1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>SWIG and Go</title>
<link rel="stylesheet" type="text/css" href="style.css">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body bgcolor="#FFFFFF">
<H1><a name="Go">23 SWIG and Go</a></H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#Go_overview">Overview</a>
<li><a href="#Go_examples">Examples</a>
<li><a href="#Go_running_swig">Running SWIG with Go</a>
<ul>
<li><a href="#Go_commandline">Go-specific Commandline Options</a>
<li><a href="#Go_outputs">Generated Wrapper Files</a>
</ul>
<li><a href="#Go_basic_tour">A tour of basic C/C++ wrapping</a>
<ul>
<li><a href="#Go_package">Go Package Name</a>
<li><a href="#Go_names">Go Names</a>
<li><a href="#Go_constants">Go Constants</a>
<li><a href="#Go_enumerations">Go Enumerations</a>
<li><a href="#Go_classes">Go Classes</a>
<ul>
<li><a href="#Go_class_memory">Go Class Memory Management</a>
<li><a href="#Go_class_inheritance">Go Class Inheritance</a>
</ul>
<li><a href="#Go_templates">Go Templates</a>
<li><a href="#Go_director_classes">Go Director Classes</a>
<ul>
<li><a href="#Go_director_example_cpp_code">Example C++ code</a>
<li><a href="#Go_director_enable">Enable director feature</a>
<li><a href="#Go_director_ctor_dtor">Constructor and destructor</a>
<li><a href="#Go_director_overriding">Override virtual methods</a>
<li><a href="#Go_director_base_methods">Call base methods</a>
<li><a href="#Go_director_subclass">Subclass via embedding</a>
<li><a href="#Go_director_finalizer">Memory management with runtime.SetFinalizer</a>
<li><a href="#Go_director_foobargo_class">Complete FooBarGo example class</a>
</ul>
<li><a href="#Go_primitive_type_mappings">Default Go primitive type mappings</a>
<li><a href="#Go_output_arguments">Output arguments</a>
<li><a href="#Go_adding_additional_code">Adding additional go code</a>
<li><a href="#Go_typemaps">Go typemaps</a>
</ul>
</ul>
</div>
<!-- INDEX -->
<p>
This chapter describes SWIG's support of Go. For more information on
the Go programming language
see <a href="http://golang.org/">golang.org</a>.
</p>
<H2><a name="Go_overview">23.1 Overview</a></H2>
<p>
Go does not support direct calling of functions written in C/C++. The
<a href="https://golang.org/cmd/cgo/">cgo program</a> may be used to generate
wrappers to call C code from Go, but there is no convenient way to call C++
code. SWIG fills this gap.
</p>
<p>
There are (at least) two different Go compilers. The first is the gc compiler
of the <a href="https://golang.org/doc/install">Go distribution</a>, normally
invoked via the <a href="https://golang.org/cmd/go/">go tool</a>.
The second Go compiler is the <a href="https://golang.org/doc/install/gccgo">
gccgo compiler</a>, which is a frontend to the GCC compiler suite.
The interface to C/C++ code is completely different for the two Go compilers.
SWIG supports both Go compilers, selected by the <tt>-gccgo</tt> command line
option.
</p>
<p>
Go is a type-safe compiled language and the wrapper code generated by SWIG is
type-safe as well. In case of type issues the build will fail and hence SWIG's
<a href="Modules.html#Modules_nn2">runtime library</a> and
<a href="Typemaps.html#Typemaps_runtime_type_checker">runtime type checking</a>
are not used.
</p>
<H2><a name="Go_examples">23.2 Examples</a></H2>
<p>
Working examples can be found in the
<a href="https://github.com/swig/swig/tree/master/Examples/go">SWIG source tree
</a>.
</p>
<p>
Please note that the examples in the SWIG source tree use makefiles with the .i
SWIG interface file extension for backwards compatibility with Go 1.
</p>
<H2><a name="Go_running_swig">23.3 Running SWIG with Go</a></H2>
<p>
Most Go programs are built using the <a href="https://golang.org/cmd/go/">go
tool</a>. Since Go 1.1 the go tool has support for SWIG. To use it, give your
SWIG interface file the extension .swig (for C code) or .swigcxx (for C++ code).
Put that file in a GOPATH/src directory as usual for Go sources. Put other
C/C++ code in the same directory with extensions of .c and .cxx. The
<tt>go build</tt> and <tt>go install</tt> commands will automatically run SWIG
for you and compile the generated wrapper code. To check the SWIG command line
options the go tool uses run <tt>go build -x</tt>. To access the automatically
generated files run <tt>go build -work</tt>. You'll find the files under the
temporary WORK directory.
</p>
<p>
To manually generate and compile C/C++ wrapper code for Go, use the <tt>-go</tt>
option with SWIG. By default SWIG will generate code for the Go compiler of the
Go distribution. To generate code for gccgo, you should also use the
<tt>-gccgo</tt> option.
</p>
<p>
When using the <tt>-cgo</tt> option, SWIG will generate files that can be used
directly by <tt>go build</tt>. Starting with the Go 1.5 distribution the
<tt>-cgo</tt> option has to be given. Put your SWIG interface file in a
directory under GOPATH/src, and give it a name that does <b>not</b> end in the
.swig or .swigcxx extension. Typically the SWIG interface file extension is .i
in this case.
</p>
<div class="code"><pre>
% swig -go -cgo example.i
% go install
</pre></div>
<p>
You will now have a Go package that you can import from other Go packages as
usual.
</p>
<p>
To use SWIG without the <tt>-cgo</tt> option, more steps are required. Recall
that this only works with Go versions before 1.5. When using Go version 1.2 or
later, or when using gccgo, the code generated by SWIG can be linked directly
into the Go program. A typical command sequence when using the Go compiler of
the Go distribution would look like this:
</p>
<div class="code"><pre>
% swig -go example.i
% gcc -c code.c # The C library being wrapped.
