1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>SWIG and C++</title>
<link rel="stylesheet" type="text/css" href="style.css">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body bgcolor="#ffffff">
<H1><a name="SWIGPlus">6 SWIG and C++</a></H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#SWIGPlus_nn2">Comments on C++ Wrapping</a>
<li><a href="#SWIGPlus_nn3">Approach</a>
<li><a href="#SWIGPlus_nn4">Supported C++ features</a>
<li><a href="#SWIGPlus_nn5">Command line options and compilation</a>
<li><a href="#SWIGPlus_nn38">Proxy classes</a>
<ul>
<li><a href="#SWIGPlus_nn39">Construction of proxy classes</a>
<li><a href="#SWIGPlus_nn40">Resource management in proxies</a>
<li><a href="#SWIGPlus_nn41">Language specific details</a>
</ul>
<li><a href="#SWIGPlus_nn6">Simple C++ wrapping</a>
<ul>
<li><a href="#SWIGPlus_nn7">Constructors and destructors</a>
<li><a href="#SWIGPlus_nn8">Default constructors, copy constructors and implicit destructors</a>
<li><a href="#SWIGPlus_nn9">When constructor wrappers aren't created</a>
<li><a href="#SWIGPlus_nn10">Copy constructors</a>
<li><a href="#SWIGPlus_nn11">Member functions</a>
<li><a href="#SWIGPlus_nn12">Static members</a>
<li><a href="#SWIGPlus_member_data">Member data</a>
</ul>
<li><a href="#SWIGPlus_default_args">Default arguments</a>
<li><a href="#SWIGPlus_nn15">Protection</a>
<li><a href="#SWIGPlus_nn16">Enums and constants</a>
<li><a href="#SWIGPlus_nn17">Friends</a>
<li><a href="#SWIGPlus_nn18">References and pointers</a>
<li><a href="#SWIGPlus_nn19">Pass and return by value</a>
<li><a href="#SWIGPlus_nn20">Inheritance</a>
<li><a href="#SWIGPlus_nn21">A brief discussion of multiple inheritance, pointers, and type checking</a>
<li><a href="#SWIGPlus_overloaded_methods">Wrapping Overloaded Functions and Methods</a>
<ul>
<li><a href="#SWIGPlus_nn24">Dispatch function generation</a>
<li><a href="#SWIGPlus_nn25">Ambiguity in Overloading</a>
<li><a href="#SWIGPlus_ambiguity_resolution_renaming">Ambiguity resolution and renaming</a>
<li><a href="#SWIGPlus_nn27">Comments on overloading</a>
</ul>
<li><a href="#SWIGPlus_nn28">Wrapping overloaded operators</a>
<li><a href="#SWIGPlus_class_extension">Class extension</a>
<li><a href="#SWIGPlus_nn30">Templates</a>
<li><a href="#SWIGPlus_namespaces">Namespaces</a>
<ul>
<li><a href="#SWIGPlus_nspace">The nspace feature for namespaces</a>
</ul>
<li><a href="#SWIGPlus_renaming_templated_types_namespaces">Renaming templated types in namespaces</a>
<li><a href="#SWIGPlus_exception_specifications">Exception specifications</a>
<li><a href="#SWIGPlus_catches">Exception handling with %catches</a>
<li><a href="#SWIGPlus_nn33">Pointers to Members</a>
<li><a href="#SWIGPlus_smart_pointers">Smart pointers and operator->()</a>
<li><a href="#SWIGPlus_ref_unref">C++ reference counted objects - ref/unref feature</a>
<li><a href="#SWIGPlus_nn35">Using declarations and inheritance</a>
<li><a href="#SWIGPlus_nested_classes">Nested classes</a>
<li><a href="#SWIGPlus_const">A brief rant about const-correctness</a>
<li><a href="#SWIGPlus_nn42">Where to go for more information</a>
</ul>
</div>
<!-- INDEX -->
<p>
This chapter describes SWIG's support for wrapping C++. As a prerequisite,
you should first read the chapter <a href="SWIG.html#SWIG">SWIG Basics</a> to see
how SWIG wraps ANSI C. Support for C++ builds upon ANSI C
wrapping and that material will be useful in understanding this chapter.
</p>
<H2><a name="SWIGPlus_nn2">6.1 Comments on C++ Wrapping</a></H2>
<p>
Because of its complexity and the fact that C++ can be
difficult to integrate with itself let alone other languages, SWIG
only provides support for a subset of C++ features. Fortunately,
this is now a rather large subset.
</p>
<p>
In part, the problem with C++ wrapping is that there is no
semantically obvious (or automatic ) way to map many of its advanced
features into other languages. As a simple example, consider the
problem of wrapping C++ multiple inheritance to a target language with
no such support. Similarly, the use of overloaded operators and
overloaded functions can be problematic when no such capability exists
in a target language.
</p>
<p>
A more subtle issue with C++ has to do with the way that some C++
programmers think about programming libraries. In the world of SWIG,
you are really trying to create binary-level software components for
use in other languages. In order for this to work, a "component" has
to contain real executable instructions and there has to be some kind
of binary linking mechanism for accessing its functionality. In
contrast, C++ has increasingly relied upon generic programming and
templates for much of its functionality.
Although templates are a powerful feature, they are largely orthogonal
to the whole notion of binary components and libraries. For example,
an STL <tt>vector</tt> does not define any kind of binary object for
which SWIG can just create a wrapper. To further complicate matters,
these libraries often utilize a lot of behind the scenes magic in
which the semantics of seemingly basic operations (e.g., pointer
dereferencing, procedure call, etc.) can be changed in dramatic and
sometimes non-obvious ways. Although this "magic" may present few
problems in a C++-only universe, it greatly complicates the problem of
crossing language boundaries and provides many opportunities to shoot
yourself in the foot. You will just have to be careful.
</p>
<H2><a name="SWIGPlus_nn3">6.2 Approach</a></H2>
<p>
To wrap C++, SWIG uses a layered approach to code generation.
At the lowest level, SWIG generates a collection of procedural ANSI-C style
wrappers. These wrappers take care of basic type conversion,
type checking, error handling, and other low-level details of the C++ binding.
