject *ConvertToPy(const rdcpair<A, B> &in) { return ConvertToPy(in, NULL); }
};

// specialisation for bytebuf
template <>
struct TypeConversion<bytebuf, false>
{
  // we add some extra parameters so the typemaps for array can use these to get
  // nicer failure error messages out with the index that failed
  static int ConvertFromPy(PyObject *in, bytebuf &out, int *failIdx)
  {
    if(!PyBytes_Check(in))
      return SWIG_TypeError;

    Py_ssize_t len = PyBytes_Size(in);

    out.resize((size_t)len);
    memcpy(out.data(), PyBytes_AsString(in), out.size());

    return SWIG_OK;
  }

  static int ConvertFromPy(PyObject *in, bytebuf &out) { return ConvertFromPy(in, out, NULL); }
  static PyObject *ConvertToPyInPlace(PyObject *list, const bytebuf &in, int *failIdx)
  {
    // can't modify bytes objects
    return SWIG_Py_Void();
  }

  static PyObject *ConvertToPy(const bytebuf &in, int *failIdx)
  {
    return PyBytes_FromStringAndSize((const char *)in.data(), (Py_ssize_t)in.size());
  }

  static PyObject *ConvertToPy(const bytebuf &in) { return ConvertToPy(in, NULL); }
};

// specialisation for array
template <typename U>
struct TypeConversion<rdcarray<U>, false>
{
  static swig_type_info *GetTypeInfo()
  {
    static swig_type_info *cached_type_info = NULL;
    static std::string typeName = std::string("rdcarray < ") + TypeName<U>() + " > *";

    if(cached_type_info)
      return cached_type_info;

    cached_type_info = SWIG_TypeQuery(typeName.c_str());

    return cached_type_info;
  }

  // we add some extra parameters so the typemaps for array can use these to get
  // nicer failure error messages out with the index that failed
  static int ConvertFromPy(PyObject *in, rdcarray<U> &out, int *failIdx)
  {
    if(!PyList_Check(in))
      return SWIG_TypeError;

    out.resize((size_t)PyList_Size(in));

    for(int i = 0; i < out.count(); i++)
    {
      int ret = TypeConversion<U>::ConvertFromPy(PyList_GetItem(in, i), out[i]);
      if(!SWIG_IsOK(ret))
      {
        if(failIdx)
          *failIdx = i;
        return ret;
      }
    }

    return SWIG_OK;
  }

  static int ConvertFromPy(PyObject *in, rdcarray<U> &out) { return ConvertFromPy(in, out, NULL); }
  static PyObject *ConvertToPyInPlace(PyObject *list, const rdcarray<U> &in, int *failIdx)
  {
    for(int i = 0; i < in.count(); i++)
    {
      PyObject *elem = TypeConversion<U>::ConvertToPy(in[i]);

      if(elem)
      {
        PyList_Append(list, elem);
        // release our reference
        Py_DecRef(elem);
      }
      else
      {
        if(failIdx)
          *failIdx = i;

        return NULL;
      }
    }

    return list;
  }

  static PyObject *ConvertToPy(const rdcarray<U> &in, int *failIdx)
  {
    PyObject *list = PyList_New(0);
    if(!list)
      return NULL;

    PyObject *ret = ConvertToPyInPlace(list, in, failIdx);

    // if a failure happened, don't leak the list we created
    if(!ret)
      Py_XDECREF(list);

    return ret;
  }

  static PyObject *ConvertToPy(const rdcarray<U> &in) { return ConvertToPy(in, NULL); }
};

// specialisation for string
template <>
struct TypeConversion<rdcstr, false>
{
  static swig_type_info *GetTypeInfo()
  {
    static swig_type_info *cached_type_info = NULL;

    if(cached_type_info)
      return cached_type_info;

    cached_type_info = SWIG_TypeQuery("rdcstr *");

    return cached_type_info;
  }

  static int ConvertFromPy(PyObject *in, rdcstr &out)
  {
    if(PyUnicode_Check(in))
    {
      PyObject *bytes = PyUnicode_AsUTF8String(in);

      if(!bytes)
        return SWIG_ERROR;

      char *buf = NULL;
      Py_ssize_t size = 0;

      int ret = PyBytes_AsStringAndSize(bytes, &buf, &size);

      if(ret == 0)
      {
        out.assign(buf, size);

        Py_DecRef(bytes);

        return SWIG_OK;
      }

      Py_DecRef(bytes);

      return SWIG_ERROR;
    }

    swig_type_info *type_info = GetTypeInfo();
    if(!type_info)
      return SWIG_ERROR;

    rdcstr *ptr = NULL;
    int res = SWIG_ConvertPtr(in, (void **)&ptr, type_info, 0);
    if(SWIG_IsOK(res))
      out = *ptr;

    return res;
  }

  static PyObject *ConvertToPy(const rdcstr &in)
  {
    return PyUnicode_FromStringAndSize(in.c_str(), in.size());
  }
};

#include "structured_conversion.h"

// free functions forward to struct
template <typename T>
int ConvertFromPy(PyObject *in, T &out)
{
  return TypeConversion<T>::ConvertFromPy(in, out);
}

template <typename T>
PyObject *ConvertToPy(const T &in)
{
  return TypeConversion<T>::ConvertToPy(in);
}

namespace
{
template <typename T, bool is_pointer = std::is_pointer<T>::value>
struct pointer_unwrap;

template <typename T>
struct pointer_unwrap<T, false>
{
  static void tempset(T &ptr, T *tempobj) {}
  static void tempalloc(T &ptr, unsigned char *tempmem) {}
  static void tempdealloc(T &ptr) {}
  static T &indirect(T &ptr) { return ptr; }
};

template <typename T>
struct pointer_unwrap<T, true>
{
  typedef typename std::remove_pointer<T>::type U;

  static void tempset(U *&ptr, U *tempobj) { ptr = tempobj; }
  static void tempalloc(U *&ptr, unsigned char *tempmem) { ptr = new(tempmem) U; }
  static void tempdealloc(U *ptr)
  {
    if(ptr)
      ptr->~U();
  }
  static U &indirect(U *ptr) { return *ptr; }
};
};

template <typename T>
inline void tempalloc(T &ptr, unsigned char *tempmem)
{
  pointer_unwrap<T>::tempalloc(ptr, tempmem);
}

template <typename T, typename U>
inline void tempset(T &ptr, U *tempobj)
{
  pointer_unwrap<T>::tempset(ptr, tempobj);
}

template <typename T>
inline void tempdealloc(T ptr)
{
  pointer_unwrap<T>::tempdealloc(ptr);
}

template <typename T>
inline typename std::remove_pointer<T>::type &indirect(T &ptr)
{
  return pointer_unwrap<T>::indirect(ptr);
}

#include "function_conversion.h"

#include "container_handling.h"

#include "ext_refcounts.h"