% gcc -c example_wrap.c
% go tool 6g example.go
% go tool 6c example_gc.c
% go tool pack grc example.a example.6 example_gc.6 code.o example_wrap.o
% go tool 6g main.go
% go tool 6l main.6
</pre></div>
<p>
You can also put the wrapped code into a shared library, and when using the Go
versions before 1.2 this is the only supported option. A typical command
sequence for this approach would look like this:
</p>
<div class="code"><pre>
% swig -go -use-shlib example.i
% gcc -c -fpic example.c
% gcc -c -fpic example_wrap.c
% gcc -shared example.o example_wrap.o -o example.so
% go tool 6g example.go
% go tool 6c example_gc.c
% go tool pack grc example.a example.6 example_gc.6
% go tool 6g main.go # your code, not generated by SWIG
% go tool 6l main.6
</pre></div>
<H3><a name="Go_commandline">23.3.1 Go-specific Commandline Options</a></H3>
<p>
These are the command line options for SWIG's Go module. They can
also be seen by using:
</p>
<div class="code"><pre>
swig -go -help
</pre></div>
<table summary="Go-specific options">
<tr>
<th>Go-specific options</th>
</tr>
<tr>
<td>-cgo</td>
<td>Generate files to be used as input for the Go cgo tool. This
option is required for Go 1.5 and later, and works for Go 1.2 and
later. In the future this option will likely become the
default.</td>
</tr>
<tr>
<td>-intgosize <s></td>
<td>Set the size for the Go type <tt>int</tt>. This controls the size
that the C/C++ code expects to see. The <s> argument should
be 32 or 64. This option is currently required during the
transition from Go 1.0 to Go 1.1, as the size of <tt>int</tt> on
64-bit x86 systems changes between those releases (from 32 bits to
64 bits). In the future the option may become optional, and SWIG
will assume that the size of <tt>int</tt> is the size of a C
pointer.</td>
</tr>
<tr>
<td>-gccgo</td>
<td>Generate code for gccgo. The default is to generate code for
the Go compiler of the Go distribution.</td>
</tr>
<tr>
<td>-package <name></td>
<td>Set the name of the Go package to <name>. The default
package name is the SWIG module name.</td>
</tr>
<tr>
<td>-use-shlib</td>
<td>Tell SWIG to emit code that uses a shared library. This is only
meaningful for the Go compiler of the Go distribution, which needs to know at
compile time whether a shared library will be used.</td>
</tr>
<tr>
<td>-soname <name></td>
<td>Set the runtime name of the shared library that the dynamic linker
should include at runtime. The default is the package name with
".so" appended. This is only used when generating code for
the Go compiler of the Go distribution; when using gccgo, the equivalent name
will be taken from the <code>-soname</code> option passed to the linker.
Using this option implies the -use-shlib option.</td>
</tr>
<tr>
<td>-go-pkgpath <pkgpath></td>
<td>When generating code for gccgo, set the pkgpath to use. This
corresponds to the <tt>-fgo-pkgpath</tt> option to gccgo.</td>
</tr>
<tr>
<td>-go-prefix <prefix></td>
<td>When generating code for gccgo, set the prefix to use. This
corresponds to the <tt>-fgo-prefix</tt> option to gccgo.
If <tt>-go-pkgpath</tt> is used, <tt>-go-prefix</tt> will be
ignored.</td>
</tr>
</table>
<H3><a name="Go_outputs">23.3.2 Generated Wrapper Files</a></H3>
<p>There are two different approaches to generating wrapper files,
controlled by SWIG's <tt>-cgo</tt> option. The <tt>-cgo</tt> option
works with Go version 1.2 or later. It is required when using Go
version 1.5 or later.</p>
<p>With or without the <tt>-cgo</tt> option, SWIG will generate the
following files when generating wrapper code:</p>
<ul>
<li>
MODULE.go will contain the Go functions that your Go code will call.
These functions will be wrappers for the C++ functions defined by your
module. This file should, of course, be compiled with the Go
compiler.
</li>
<li>
MODULE_wrap.c or MODULE_wrap.cxx will contain C/C++ functions will be
invoked by the Go wrapper code. This file should be compiled with the
usual C or C++ compiler.
</li>
<li>
MODULE_wrap.h will be generated if you use the directors feature. It
provides a definition of the generated C++ director classes. It is
generally not necessary to use this file, but in some special cases it
may be helpful to include it in your code, compiled with the usual C
or C++ compiler.
</li>
</ul>
<p>When neither the <tt>-cgo</tt> nor the <tt>-gccgo</tt> option is
used, SWIG will also generate an additional file:</p>
<ul>
<li>
MODULE_gc.c will contain C code which should be compiled with the C
compiler distributed as part of the gc compiler. It should then be
combined with the compiled MODULE.go using go tool pack.
</li>
</ul>
<H2><a name="Go_basic_tour">23.4 A tour of basic C/C++ wrapping</a></H2>
<p>
By default, SWIG attempts to build a natural Go interface to your
C/C++ code. However, the languages are somewhat different, so some
modifications have to occur. This section briefly covers the
essential aspects of this wrapping.
</p>
<H3><a name="Go_package">23.4.1 Go Package Name</a></H3>
<p>
All Go source code lives in a package. The name of this package will
default to the name of the module from SWIG's <tt>%module</tt>
directive. You may override this by using SWIG's <tt>-package</tt>
command line option.
</p>
<H3><a name="Go_names">23.4.2 Go Names</a></H3>
<p>
In Go, a function is only visible outside the current package if the
first letter of the name is uppercase. This is quite different from
C/C++. Because of this, C/C++ names are modified when generating the
Go interface: the first letter is forced to be uppercase if it is not
already. This affects the names of functions, methods, variables,
constants, enums, and classes.