These wrappers are also sufficient to bind C++ into any target language
that supports built-in procedures. In some sense, you might view this
layer of wrapping as providing a C library interface to C++.
On top of the low-level procedural (flattened) interface, SWIG generates proxy classes
that provide a natural object-oriented (OO) interface to the underlying code. The proxy classes are typically
written in the target language itself. For instance, in Python, a real
Python class is used to provide a wrapper around the underlying C++ object.
</p>
<p>
It is important to emphasize that SWIG takes a deliberately
conservative and non-intrusive approach to C++ wrapping. SWIG does not
encapsulate C++ classes inside a special C++ adaptor, it does not rely
upon templates, nor does it add in additional C++ inheritance when
generating wrappers. The last thing that most C++ programs need is
even more compiler magic. Therefore, SWIG tries to maintain a very
strict and clean separation between the implementation of your C++
application and the resulting wrapper code. You might say that SWIG
has been written to follow the principle of least surprise--it does
not play sneaky tricks with the C++ type system, it doesn't mess with
your class hierarchies, and it doesn't introduce new semantics.
Although this approach might not provide the most seamless integration
with C++, it is safe, simple, portable, and debuggable.
</p>
<p>
Some of this chapter focuses on the low-level procedural interface to
C++ that is used as the foundation for all language modules. Keep in
mind that the target languages also provide the high-level OO interface via
proxy classes. More detailed coverage can be found in the documentation
for each target language.
</p>
<H2><a name="SWIGPlus_nn4">6.3 Supported C++ features</a></H2>
<p>
SWIG currently supports most C++ features including the following:</p>
<ul>
<li>Classes
<li>Constructors and destructors
<li>Virtual functions
<li>Public inheritance (including multiple inheritance)
<li>Static functions
<li>Function and method overloading
<li>Operator overloading for many standard operators
<li>References
<li>Templates (including specialization and member templates)
<li>Pointers to members
<li>Namespaces
<li>Default parameters
<li>Smart pointers
</ul>
<p>
The following C++ features are not currently supported:</p>
<ul>
<li>Overloaded versions of certain operators (new, delete, etc.)
</ul>
<p>
As a rule of thumb, SWIG should not be used on raw C++ source files, use header files only.
</p>
<p>
SWIG's C++ support is an ongoing project so some of these limitations may be lifted
in future releases. However, we make no promises. Also, submitting a bug report is a very
good way to get problems fixed (wink).
</p>
<H2><a name="SWIGPlus_nn5">6.4 Command line options and compilation</a></H2>
<p>
When wrapping C++ code, it is critical that SWIG be called with the
`<tt>-c++</tt>' option. This changes the way a number of critical
features such as memory management are handled. It
also enables the recognition of C++ keywords. Without the <tt>-c++</tt>
flag, SWIG will either issue a warning or a large number of syntax
errors if it encounters C++ code in an interface file.</p>
<p>
When compiling and linking the resulting wrapper file, it is normal
to use the C++ compiler. For example:
</p>
<div class="shell">
<pre>
$ swig -c++ -tcl example.i
$ c++ -fPIC -c example_wrap.cxx
$ c++ example_wrap.o $(OBJS) -o example.so
</pre>
</div>
<p>
Unfortunately, the process varies slightly on each platform. Make sure
you refer to the documentation on each target language for further
details. The SWIG Wiki also has further details.
</p>
<b>Compatibility Note:</b> Early versions of SWIG generated just a flattened low-level C style API to C++ classes by default.
The <tt>-noproxy</tt> commandline option is recognised by many target languages and will generate just this
interface as in earlier versions.
<H2><a name="SWIGPlus_nn38">6.5 Proxy classes</a></H2>
<p>
In order to provide a natural mapping from C++ classes to the target language classes, SWIG's target
languages mostly wrap C++ classes with special proxy classes. These
proxy classes are typically implemented in the target language itself.
For example, if you're building a Python module, each C++ class is
wrapped by a Python proxy class. Or if you're building a Java module, each
C++ class is wrapped by a Java proxy class.
</p>
<H3><a name="SWIGPlus_nn39">6.5.1 Construction of proxy classes</a></H3>
<p>
Proxy classes are always constructed as an extra layer of wrapping that uses low-level
accessor functions. To illustrate, suppose you had a
C++ class like this:
</p>
<div class="code">
<pre>
class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;
};
</pre>
</div>
<p>
Using C++ as pseudocode, a proxy class looks something like this:
</p>
<div class="code">
<pre>
class FooProxy {
private:
Foo *self;
public:
FooProxy() {
self = new_Foo();
}
~FooProxy() {
delete_Foo(self);
}
int bar(int x) {
return Foo_bar(self, x);
}
int x_get() {
return Foo_x_get(self);
}
void x_set(int x) {
Foo_x_set(self, x);
}
};
</pre>
</div>
<p>
Of course, always keep in mind that the real proxy class is written in the target language.
For example, in Python, the proxy might look roughly like this:
</p>
<div class="targetlang">
<pre>
class Foo:
def __init__(self):
self.this = new_Foo()
def __del__(self):
delete_Foo(self.this)
def bar(self, x):
return Foo_bar(self.this, x)
def __getattr__(self, name):
if name == 'x':
return Foo_x_get(self.this)
...
def __setattr__(self, name, value):
if name == 'x':
Foo_x_set(self.this, value)
...
</pre>
</div>
<p>
Again, it's important to emphasize that the low-level accessor functions are always used by the
proxy classes.
Whenever possible, proxies try to take advantage of language features that are similar to C++. This
might include operator overloading, exception handling, and other features.
</p>
<H3><a name="SWIGPlus_nn40">6.5.2 Resource management in proxies</a></H3>
<p>
A major issue with proxies concerns the memory management of wrapped objects. Consider the following
C++ code:
</p>
<div class="code">
<pre>
class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;
};
class Spam {
public:
Foo *value;
...
};
</pre>
</div>
<p>
Consider some script code that uses these classes:
</p>
<div class="targetlang">
<pre>
f = Foo() # Creates a new Foo
s = Spam() # Creates a new Spam
s.value = f # Stores a reference to f inside s
g = s.value # Returns stored reference
g = 4 # Reassign g to some other value
del f # Destroy f
</pre>
</div>
<p>
Now, ponder the resulting memory management issues. When objects are
created in the script, the objects are wrapped by newly created proxy
classes. That is, there is both a new proxy class instance and a new
instance of the underlying C++ class. In this example, both
<tt>f</tt> and <tt>s</tt> are created in this way. However, the
statement <tt>s.value</tt> is rather curious---when executed, a
pointer to <tt>f</tt> is stored inside another object. This means
that the scripting proxy class <em>AND</em> another C++ class share a
reference to the same object. To make matters even more interesting,
consider the statement <tt>g = s.value</tt>. When executed, this
creates a new proxy class <tt>g</tt> that provides a wrapper around the
C++ object stored in <tt>s.value</tt>. In general, there is no way to
know where this object came from---it could have been created by the
script, but it could also have been generated internally. In this
particular example, the assignment of <tt>g</tt> results in a second
proxy class for <tt>f</tt>. In other words, a reference to <tt>f</tt>
is now shared by two proxy classes <em>and</em> a C++ class.
</p>
<p>
Finally, consider what happens when objects are destroyed. In the
statement, <tt>g=4</tt>, the variable <tt>g</tt> is reassigned. In
many languages, this makes the old value of <tt>g</tt> available for
garbage collection. Therefore, this causes one of the proxy classes
to be destroyed. Later on, the statement <tt>del f</tt> destroys the
other proxy class. Of course, there is still a reference to the
original object stored inside another C++ object. What happens to it?
Is the object still valid?
</p>
<p>
To deal with memory management problems, proxy classes provide an API
for controlling ownership. In C++ pseudocode, ownership control might look
roughly like this:
</p>
<div class="code">
<pre>
class FooProxy {
public:
Foo *self;
int thisown;
FooProxy() {
self = new_Foo();
thisown = 1; // Newly created object
}
~FooProxy() {
if (thisown) delete_Foo(self);
}
...
// Ownership control API
void disown() {
thisown = 0;
}
void acquire() {
thisown = 1;
}
};
class FooPtrProxy: public FooProxy {
public:
FooPtrProxy(Foo *s) {
self = s;
thisown = 0;
}
};
class SpamProxy {
...
FooProxy *value_get() {
return FooPtrProxy(Spam_value_get(self));
}
void value_set(FooProxy *v) {
Spam_value_set(self, v->self);
v->disown();
}
...
};
</pre>
</div>
<p>
Looking at this code, there are a few central features:
</p>
<ul>
<li>Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed
if the ownership flag is set.
</li>
<li>When new objects are created in the target language, the ownership flag is set.
</li>
<li>When a reference to an internal C++ object is returned, it is wrapped by a proxy
class, but the proxy class does not have ownership.
</li>
<li>In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of
a class, ownership is lost.
</li>
<li>Manual ownership control is provided by special <tt>disown()</tt> and <tt>acquire()</tt> methods.
</li>
</ul>
<p>
Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle
every possible memory management problem. However, proxies do provide a mechanism for manual control that
can be used (if necessary) to address some of the more tricky memory management problems.
</p>
<H3><a name="SWIGPlus_nn41">6.5.3 Language specific details</a></H3>
<p>
Language specific details on proxy classes are contained in the chapters describing each target language. This
chapter has merely introduced the topic in a very general way.
</p>
<H2><a name="SWIGPlus_nn6">6.6 Simple C++ wrapping</a></H2>
<p>
The following code shows a SWIG interface file for a simple C++
class.</p>
<div class="code"><pre>
%module list
%{
#include "list.h"
%}
// Very simple C++ example for linked list
class List {
public:
List();
~List();
int search(char *value);
void insert(char *);
void remove(char *);
char *get(int n);
int length;
static void print(List *l);
};
</pre></div>
<p>
To generate wrappers for this class, SWIG first reduces the class to a collection of low-level C-style
accessor functions which are then used by the proxy classes.
</p>
<H3><a name="SWIGPlus_nn7">6.6.1 Constructors and destructors</a></H3>
<p>
C++ constructors and destructors are translated into accessor
functions such as the following :</p>
<div class="code"><pre>
List * new_List(void) {
return new List;
}
void delete_List(List *l) {
delete l;
}
</pre></div>
<H3><a name="SWIGPlus_nn8">6.6.2 Default constructors, copy constructors and implicit destructors</a></H3>
<p>
Following the C++ rules for implicit constructor and destructors, SWIG
will automatically assume there is one even when they are not
explicitly declared in the class interface.
</p>
<p>
In general then:
</p>
<ul>
<li>
If a C++ class does not declare any explicit constructor, SWIG will
automatically generate a wrapper for one.
</li>
<li>
If a C++ class does not declare an explicit copy constructor, SWIG will
automatically generate a wrapper for one if the <tt>%copyctor</tt> is used.
</li>
<li>
If a C++ class does not declare an explicit destructor, SWIG will
automatically generate a wrapper for one.
</li>
</ul>
<p>
And as in C++, a few rules that alters the previous behavior:
</p>
<ul>
<li>A default constructor is not created if a class already defines a constructor with arguments.
</li>
<li>Default constructors are not generated for classes with pure virtual methods or for classes that
inherit from an abstract class, but don't provide definitions for all of the pure methods.
</li>
<li>A default constructor is not created unless all base classes support a
default constructor.
</li>
<li>Default constructors and implicit destructors are not created if a class
defines them in a <tt>private</tt> or <tt>protected</tt> section.
</li>
<li>Default constructors and implicit destructors are not created if any base
class defines a non-public default constructor or destructor.
</li>
</ul>
<p>
SWIG should never generate a default constructor, copy constructor or
default destructor wrapper for a class in which it is illegal to do so. In
some cases, however, it could be necessary (if the complete class
declaration is not visible from SWIG, and one of the above rules is
violated) or desired (to reduce the size of the final interface) by
manually disabling the implicit constructor/destructor generation.