</p>
<p>
C/C++ variables are wrapped with setter and getter functions in Go.
First the first letter of the variable name will be forced to
uppercase, and then <tt>Get</tt> or <tt>Set</tt> will be prepended.
For example, if the C/C++ variable is called <tt>var</tt>, then SWIG
will define the functions <tt>GetVar</tt> and <tt>SetVar</tt>. If a
variable is declared as <tt>const</tt>, or if
SWIG's <a href="SWIG.html#SWIG_readonly_variables">
<tt>%immutable</tt> directive</a> is used for the variable, then only
the getter will be defined.
</p>
<p>
C++ classes will be discussed further below. Here we'll note that the
first letter of the class name will be forced to uppercase to give the
name of a type in Go. A constructor will be named <tt>New</tt>
followed by that name, and the destructor will be
named <tt>Delete</tt> followed by that name.
</p>
<H3><a name="Go_constants">23.4.3 Go Constants</a></H3>
<p>
C/C++ constants created via <tt>#define</tt> or the <tt>%constant</tt>
directive become Go constants, declared with a <tt>const</tt>
declaration.
<H3><a name="Go_enumerations">23.4.4 Go Enumerations</a></H3>
<p>
C/C++ enumeration types will cause SWIG to define an integer type with
the name of the enumeration (with first letter forced to uppercase as
usual). The values of the enumeration will become variables in Go;
code should avoid modifying those variables.
</p>
<H3><a name="Go_classes">23.4.5 Go Classes</a></H3>
<p>
Go has interfaces, methods and inheritance, but it does not have
classes in the same sense as C++. This sections describes how SWIG
represents C++ classes represented in Go.
</p>
<p>
For a C++ class <tt>ClassName</tt>, SWIG will define two types in Go:
an underlying type, which will just hold a pointer to the C++ type,
and an interface type. The interface type will be
named <tt>ClassName</tt>. SWIG will define a
function <tt>NewClassName</tt> which will take any constructor
arguments and return a value of the interface
type <tt>ClassName</tt>. SWIG will also define a
destructor <tt>DeleteClassName</tt>.
</p>
<p>
SWIG will represent any methods of the C++ class as methods on the
underlying type, and also as methods of the interface type. Thus C++
methods may be invoked directly using the
usual <tt>val.MethodName</tt> syntax. Public members of the C++ class
will be given getter and setter functions defined as methods of the
class.
</p>
<p>
SWIG will represent static methods of C++ classes as ordinary Go
functions. SWIG will use names like <tt>ClassNameMethodName</tt>.
SWIG will give static members getter and setter functions with names
like <tt>GetClassName_VarName</tt>.
</p>
<p>
Given a value of the interface type, Go code can retrieve the pointer
to the C++ type by calling the <tt>Swigcptr</tt> method. This will
return a value of type <tt>SwigcptrClassName</tt>, which is just a
name for <tt>uintptr</tt>. A Go type conversion can be used to
convert this value to a different C++ type, but note that this
conversion will not be type checked and is essentially equivalent
to <tt>reinterpret_cast</tt>. This should only be used for very
special cases, such as where C++ would use a <tt>dynamic_cast</tt>.
</p>
<p>Note that C++ pointers to compound objects are represented in go as objects
themselves, not as go pointers. So, for example, if you wrap the following
function:</p>
<div class="code">
<pre>
class MyClass {
int MyMethod();
static MyClass *MyFactoryFunction();
};
</pre>
</div>
<p>You will get go code that looks like this:</p>
<div class="code">
<pre>
type MyClass interface {
Swigcptr() uintptr
SwigIsMyClass()
MyMethod() int
}
func MyClassMyFactoryFunction() MyClass {
// swig magic here
}
</pre>
</div>
<p>Note that the factory function does not return a go pointer; it actually
returns a go interface. If the returned pointer can be null, you can check
for this by calling the Swigcptr() method.
</p>
<H4><a name="Go_class_memory">23.4.5.1 Go Class Memory Management</a></H4>
<p>
Calling <tt>NewClassName</tt> for a C++ class <tt>ClassName</tt> will allocate
memory using the C++ memory allocator. This memory will not be automatically
freed by Go's garbage collector as the object ownership is not tracked. When
you are done with the C++ object you must free it using
<tt>DeleteClassName</tt>.<br>
<br>
The most Go idiomatic way to manage the memory for some C++ class is to call
<tt>NewClassName</tt> followed by a
<tt><a href="https://golang.org/doc/effective_go.html#defer">defer</a></tt> of
the <tt>DeleteClassName</tt> call. Using <tt>defer</tt> ensures that the memory
of the C++ object is freed as soon as the function containing the <tt>defer</tt>
statement returns. Furthemore <tt>defer</tt> works great for short-lived
objects and fits nicely C++'s RAII idiom. Example:
</p>
<div class="code">
<pre>
func UseClassName(...) ... {
o := NewClassName(...)
defer DeleteClassName(o)
// Use the ClassName object
return ...
}
</pre>
</div>
<p>
With increasing complexity, especially complex C++ object hierarchies, the
correct placement of <tt>defer</tt> statements becomes harder and harder as C++
objects need to be freed in the correct order. This problem can be eased by
keeping a C++ object function local so that it is only available to the function
that creates a C++ object and functions called by this function. Example:
</p>
<div class="code">
<pre>
func WithClassName(constructor args, f func(ClassName, ...interface{}) error, data ...interface{}) error {
o := NewClassName(constructor args)
defer DeleteClassName(o)
return f(o, data...)
}
func UseClassName(o ClassName, data ...interface{}) (err error) {
// Use the ClassName object and additional data and return error.