</p>
<p>
To manually disable these, the <tt>%nodefaultctor</tt> and <tt>%nodefaultdtor</tt>
<a href="Customization.html#Customization_feature_flags">feature flag</a> directives
can be used. Note that these directives only affects the
implicit generation, and they have no effect if the default/copy
constructors or destructor are explicitly declared in the class
interface.
</p>
<p>
For example:
</p>
<div class="code">
<pre>
%nodefaultctor Foo; // Disable the default constructor for class Foo.
class Foo { // No default constructor is generated, unless one is declared
...
};
class Bar { // A default constructor is generated, if possible
...
};
</pre>
</div>
<p>
The directive <tt>%nodefaultctor</tt> can also be applied "globally", as in:
</p>
<div class="code">
<pre>
%nodefaultctor; // Disable creation of default constructors
class Foo { // No default constructor is generated, unless one is declared
...
};
class Bar {
public:
Bar(); // The default constructor is generated, since one is declared
};
%clearnodefaultctor; // Enable the creation of default constructors again
</pre>
</div>
<p>
The corresponding <tt>%nodefaultdtor</tt> directive can be used
to disable the generation of the default or implicit destructor, if
needed. Be aware, however, that this could lead to memory leaks in the
target language. Hence, it is recommended to use this directive only
in well known cases. For example:
</p>
<div class="code">
<pre>
%nodefaultdtor Foo; // Disable the implicit/default destructor for class Foo.
class Foo { // No destructor is generated, unless one is declared
...
};
</pre>
</div>
<p>
<b>Compatibility Note:</b> The generation of default
constructors/implicit destructors was made the default behavior in SWIG
1.3.7. This may break certain older modules, but the old behavior can
be easily restored using <tt>%nodefault</tt> or the
<tt>-nodefault</tt> command line option. Furthermore, in order for
SWIG to properly generate (or not generate) default constructors, it
must be able to gather information from both the <tt>private</tt> and
<tt>protected</tt> sections (specifically, it needs to know if a private or
protected constructor/destructor is defined). In older versions of
SWIG, it was fairly common to simply remove or comment out
the private and protected sections of a class due to parser limitations.
However, this removal may now cause SWIG to erroneously generate constructors
for classes that define a constructor in those sections. Consider restoring
those sections in the interface or using <tt>%nodefault</tt> to fix the problem.
</p>
<p>
<b>Note:</b> The <tt>%nodefault</tt>
directive/<tt>-nodefault</tt> options described above, which disable both the default
constructor and the implicit destructors, could lead to memory
leaks, and so it is strongly recommended to not use them.
</p>
<H3><a name="SWIGPlus_nn9">6.6.3 When constructor wrappers aren't created</a></H3>
<p>
If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will
not generate a constructor wrapper if it thinks that it will result in illegal wrapper code. There are really
two cases where this might show up.
</p>
<p>
First, SWIG won't generate wrappers for protected or private constructors. For example:
</p>
<div class="code">
<pre>
class Foo {
protected:
Foo(); // Not wrapped.
public:
...
};
</pre>
</div>
<p>
Next, SWIG won't generate wrappers for a class if it appears to be abstract--that is, it has undefined
pure virtual methods. Here are some examples:
</p>
<div class="code">
<pre>
class Bar {
public:
Bar(); // Not wrapped. Bar is abstract.
virtual void spam(void) = 0;
};
class Grok : public Bar {
public:
Grok(); // Not wrapped. No implementation of abstract spam().
};
</pre>
</div>
<p>
Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost
all cases, this is caused when classes are determined to be abstract. To see if this is the case, run SWIG with
all of its warnings turned on:
</p>
<div class="shell">
<pre>
% swig -Wall -python module.i
</pre>
</div>
<p>
In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be
non-abstract using this:
</p>
<div class="code">
<pre>
%feature("notabstract") Foo;
class Foo : public Bar {
public:
Foo(); // Generated no matter what---not abstract.
...
};
</pre>
</div>
<p>
More information about <tt>%feature</tt> can be found in the <a href="Customization.html#Customization">Customization features</a> chapter.
</p>
<H3><a name="SWIGPlus_nn10">6.6.4 Copy constructors</a></H3>
<p>
If a class defines more than one constructor, its behavior depends on the capabilities of the
target language. If overloading is supported, the copy constructor is accessible using
the normal constructor function. For example, if you have this:
</p>
<div class="code">
<pre>
class List {
public:
List();
List(const List &); // Copy constructor
...
};
</pre>
</div>
<p>
then the copy constructor can be used as follows:
</p>
<div class="targetlang">
<pre>
x = List() # Create a list
y = List(x) # Copy list x
</pre>
</div>
<p>
If the target language does not support overloading, then the copy constructor is available
through a special function like this:
</p>
<div class="code">
<pre>
List *copy_List(List *f) {
return new List(*f);
}
</pre>
</div>
<p>
<b>Note:</b> For a class <tt>X</tt>, SWIG only treats a constructor as
a copy constructor if it can be applied to an object of type
<tt>X</tt> or <tt>X *</tt>. If more than one copy constructor is
defined, only the first definition that appears is used as the copy
constructor--other definitions will result in a name-clash.
Constructors such as <tt>X(const X &)</tt>, <tt>X(X &)</tt>, and
<tt>X(X *)</tt> are handled as copy constructors in SWIG.
</p>
<p>
<b>Note:</b> SWIG does <em>not</em> generate a copy constructor
wrapper unless one is explicitly declared in the class. This differs
from the treatment of default constructors and destructors.
However, copy constructor wrappers can be generated if using the <tt>copyctor</tt>
<a href="Customization.html#Customization_feature_flags">feature flag</a>. For example:
</p>
<div class="code">
<pre>
%copyctor List;
class List {
public:
List();
};
</pre>
</div>
<p>
Will generate a copy constructor wrapper for <tt>List</tt>.
</p>
<p>
<b>Compatibility note:</b> Special support for copy constructors was
not added until SWIG-1.3.12. In previous versions, copy constructors
could be wrapped, but they had to be renamed. For example:
</p>
<div class="code">
<pre>
class Foo {
public:
Foo();
%name(CopyFoo) Foo(const Foo &);
...
};
</pre>
</div>
<p>
For backwards compatibility, SWIG does not perform any special
copy-constructor handling if the constructor has been manually
renamed. For instance, in the above example, the name of the
constructor is set to <tt>new_CopyFoo()</tt>. This is the same as in
older versions.
</p>
<H3><a name="SWIGPlus_nn11">6.6.5 Member functions</a></H3>
<p>
All member functions are roughly translated into accessor functions like this :</p>
<div class="code"><pre>
int List_search(List *obj, char *value) {
return obj->search(value);
}
</pre></div>
<p>
This translation is the same even if the member function has been
declared as <tt>virtual</tt>.
</p>
<p>
It should be noted that SWIG does not <em>actually</em> create a C accessor
function in the code it generates. Instead, member access such as
<tt>obj->search(value)</tt> is directly inlined into the generated
wrapper functions. However, the name and calling convention of the
low-level procedural wrappers match the accessor function prototype described above.
</p>
<H3><a name="SWIGPlus_nn12">6.6.6 Static members</a></H3>
<p>
Static member functions are called directly without making any special
transformations. For example, the static member function
<tt>print(List *l)</tt> directly invokes <tt>List::print(List *l)</tt>
in the generated wrapper code.
</p>
<H3><a name="SWIGPlus_member_data">6.6.7 Member data</a></H3>
<p>
Member data is handled in exactly the same manner as for C
structures. A pair of accessor functions are effectively created. For example
:</p>
<div class="code"><pre>
int List_length_get(List *obj) {
return obj->length;
}
int List_length_set(List *obj, int value) {
obj->length = value;
return value;
}
</pre></div>
<p>
A read-only member can be created using the <tt>%immutable</tt> and <tt>%mutable</tt>
<a href="Customization.html#Customization_feature_flags">feature flag</a> directive.
For example, we probably wouldn't want
the user to change the length of a list so we could do the following
to make the value available, but read-only.</p>
<div class="code"><pre>
class List {
public:
...
%immutable;
int length;
%mutable;
...
};
</pre></div>
<p>
Alternatively, you can specify an immutable member in advance like this:
</p>
<div class="code">
<pre>
%immutable List::length;
...
class List {
...
int length; // Immutable by above directive
...
};
</pre>
</div>
<p>
Similarly, all data attributes declared as <tt>const</tt> are wrapped as read-only members.
</p>
<p>
By default, SWIG uses the const reference typemaps for members that are primitive types.
There are some subtle issues when wrapping data members that are
not primitive types, such as classes. For instance, if you had another class like this,
</p>
<div class="code">
<pre>
class Foo {
public:
List items;
...
</pre>
</div>
<p>
then the low-level accessor to the <tt>items</tt> member actually uses pointers.
For example:
</p>
<div class="code">
<pre>
List *Foo_items_get(Foo *self) {
return &self->items;
}
void Foo_items_set(Foo *self, List *value) {
self->items = *value;
}
</pre>
</div>
<p>
More information about this can be found in the SWIG Basics chapter,
<a href="SWIG.html#SWIG_structure_data_members">Structure data members</a> section.
</p>
<p>
The wrapper code to generate the accessors for classes comes from the pointer typemaps.
This can be somewhat unnatural for some types.
For example, a user would expect the STL std::string class member variables to be wrapped as a string in the target language,
rather than a pointer to this class.
The const reference typemaps offer this type of marshalling, so there is a feature to tell SWIG to use the const reference typemaps rather than the pointer typemaps.
It is the naturalvar feature and can be used to effectively change the way accessors are generated to the following:
</p>
<div class="code">
<pre>
const List &Foo_items_get(Foo *self) {
return self->items;
}
void Foo_items_set(Foo *self, const List &value) {
self->items = value;
}
</pre>
</div>
<p>
The <tt>%naturalvar</tt> directive is a macro for, and hence equivalent to, <tt>%feature("naturalvar")</tt>. It can be used as follows:
</p>
<div class="code">
<pre>
// All List variables will use const List& typemaps
%naturalvar List;
// Only Foo::myList will use const List& typemaps
%naturalvar Foo::myList;
struct Foo {
List myList;
};
// All non-primitive types will use const reference typemaps
%naturalvar;
</pre>
</div>
<p>
The observant reader will notice that <tt>%naturalvar</tt> works like any other
<a href="Customization.html#Customization_feature_flags">feature flag</a> directive but with some extra flexibility.
The first of the example usages above shows <tt>%naturalvar</tt> attaching to the <tt>myList</tt>'s variable type, that is the <tt>List</tt> class.
The second usage shows <tt>%naturalvar</tt> attaching to the variable name.
Hence the naturalvar feature can be used on either the variable's name or type.
Note that using the naturalvar feature on a variable's name overrides any naturalvar feature attached to the variable's type.
</p>
<p>
It is generally a good idea to use this feature globally as the reference typemaps have extra NULL checking compared to the pointer typemaps.
A pointer can be NULL, whereas a reference cannot, so the extra checking ensures that the target language user does not pass in a value that translates
to a NULL pointer and thereby preventing any potential NULL pointer dereferences.
The <tt>%naturalvar</tt> feature will apply to global variables in addition to member variables in some language modules, eg C# and Java.
</p>
<p>
The naturalvar behavior can also be turned on as a global setting via the <tt>-naturalvar</tt> commandline option
or the module mode option, <tt>%module(naturalvar=1)</tt>.
However, any use of <tt>%feature("naturalvar")</tt> will override the global setting.
</p>
<p>
<b>Compatibility note:</b> The <tt>%naturalvar</tt> feature was introduced in SWIG-1.3.28, prior to which it was necessary to manually apply the const reference
typemaps, eg <tt>%apply const std::string & { std::string * }</tt>, but this example would also apply the typemaps to methods taking a <tt>std::string</tt> pointer.