}
func main() {
WithClassName(constructor args, UseClassName, additional data)
}
</pre>
</div>
<p>
Using <tt>defer</tt> has limitations though, especially when it comes to
long-lived C++ objects whichs lifetimes are hard to predict. For such C++
objects a common technique is to store the C++ object into a Go object, and to
use the Go function <tt>runtime.SetFinalizer</tt> to add a finalizer which frees
the C++ object when the Go object is freed. It is strongly recommended to read
the <a href="https://golang.org/pkg/runtime/#SetFinalizer">runtime.SetFinalizer
</a> documentation before using this technique to understand the
<tt>runtime.SetFinalizer</tt> limitations.<br>
</p>
<p>
Common pitfalls with <tt>runtime.SetFinalizer</tt> are:
</p>
<ul>
<li>
If a hierarchy of C++ objects will be automatically freed by Go finalizers then
the Go objects that store the C++ objects need to replicate the hierarchy of the
C++ objects to prevent that C++ objects are freed prematurely while other C++
objects still rely on them.
</li>
<li>
The usage of Go finalizers is problematic with C++'s RAII idiom as it isn't
predictable when the finalizer will run and this might require a Close or Delete
method to be added the Go object that stores a C++ object to mitigate.
</li>
<li>
The Go finalizer function typically runs in a different OS thread which can be
problematic with C++ code that uses thread-local storage.
</li>
</ul>
<p>
<tt>runtime.SetFinalizer</tt> Example:
</p>
<div class="code">
<pre>
import (
"runtime"
"wrap" // SWIG generated wrapper code
)
type GoClassName struct {
wcn wrap.ClassName
}
func NewGoClassName() *GoClassName {
o := &GoClassName{wcn: wrap.NewClassName()}
runtime.SetFinalizer(o, deleteGoClassName)
return o
}
func deleteGoClassName(o *GoClassName) {
// Runs typically in a different OS thread!
wrap.DeleteClassName(o.wcn)
o.wcn = nil
}
func (o *GoClassName) Close() {
// If the C++ object has a Close method.
o.wcn.Close()
// If the GoClassName object is no longer in an usable state.
runtime.SetFinalizer(o, nil) // Remove finalizer.
deleteGoClassName() // Free the C++ object.
}
</pre>
</div>
<H4><a name="Go_class_inheritance">23.4.5.2 Go Class Inheritance</a></H4>
<p>
C++ class inheritance is automatically represented in Go due to its
use of interfaces. The interface for a child class will be a superset
of the interface of its parent class. Thus a value of the child class
type in Go may be passed to a function which expects the parent class.
Doing the reverse will require an explicit type assertion, which will
be checked dynamically.
</p>
<H3><a name="Go_templates">23.4.6 Go Templates</a></H3>
<p>
In order to use C++ templates in Go, you must tell SWIG to create
wrappers for a particular template instantation. To do this, use
the <tt>%template</tt> directive.
<H3><a name="Go_director_classes">23.4.7 Go Director Classes</a></H3>
<p>
SWIG's director feature permits a Go type to act as the subclass of a C++ class.
This is complicated by the fact that C++ and Go define inheritance differently.
SWIG normally represents the C++ class inheritance automatically in Go via
interfaces but with a Go type representing a subclass of a C++ class some manual
work is necessary.
</p>
<p>
This subchapter gives a step by step guide how to properly sublass a C++ class
with a Go type. In general it is strongly recommended to follow this guide
completely to avoid common pitfalls with directors in Go.
</p>
<H4><a name="Go_director_example_cpp_code">23.4.7.1 Example C++ code</a></H4>
<p>
The step by step guide is based on two example C++ classes. FooBarAbstract is
an abstract C++ class and the FooBarCpp class inherits from it. This guide
explains how to implement a FooBarGo class similar to the FooBarCpp class.
</p>
<p>
<tt>FooBarAbstract</tt> abstract C++ class:
</p>
<div class="code">
<pre>
class FooBarAbstract
{
public:
FooBarAbstract() {};
virtual ~FooBarAbstract() {};
std::string FooBar() {
return this->Foo() + ", " + this->Bar();
};
protected:
virtual std::string Foo() {
return "Foo";
};
virtual std::string Bar() = 0;
};
</pre>
</div>
<p>
<tt>FooBarCpp</tt> C++ class:
</p>
<div class="code">
<pre>
class FooBarCpp : public FooBarAbstract
{
protected:
virtual std::string Foo() {
return "C++ " + FooBarAbstract::Foo();
}
virtual std::string Bar() {
return "C++ Bar";
}
};
</pre>
</div>
<p>
Returned string by the <tt>FooBarCpp::FooBar</tt> method is:
</p>
<div class="code">
<pre>
C++ Foo, C++ Bar
</pre>
</div>
<p>
The complete example, including the <tt>FooBarGoo</tt> class implementation, can
be found in <a href="#Go_director_foobargo_class">the end of the guide</a>.
</p>
<H4><a name="Go_director_enable">23.4.7.2 Enable director feature</a></H4>
<p>
The director feature is disabled by default. To use directors you must make two
changes to the interface file. First, add the "directors" option to the %module
directive, like this:
</p>
<div class="code">
<pre>
%module(directors="1") modulename
</pre>
</div>
<p>
Second, you must use the %feature("director") directive to tell SWIG which
classes should get directors. In the example the FooBarAbstract class needs the
director feature enabled so that the FooBarGo class can inherit from it, like
this:
</p>
<div class="code">
<pre>
%feature("director") FooBarAbstract;
</pre>
</div>
<p>
For a more detailed documentation of the director feature and how to enable or
disable it for specific classes and virtual methods see SWIG's Java
documentation on directors.
</p>
<H4><a name="Go_director_ctor_dtor">23.4.7.3 Constructor and destructor</a></H4>
<p>
SWIG creates an additional set of constructor and destructor functions once the
director feature has been enabled for a C++ class.
<tt>NewDirectorClassName</tt> allows overriding virtual methods on the new
object instance and <tt>DeleteDirectorClassName</tt> needs to be used to free a
director object instance created with <tt>NewDirectorClassName</tt>.