</p>
<p>
<b>Compatibility note:</b> Read-only access used to be controlled by a pair of directives
<tt>%readonly</tt> and <tt>%readwrite</tt>. Although these directives still work, they
generate a warning message. Simply change the directives to <tt>%immutable;</tt> and
<tt>%mutable;</tt> to silence the warning. Don't forget the extra semicolon!
</p>
<p>
<b>Compatibility note:</b> Prior to SWIG-1.3.12, all members of unknown type were
wrapped into accessor functions using pointers. For example, if you had a structure
like this
</p>
<div class="code">
<pre>
struct Foo {
size_t len;
};
</pre>
</div>
<p>
and nothing was known about <tt>size_t</tt>, then accessors would be
written to work with <tt>size_t *</tt>. Starting in SWIG-1.3.12, this
behavior has been modified. Specifically, pointers will <em>only</em>
be used if SWIG knows that a datatype corresponds to a structure or
class. Therefore, the above code would be wrapped into accessors
involving <tt>size_t</tt>. This change is subtle, but it smooths over
a few problems related to structure wrapping and some of SWIG's
customization features.
</p>
<H2><a name="SWIGPlus_default_args">6.7 Default arguments</a></H2>
<p>
SWIG will wrap all types of functions that have default arguments. For example member functions:
</p>
<div class="code">
<pre>
class Foo {
public:
void bar(int x, int y = 3, int z = 4);
};
</pre>
</div>
<p>
SWIG handles default arguments by generating an extra overloaded method for each defaulted argument.
SWIG is effectively handling methods with default arguments as if it was wrapping the equivalent overloaded methods.
Thus for the example above, it is as if we had instead given the following to SWIG:
</p>
<div class="code">
<pre>
class Foo {
public:
void bar(int x, int y, int z);
void bar(int x, int y);
void bar(int x);
};
</pre>
</div>
<p>
The wrappers produced are exactly the same as if the above code was instead fed into SWIG.
Details of this are covered later in the <a href="#SWIGPlus_overloaded_methods">Wrapping Overloaded Functions and Methods</a> section.
This approach allows SWIG to wrap all possible default arguments, but can be verbose.
For example if a method has ten default arguments, then eleven wrapper methods are generated.
</p>
<p>
Please see the <a href="Customization.html#Customization_features_default_args">Features and default arguments</a>
section for more information on using <tt>%feature</tt> with functions with default arguments.
The <a href="#SWIGPlus_ambiguity_resolution_renaming">Ambiguity resolution and renaming</a> section
also deals with using <tt>%rename</tt> and <tt>%ignore</tt> on methods with default arguments.
If you are writing your own typemaps for types used in methods with default arguments, you may also need to write a <tt>typecheck</tt> typemap.
See the <a href="Typemaps.html#Typemaps_overloading">Typemaps and overloading</a> section for details or otherwise
use the <tt>compactdefaultargs</tt> feature flag as mentioned below.
</p>
<p>
<b>Compatibility note:</b> Versions of SWIG prior to SWIG-1.3.23 wrapped default arguments slightly differently.
Instead a single wrapper method was generated and the default values were copied into the C++ wrappers
so that the method being wrapped was then called with all the arguments specified.
If the size of the wrappers are a concern then this approach to wrapping methods with default arguments
can be re-activated by using the <tt>compactdefaultargs</tt>
<a href="Customization.html#Customization_feature_flags">feature flag</a>.
</p>
<div class="code">
<pre>
%feature("compactdefaultargs") Foo::bar;
class Foo {
public:
void bar(int x, int y = 3, int z = 4);
};
</pre>
</div>
<p>
This is great for reducing the size of the wrappers, but the caveat is it does not work for the statically typed languages,
such as C# and Java,
which don't have optional arguments in the language,
Another restriction of this feature is that it cannot handle default arguments that are not public.
The following example illustrates this:
</p>
<div class="code">
<pre>
class Foo {
private:
static const int spam;
public:
void bar(int x, int y = spam); // Won't work with %feature("compactdefaultargs") -
// private default value
};
</pre>
</div>
<p>
This produces uncompilable wrapper code because default values in C++ are
evaluated in the same scope as the member function whereas SWIG
evaluates them in the scope of a wrapper function (meaning that the
values have to be public).
</p>
<p>
The <tt>compactdefaultargs</tt> feature is automatically turned on when wrapping <a href="SWIG.html#SWIG_default_args">C code with default arguments</a>.
Some target languages will also automatically turn on this feature
if the keyword arguments feature (kwargs) is specified for either C or C++ functions, and the target language supports kwargs,
the <tt>compactdefaultargs</tt> feature is also automatically turned on.
Keyword arguments are a language feature of some scripting languages, for example Ruby and Python.
SWIG is unable to support kwargs when wrapping overloaded methods, so the default approach cannot be used.
</p>
<H2><a name="SWIGPlus_nn15">6.8 Protection</a></H2>
<p>
SWIG wraps class members that are public following the C++
conventions, i.e., by explicit public declaration or by the use of
the <tt>using</tt> directive. In general, anything specified in a
private or protected section will be ignored, although the internal
code generator sometimes looks at the contents of the private and
protected sections so that it can properly generate code for default
constructors and destructors. Directors could also modify the way
non-public virtual protected members are treated.
</p>
<p>
By default, members of a class definition are assumed to be private
until you explicitly give a `<tt>public:</tt>' declaration (This is
the same convention used by C++).
</p>
<H2><a name="SWIGPlus_nn16">6.9 Enums and constants</a></H2>
<p>
Enumerations and constants are handled differently by the different language modules and are described in detail in the appropriate language chapter.
However, many languages map enums and constants in a class definition
into constants with the classname as a prefix. For example :</p>
<div class="code"><pre>
class Swig {
public:
enum {ALE, LAGER, PORTER, STOUT};
};
</pre></div>
<p>
Generates the following set of constants in the target scripting language :</p>
<div class="targetlang"><pre>
Swig_ALE = Swig::ALE
Swig_LAGER = Swig::LAGER
Swig_PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT
</pre></div>
<p>
Members declared as <tt>const</tt> are wrapped as read-only members and do not create constants.