More on overriding virtual methods follows later in this guide under
<a href="#Go_director_overriding">overriding virtual methods</a>.
</p>
<p>
The default constructor and destructor functions <tt>NewClassName</tt> and
<tt>DeleteClassName</tt> can still be used as before so that existing code
doesn't break just because the director feature has been enabled for a C++
class. The behavior is undefined if the default and director constructor and
destructor functions get mixed and so great care needs to be taken that only one
of the constructor and destructor function pairs is used for any object
instance. Both constructor functions, the default and the director one, return
the same interface type. This makes it potentially hard to know which
destructor function, the default or the director one, needs to be called to
delete an object instance.
</p>
<p>
In <b>theory</b> the <tt>DirectorInterface</tt> method could be used to
determine if an object instance was created via <tt>NewDirectorClassName</tt>:
</p>
<div class="code">
<pre>
if o.DirectorInterface() != nil {
DeleteDirectorClassName(o)
} else {
DeleteClassName(o)
}
</pre>
</div>
<p>
In <b>practice</b> it is strongly recommended to embed a director object
instance in a Go struct so that a director object instance will be represented
as a distinct Go type that subclasses a C++ class. For this Go type custom
constructor and destructor functions take care of the director constructor and
destructor function calls and the resulting Go class will appear to the user as
any other SWIG wrapped C++ class. More on properly subclassing a C++ class
follows later in this guide under <a href="#Go_director_subclass">subclass via
embedding</a>.
</p>
<H4><a name="Go_director_overriding">23.4.7.4 Override virtual methods</a></H4>
<p>
In order to override virtual methods on a C++ class with Go methods the
<tt>NewDirectorClassName</tt> constructor functions receives a
<tt>DirectorInterface</tt> argument. The methods in the <tt>
DirectorInterface</tt> are a subset of the public and protected virtual methods
of the C++ class. If the <tt>DirectorInterface</tt> contains a method with a
matching signature to a virtual method of the C++ class then the virtual C++
method will be overwritten with the Go method. As Go doesn't support protected
methods all overriden protected virtual C++ methods will be public in Go.
</p>
<p>
As an example see part of the <tt>FooBarGo</tt> class:
</p>
<div class="code">
<pre>
type overwrittenMethodsOnFooBarAbstract struct {
fb FooBarAbstract
}
func (om *overwrittenMethodsOnFooBarAbstract) Foo() string {
...
}
func (om *overwrittenMethodsOnFooBarAbstract) Bar() string {
...
}
func NewFooBarGo() FooBarGo {
om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract(om)
om.fb = fb
...
}
</pre>
</div>
<p>
The complete example, including the <tt>FooBarGoo</tt> class implementation, can
be found in <a href="#Go_director_foobargo_class">the end of the guide</a>. In
this part of the example the virtual methods <tt>FooBarAbstract::Foo</tt> and
<tt>FooBarAbstract::Bar</tt> have been overwritten with Go methods similarly to
how the <tt>FooBarAbstract</tt> virtual methods are overwritten by the
<tt>FooBarCpp</tt> class.
</p>
<p>
The <tt>DirectorInterface</tt> in the example is implemented by the
<tt>overwrittenMethodsOnFooBarAbstract</tt> Go struct type. A pointer to a
<tt>overwrittenMethodsOnFooBarAbstract</tt> struct instance will be given to the
<tt>NewDirectorFooBarAbstract</tt> constructor function. The constructor return
value implements the <tt>FooBarAbstract</tt> interface.
<tt>overwrittenMethodsOnFooBarAbstract</tt> could in theory be any Go type but
in practice a struct is used as it typically contains at least a value of the
C++ class interface so that the overwritten methods can use the rest of the
C++ class. If the <tt>FooBarGo</tt> class would receive additional constructor
arguments then these would also typically be stored in the
<tt>overwrittenMethodsOnFooBarAbstract</tt> struct so that they can be used by
the Go methods.
</p>
<H4><a name="Go_director_base_methods">23.4.7.5 Call base methods</a></H4>
<p>
Often a virtual method will be overwritten to extend the original behavior of
the method in the base class. This is also the case for the
<tt>FooBarCpp::Foo</tt> method of the example code:
</p>
<div class="code">
<pre>
virtual std::string Foo() {
return "C++ " + FooBarAbstract::Foo();
}
</pre>
</div>
<p>
To use base methods the <tt>DirectorClassNameMethodName</tt> wrapper functions
are automatically generated by SWIG for public and protected virtual methods.
The <tt>FooBarGo.Foo</tt> implementation in the example looks like this:
</p>
<div class="code">
<pre>
func (om *overwrittenMethodsOnFooBarAbstract) Foo() string {
return "Go " + DirectorFooBarAbstractFoo(om.fb)
}
</pre>
</div>
<p>
The complete example, including the <tt>FooBarGoo</tt> class implementation, can
be found in <a href="#Go_director_foobargo_class">the end of the guide</a>.
</p>
<H4><a name="Go_director_subclass">23.4.7.6 Subclass via embedding</a></H4>
<p>
<a href="#Go_director_ctor_dtor">As previously mentioned in this guide</a> the
default and director constructor functions return the same interface type. To
properly subclass a C++ class with a Go type the director object instance
returned by the <tt>NewDirectorClassName</tt> constructor function should be
embedded into a Go struct so that it represents a distinct but compatible type
in Go's type system. This Go struct should be private and the constructor and
destructor functions should instead work with a public interface type so that
the Go class that subclasses a C++ class can be used as a compatible drop in.