</p>
<H2><a name="SWIGPlus_nn17">6.10 Friends</a></H2>
<p>
Friend declarations are recognised by SWIG. For example, if
you have this code:
</p>
<div class="code">
<pre>
class Foo {
public:
...
friend void blah(Foo *f);
...
};
</pre>
</div>
<p>
then the <tt>friend</tt> declaration does result in a wrapper code
equivalent to one generated for the following declaration
</p>
<div class="code">
<pre>
class Foo {
public:
...
};
void blah(Foo *f);
</pre>
</div>
<p>
A friend declaration, as in C++, is understood to be in the same scope
where the class is declared, hence, you can have
</p>
<div class="code">
<pre>
%ignore bar::blah(Foo *f);
namespace bar {
class Foo {
public:
...
friend void blah(Foo *f);
...
};
}
</pre>
</div>
<p>
and a wrapper for the method 'blah' will not be generated.
</p>
<H2><a name="SWIGPlus_nn18">6.11 References and pointers</a></H2>
<p>
C++ references are supported, but SWIG transforms them back into pointers. For example,
a declaration like this :</p>
<div class="code"><pre>
class Foo {
public:
double bar(double &a);
}
</pre></div>
<p>
has a low-level accessor
</p>
<div class="code"><pre>
double Foo_bar(Foo *obj, double *a) {
obj->bar(*a);
}
</pre></div>
<p>
As a special case, most language modules pass <tt>const</tt> references to primitive datatypes (<tt>int</tt>, <tt>short</tt>,
<tt>float</tt>, etc.) by value instead of pointers. For example, if you have a function like this,
</p>
<div class="code">
<pre>
void foo(const int &x);
</pre>
</div>
<p>
it is called from a script as follows:
</p>
<div class="targetlang">
<pre>
foo(3) # Notice pass by value
</pre>
</div>
<p>
Functions that return a reference are remapped to return a pointer instead.
For example:
</p>
<div class="code"><pre>
class Bar {
public:
Foo &spam();
};
</pre>
</div>
<p>
Generates an accessor like this:
</p>
<div class="code">
<pre>
Foo *Bar_spam(Bar *obj) {
Foo &result = obj->spam();
return &result;
}
</pre>
</div>
<p>
However, functions that return <tt>const</tt> references to primitive datatypes (<tt>int</tt>, <tt>short</tt>, etc.) normally
return the result as a value rather than a pointer. For example, a function like this,
</p>
<div class="code">
<pre>
const int &bar();
</pre>
</div>
<p>
will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.
</p>
<P>
Don't return references to objects allocated as local variables on the
stack. SWIG doesn't make a copy of the objects so this will probably
cause your program to crash.
<p>
<b>Note:</b> The special treatment for references to primitive datatypes is necessary to provide
more seamless integration with more advanced C++ wrapping applications---especially related to
templates and the STL. This was first added in SWIG-1.3.12.
</p>
<H2><a name="SWIGPlus_nn19">6.12 Pass and return by value</a></H2>
<p>
Occasionally, a C++ program will pass and return class objects by value. For example, a function
like this might appear:
</p>
<div class="code">
<pre>
Vector cross_product(Vector a, Vector b);
</pre>
</div>
<p>
If no information is supplied about <tt>Vector</tt>, SWIG creates a wrapper function similar to the
following:
</p>
<div class="code">
<pre>
Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector x = *a;
Vector y = *b;
Vector r = cross_product(x, y);
return new Vector(r);
}</pre>
</div>
<p>
In order for the wrapper code to compile, <tt>Vector</tt> must define a copy constructor and a
default constructor.
</p>
<p>
If <tt>Vector</tt> is defined as a class in the interface, but it does not
support a default constructor, SWIG changes the wrapper code by encapsulating
the arguments inside a special C++ template wrapper class, through a process
called the "Fulton Transform". This produces a wrapper that looks like this:
</p>
<div class="code">
<pre>
Vector cross_product(Vector *a, Vector *b) {
SwigValueWrapper<Vector> x = *a;
SwigValueWrapper<Vector> y = *b;
SwigValueWrapper<Vector> r = cross_product(x, y);
return new Vector(r);
}
</pre>
</div>
<p>
This transformation is a little sneaky, but it provides support for
pass-by-value even when a class does not provide a default constructor
and it makes it possible to properly support a number of SWIG's
customization options. The definition of <tt>SwigValueWrapper</tt>
can be found by reading the SWIG wrapper code. This class is really nothing more than a thin
wrapper around a pointer.
</p>
<p>
Although SWIG usually detects the classes to which the Fulton Transform should
be applied, in some situations it's necessary to override it. That's done with
<tt>%feature("valuewrapper")</tt> to ensure it is used and <tt>%feature("novaluewrapper")</tt>
to ensure it is not used:
</p>
<div class="code"><pre>
%feature("novaluewrapper") A;
class A;
%feature("valuewrapper") B;
struct B {
B();
// ....
};
</pre></div>
<p>
It is well worth considering turning this feature on for classes that do have a default constructor.
It will remove a redundant constructor call at the point of the variable declaration in the wrapper,
so will generate notably better performance for large objects or for classes with expensive construction.
Alternatively consider returning a reference or a pointer.
</p>
<p>
<b>Note:</b> this transformation has no effect on typemaps
or any other part of SWIG---it should be transparent except that you
may see this code when reading the SWIG output file.
</p>
<p>
<b>
Note: </b>This template transformation is new in SWIG-1.3.11 and may be refined in
future SWIG releases. In practice, it is only absolutely necessary to do this for
classes that don't define a default constructor.
</p>
<p>
<b>Note:</b> The use of this template only occurs when objects are passed or returned by value.
It is not used for C++ pointers or references.
</p>
<H2><a name="SWIGPlus_nn20">6.13 Inheritance</a></H2>
<p>
SWIG supports C++ inheritance of classes and allows both single and
multiple inheritance, as limited or allowed by the target
language. The SWIG type-checker knows about the relationship between
base and derived classes and allows pointers to any object of a
derived class to be used in functions of a base class. The
type-checker properly casts pointer values and is safe to use with
multiple inheritance.