</p>
<p>
The subclassing part of the <tt>FooBarGo</tt> class for an example looks like
this:
</p>
<div class="code">
<pre>
type FooBarGo interface {
FooBarAbstract
deleteFooBarAbstract()
IsFooBarGo()
}
type fooBarGo struct {
FooBarAbstract
}
func (fbgs *fooBarGo) deleteFooBarAbstract() {
DeleteDirectorFooBarAbstract(fbgs.FooBarAbstract)
}
func (fbgs *fooBarGo) IsFooBarGo() {}
func NewFooBarGo() FooBarGo {
om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract(om)
om.fb = fb
return &fooBarGo{FooBarAbstract: fb}
}
func DeleteFooBarGo(fbg FooBarGo) {
fbg.deleteFooBarAbstract()
}
</pre>
</div>
<p>
The complete example, including the <tt>FooBarGoo</tt> class implementation, can
be found in <a href="#Go_director_foobargo_class">the end of the guide</a>. In
this part of the example the private <tt>fooBarGo</tt> struct embeds <tt>
FooBarAbstract</tt> which lets the <tt>fooBarGo</tt> Go type "inherit" all the
methods of the <tt>FooBarAbstract</tt> C++ class by means of embedding. The
public <tt>FooBarGo</tt> interface type includes the <tt>FooBarAbstract</tt>
interface and hence <tt>FooBarGo</tt> can be used as a drop in replacement for
<tt>FooBarAbstract</tt> while the reverse isn't possible and would raise a
compile time error. Furthemore the constructor and destructor functions <tt>
NewFooBarGo</tt> and <tt>DeleteFooBarGo</tt> take care of all the director
specifics and to the user the class appears as any other SWIG wrapped C++
class.
</p>
<H4><a name="Go_director_finalizer">23.4.7.7 Memory management with runtime.SetFinalizer</a></H4>
<p>
In general all guidelines for <a href="#Go_class_memory">C++ class memory
management</a> apply as well to director classes. One often overlooked
limitation with <tt>runtime.SetFinalizer</tt> is that a finalizer doesn't run
in case of a cycle and director classes typically have a cycle. The cycle
in the <tt>FooBarGo</tt> class is here:
</p>
<div class="code">
<pre>
type overwrittenMethodsOnFooBarAbstract struct {
fb FooBarAbstract
}
func NewFooBarGo() FooBarGo {
om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract(om) // fb.v = om
om.fb = fb // Backlink causes cycle as fb.v = om!
...
}
</pre>
</div>
<p>
In order to be able to use <tt>runtime.SetFinalizer</tt> nevertheless the
finalizer needs to be set on something that isn't in a cycle and that references
the director object instance. In the <tt>FooBarGo</tt> class example the <tt>
FooBarAbstract</tt> director instance can be automatically deleted by setting
the finalizer on <tt>fooBarGo</tt>:
</p>
<div class="code">
<pre>
type fooBarGo struct {
FooBarAbstract
}
type overwrittenMethodsOnFooBarAbstract struct {
fb FooBarAbstract
}
func NewFooBarGo() FooBarGo {
om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract(om)
om.fb = fb // Backlink causes cycle as fb.v = om!
fbgs := &fooBarGo{FooBarAbstract: fb}
runtime.SetFinalizer(fbgs, FooBarGo.deleteFooBarAbstract)
return fbgs
}
</pre>
</div>
<p>
Furthermore if <tt>runtime.SetFinalizer</tt> is in use either the <tt>
DeleteClassName</tt> destructor function needs to be removed or the <tt>
fooBarGo</tt> struct needs additional data to prevent double deletion. Please
read the <a href="#Go_class_memory">C++ class memory management</a> subchapter
before using <tt>runtime.SetFinalizer</tt> to know all of its gotchas.
</p>
<H4><a name="Go_director_foobargo_class">23.4.7.8 Complete FooBarGo example class</a></H4>
<p>
The complete and annotated <tt>FooBarGo</tt> class looks like this:
</p>
<div class="code">
<pre>
// FooBarGo is a superset of FooBarAbstract and hence FooBarGo can be used as a
// drop in replacement for FooBarAbstract but the reverse causes a compile time
// error.
type FooBarGo interface {
FooBarAbstract
deleteFooBarAbstract()
IsFooBarGo()
}
// Via embedding fooBarGo "inherits" all methods of FooBarAbstract.
type fooBarGo struct {
FooBarAbstract
}
func (fbgs *fooBarGo) deleteFooBarAbstract() {
DeleteDirectorFooBarAbstract(fbgs.FooBarAbstract)
}
// The IsFooBarGo method ensures that FooBarGo is a superset of FooBarAbstract.
// This is also how the class hierarchy gets represented by the SWIG generated
// wrapper code. For an instance FooBarCpp has the IsFooBarAbstract and
// IsFooBarCpp methods.
func (fbgs *fooBarGo) IsFooBarGo() {}
// Go type that defines the DirectorInterface. It contains the Foo and Bar
// methods that overwrite the respective virtual C++ methods on FooBarAbstract.
type overwrittenMethodsOnFooBarAbstract struct {
// Backlink to FooBarAbstract so that the rest of the class can be used by
// the overridden methods.
fb FooBarAbstract
// If additional constructor arguments have been given they are typically
// stored here so that the overriden methods can use them.
}
func (om *overwrittenMethodsOnFooBarAbstract) Foo() string {
// DirectorFooBarAbstractFoo calls the base method FooBarAbstract::Foo.
return "Go " + DirectorFooBarAbstractFoo(om.fb)
}
func (om *overwrittenMethodsOnFooBarAbstract) Bar() string {
return "Go Bar"
}
func NewFooBarGo() FooBarGo {
// Instantiate FooBarAbstract with selected methods overridden. The methods
// that will be overwritten are defined on
// overwrittenMethodsOnFooBarAbstract and have a compatible signature to the
// respective virtual C++ methods. Furthermore additional constructor
// arguments will be typically stored in the
// overwrittenMethodsOnFooBarAbstract struct.
om := &overwrittenMethodsOnFooBarAbstract{}
fb := NewDirectorFooBarAbstract(om)
om.fb = fb // Backlink causes cycle as fb.v = om!
fbgs := &fooBarGo{FooBarAbstract: fb}
// The memory of the FooBarAbstract director object instance can be
// automatically freed once the FooBarGo instance is garbage collected by
// uncommenting the following line. Please make sure to understand the
// runtime.SetFinalizer specific gotchas before doing this. Furthemore
// DeleteFooBarGo should be deleted if a finalizer is in use or the fooBarGo
// struct needs additional data to prevent double deletion.
// runtime.SetFinalizer(fbgs, FooBarGo.deleteFooBarAbstract)
return fbgs
}
// Recommended to be removed if runtime.SetFinalizer is in use.
func DeleteFooBarGo(fbg FooBarGo) {
fbg.deleteFooBarAbstract()
}
</pre>
</div>
<p>
Returned string by the <tt>FooBarGo.FooBar</tt> method is:
</p>
<div class="code">
<pre>
Go Foo, Go Bar
</pre>
</div>
<p>
For comparison the <tt>FooBarCpp</tt> class looks like this:
</p>
<div class="code">
<pre>
class FooBarCpp : public FooBarAbstract
{
protected:
virtual std::string Foo() {
return "C++ " + FooBarAbstract::Foo();
}
virtual std::string Bar() {
return "C++ Bar";
}
};
</pre>
</div>
<p>
For comparison the returned string by the <tt>FooBarCpp::FooBar</tt> method is:
</p>
<div class="code">
<pre>
C++ Foo, C++ Bar
</pre>
</div>
<p>
The complete source of this example can be found under
<a href="https://github.com/swig/swig/tree/master/Examples/go/director">
SWIG/Examples/go/director/</a>.
</p>
<H3><a name="Go_primitive_type_mappings">23.4.8 Default Go primitive type mappings</a></H3>
<p>
The following table lists the default type mapping from C/C++ to Go.
This table will tell you which Go type to expect for a function which
uses a given C/C++ type.
</p>
<table BORDER summary="Go primitive type mappings">
<tr>
<td><b>C/C++ type</b></td>
<td><b>Go type</b></td>
</tr>
<tr>
<td>bool</td>
<td>bool</td>
</tr>
<tr>
<td>char</td>
<td>byte</td>
</tr>
<tr>
<td>signed char</td>
<td>int8</td>
</tr>
<tr>
<td>unsigned char</td>
<td>byte</td>
</tr>
<tr>
<td>short</td>
<td>int16</td>
</tr>
<tr>
<td>unsigned short</td>
<td>uint16</td>
</tr>
<tr>
<td>int</td>
<td>int</td>
</tr>
<tr>
<td>unsigned int</td>
<td>uint</td>
</tr>
<tr>
<td>long</td>
<td>int64</td>
</tr>
<tr>
<td>unsigned long</td>
<td>uint64</td>
</tr>
<tr>
<td>long long</td>
<td>int64</td>
</tr>
<tr>
<td>unsigned long long</td>
<td>uint64</td>
</tr>
<tr>
<td>float</td>
<td>float32</td>
</tr>
<tr>
<td>double</td>
<td>float64</td>
</tr>
<tr>
<td>char *<br>char []</td>
<td>string</td>
</tr>
</table>
<p>
Note that SWIG wraps the C <tt>char</tt> type as a character. Pointers
and arrays of this type are wrapped as strings. The <tt>signed
char</tt> type can be used if you want to treat <tt>char</tt> as a
signed number rather than a character. Also note that all const
references to primitive types are treated as if they are passed by
value.
</p>
<p>
These type mappings are defined by the "gotype" typemap. You may change
that typemap, or add new values, to control how C/C++ types are mapped
into Go types.
</p>
<H3><a name="Go_output_arguments">23.4.9 Output arguments</a></H3>
<p>Because of limitations in the way output arguments are processed in swig,
a function with output arguments will not have multiple return values.
Instead, you must pass a pointer into the C++ function to tell it where to
store the output value. In go, you supply a slice in the place of the output
argument.</p>
<p>For example, suppose you were trying to wrap the modf() function in the
C math library which splits x into integral and fractional parts (and
returns the integer part in one of its parameters):</p>
<div class="code">
<pre>
double modf(double x, double *ip);
</pre>
</div>
<p>You could wrap it with SWIG as follows:</p>
<div class="code">
<pre>
%include <typemaps.i>
double modf(double x, double *OUTPUT);
</pre>
</div>
<p>or you can use the <code>%apply</code> directive:</p>
<div class="code">
<pre>
%include <typemaps.i>
%apply double *OUTPUT { double *ip };
double modf(double x, double *ip);
</pre>
</div>
<p>In Go you would use it like this:</p>
<div class="code">
<pre>
ptr := []float64{0.0}
fraction := modulename.Modf(5.0, ptr)
</pre>
</div>
<p>Since this is ugly, you may want to wrap the swig-generated API with
some <a href="#Embedded_go_code">additional functions written in go</a> that
hide the ugly details.</p>
<p>There are no <code>char *OUTPUT</code> typemaps. However you can
apply the <code>signed char *</code> typemaps instead:</p>
<div class="code">
<pre>
%include <typemaps.i>
%apply signed char *OUTPUT {char *output};
void f(char *output);
</pre>
</div>
<H3><a name="Go_adding_additional_code">23.4.10 Adding additional go code</a></H3>
<p>Often the APIs generated by swig are not very natural in go, especially if
there are output arguments. You can
insert additional go wrapping code to add new APIs
with <code>%insert(go_wrapper)</code>, like this:</p>
<div class="code">
<pre>
%include <typemaps.i>
// Change name of what swig generates to Wrapped_modf. This function will
// have the following signature in go:
// func Wrapped_modf(float64, []float64) float64
%rename(wrapped_modf) modf(double x, double *ip);
%apply double *OUTPUT { double *ip };
double modf(double x, double *ip);
%insert(go_wrapper) %{
// The improved go interface to this function, which has two return values,
// in the more natural go idiom:
func Modf(x float64) (fracPart float64, intPart float64) {
ip := []float64{0.0}
fracPart = Wrapped_modf(x, ip)
intPart = ip[0]
return
}
%}
</pre>
</div>
<p>For classes, since swig generates an interface, you can add additional
methods by defining another interface that includes the swig-generated
interface. For example,</p>
<div class="code">
<pre>
%rename(Wrapped_MyClass) MyClass;
%rename(Wrapped_GetAValue) MyClass::GetAValue(int *x);
%apply int *OUTPUT { int *x };
class MyClass {
public:
MyClass();
int AFineMethod(const char *arg); // Swig's wrapping is fine for this one.
bool GetAValue(int *x);
};
%insert(go_wrapper) %{
type MyClass interface {
Wrapped_MyClass
GetAValue() (int, bool)
}
func (arg SwigcptrWrapped_MyClass) GetAValue() (int, bool) {
ip := []int{0}
ok := arg.Wrapped_GetAValue(ip)
return ip[0], ok
}
%}
</pre>
</div>
<p>Of course, if you have to rewrite most of the methods, instead of just a
few, then you might as well define your own struct that includes the
swig-wrapped object, instead of adding methods to the swig-generated object.</p>
<p>If you need to import other go packages, you can do this with
<code>%go_import</code>. For example,</p>
<div class="code">
<pre>
%go_import("fmt", _ "unusedPackage", rp "renamed/package")
%insert(go_wrapper) %{
func foo() {
fmt.Println("Some string:", rp.GetString())
}
// Importing the same package twice is permitted,
// Go code will be generated with only the first instance of the import.
%go_import("fmt")
%insert(go_wrapper) %{
func bar() {
fmt.Println("Hello world!")
}
%}
</pre>
</div>
<H3><a name="Go_typemaps">23.4.11 Go typemaps</a></H3>
<p>
You can use the <tt>%typemap</tt> directive to modify SWIG's default
wrapping behavior for specific C/C++ types. You need to be familiar
with the material in the general
"<a href="Typemaps.html#Typemaps">Typemaps</a>" chapter. That chapter
explains how to define a typemap. This section describes some
specific typemaps used for Go.
</p>
<p>
In general type conversion code may be written either in C/C++ or in
Go. The choice to make normally depends on where memory should be
allocated. To allocate memory controlled by the Go garbage collector,
write Go code. To allocate memory in the C/C++ heap, write C code.
</p>
<table BORDER summary="Go Typemaps">
<tr>
<td><b>Typemap</b></td>
<td><b>Description</b></td>
</tr>
<tr>
<td>gotype</td>
<td>
The Go type to use for a C++ type. This type will appear in the
generated Go wrapper function. If this is not defined SWIG will use a
default as <a href="#Go_primitive_type_mappings">described above</a>.
</td>
</tr>
<tr>
<td>imtype</td>
<td>
An intermediate Go type used by the "goin", "goout", "godirectorin",
and "godirectorout" typemaps. If this typemap is not defined for a
C/C++ type, the gotype typemape will be used. This is useful when
gotype is best converted to C/C++ using Go code.
</td>
</tr>
<tr>
<td>goin</td>
<td>
Go code to convert from gotype to imtype when calling a C/C++
function. SWIG will then internally convert imtype to a C/C++ type
and pass it down. If this is not defined, or is the empty string, no
conversion is done.
</td>
</tr>
<tr>
<td>in</td>
<td>
C/C++ code to convert the internally generated C/C++ type, based on
imtype, into the C/C++ type that a function call expects. If this is
not defined the value will simply be cast to the desired type.
</td>
</tr>
<tr>
<td>out</td>
<td>
C/C++ code to convert the C/C++ type that a function call returns into
the internally generated C/C++ type, based on imtype, that will be
returned to Go. If this is not defined the value will simply be cast
to the desired type.
</td>
</tr>
<tr>
<td>goout</td>
<td>
Go code to convert a value returned from a C/C++ function from imtype
to gotype. If this is not defined, or is the empty string, no
conversion is done.
</td>
</tr>
<tr>
<td>argout</td>
<td>
C/C++ code to adjust an argument value when returning from a function.
This is called after the real C/C++ function has run. This uses the
internally generated C/C++ type, based on imtype. This is only useful
for a pointer type of some sort. If this is not defined nothing will
be done.
</td>
</tr>
<tr>
<td>goargout</td>
<td>
Go code to adjust an argument value when returning from a function.
This is called after the real C/C++ function has run. The value will
be in imtype. This is only useful for a pointer type of some sort.
If this is not defined, or is the empty string, nothing will be done.
</td>
</tr>
<tr>
<td>directorin</td>
<td>
C/C++ code to convert the C/C++ type used to call a director method
into the internally generated C/C++ type, based on imtype, that will
be passed to Go. If this is not defined the value will simply be cast
to the desired type.
</td>
</tr>
<tr>
<td>godirectorin</td>
<td>
Go code to convert a value used to call a director method from imtype
to gotype. If this is not defined, or is the empty string, no
conversion is done.
</td>
</tr>
<tr>
<td>godirectorout</td>
<td>
Go code to convert a value returned from a director method from gotype
to imtype. If this is not defined, or is the empty string, no
conversion is done.
</td>
</tr>
<tr>
<td>directorout</td>
<td>
C/C++ code to convert a value returned from a director method from the
internally generated C/C++ type, based on imtype, into the type that
the method should return If this is not defined the value will simply
be cast to the desired type.
</td>
</tr>
</table>
</body>
</html>
|