</p>
<p> SWIG treats private or protected inheritance as close to the C++
spirit, and target language capabilities, as possible. In most
cases, this means that SWIG will parse the non-public inheritance
declarations, but that will have no effect in the generated code,
besides the implicit policies derived for constructors and
destructors.
</p>
<p>
The following example shows how SWIG handles inheritance. For clarity,
the full C++ code has been omitted.</p>
<div class="code"><pre>
// shapes.i
%module shapes
%{
#include "shapes.h"
%}
class Shape {
public:
double x, y;
virtual double area() = 0;
virtual double perimeter() = 0;
void set_location(double x, double y);
};
class Circle : public Shape {
public:
Circle(double radius);
~Circle();
double area();
double perimeter();
};
class Square : public Shape {
public:
Square(double size);
~Square();
double area();
double perimeter();
}
</pre></div>
<p>
When wrapped into Python, we can perform the following operations (shown using the low level Python accessors):
</p>
<div class="targetlang"><pre>
$ python
>>> import shapes
>>> circle = shapes.new_Circle(7)
>>> square = shapes.new_Square(10)
>>> print shapes.Circle_area(circle)
153.93804004599999757
>>> print shapes.Shape_area(circle)
153.93804004599999757
>>> print shapes.Shape_area(square)
100.00000000000000000
>>> shapes.Shape_set_location(square, 2, -3)
>>> print shapes.Shape_perimeter(square)
40.00000000000000000
>>>
</pre></div>
<p>
In this example, Circle and Square objects have been created. Member
functions can be invoked on each object by making calls to
<tt>Circle_area</tt>, <tt>Square_area</tt>, and so on. However, the same
results can be accomplished by simply using the <tt>Shape_area</tt>
function on either object.
</p>
<p>
One important point concerning inheritance is that the low-level
accessor functions are only generated for classes in which they are
actually declared. For instance, in the above example, the method
<tt>set_location()</tt> is only accessible as
<tt>Shape_set_location()</tt> and not as
<tt>Circle_set_location()</tt> or <tt>Square_set_location()</tt>. Of
course, the <tt>Shape_set_location()</tt> function will accept any
kind of object derived from Shape. Similarly, accessor functions for
the attributes <tt>x</tt> and <tt>y</tt> are generated as
<tt>Shape_x_get()</tt>, <tt>Shape_x_set()</tt>,
<tt>Shape_y_get()</tt>, and <tt>Shape_y_set()</tt>. Functions such as
<tt>Circle_x_get()</tt> are not available--instead you should use
<tt>Shape_x_get()</tt>.
</p>
<p>
Note that there is a one to one correlation between the low-level accessor functions and
the proxy methods and therefore there is also a one to one correlation between
the C++ class methods and the generated proxy class methods.
</p>
<p>
<b>Note:</b> For the best results, SWIG requires all
base classes to be defined in an interface. Otherwise, you may get a
warning message like this:
</p>
<div class="shell">
<pre>
example.i:18: Warning 401: Nothing known about base class 'Foo'. Ignored.
</pre>
</div>
<p>
If any base class is undefined, SWIG still generates correct type
relationships. For instance, a function accepting a <tt>Foo *</tt>
will accept any object derived from <tt>Foo</tt> regardless of whether
or not SWIG actually wrapped the <tt>Foo</tt> class. If you really
don't want to generate wrappers for the base class, but you want to
silence the warning, you might consider using the <tt>%import</tt>
directive to include the file that defines <tt>Foo</tt>.
<tt>%import</tt> simply gathers type information, but doesn't generate
wrappers. Alternatively, you could just define <tt>Foo</tt> as an empty class
in the SWIG interface or use
<a href="Warnings.html#Warnings_suppression">warning suppression</a>.
</p>
<p>
<b>Note:</b> <tt>typedef</tt>-names <em>can</em> be used as base classes. For example:
</p>
<div class="code">
<pre>
class Foo {
...
};
typedef Foo FooObj;
class Bar : public FooObj { // Ok. Base class is Foo
...
};
</pre>
</div>
<p>
Similarly, <tt>typedef</tt> allows unnamed structures to be used as base classes. For example:
</p>
<div class="code">
<pre>
typedef struct {
...
} Foo;
class Bar : public Foo { // Ok.
...
};
</pre>
</div>
<p>
<b>Compatibility Note:</b> Starting in version 1.3.7, SWIG only
generates low-level accessor wrappers for the declarations that are
actually defined in each class. This differs from SWIG1.1 which used
to inherit all of the declarations defined in base classes and
regenerate specialized accessor functions such as
<tt>Circle_x_get()</tt>, <tt>Square_x_get()</tt>,
<tt>Circle_set_location()</tt>, and <tt>Square_set_location()</tt>.
This behavior resulted in huge amounts of replicated code for large
class hierarchies and made it awkward to build applications spread
across multiple modules (since accessor functions are duplicated in
every single module). It is also unnecessary to have such wrappers
when advanced features like proxy classes are used.
<b>Note:</b> Further optimizations are enabled when using the
<tt>-fvirtual</tt> option, which avoids the regenerating of wrapper
functions for virtual members that are already defined in a base
class.
</p>
<H2><a name="SWIGPlus_nn21">6.14 A brief discussion of multiple inheritance, pointers, and type checking</a></H2>
<p>
When a target scripting language refers to a C++ object, it normally
uses a tagged pointer object that contains both the value of the
pointer and a type string. For example, in Tcl, a C++ pointer might
be encoded as a string like this:
</p>
<div class="diagram">
<pre>
_808fea88_p_Circle
</pre>
</div>
<p>
A somewhat common question is whether or not the type-tag could be safely
removed from the pointer. For instance, to get better performance, could you
strip all type tags and just use simple integers instead?
</p>
<p>
In general, the answer to this question is no. In the wrappers, all
pointers are converted into a common data representation in the target
language. Typically this is the equivalent of casting a pointer to <tt>void *</tt>.
This means that any C++ type information associated with the pointer is
lost in the conversion.
</p>
<p>
The problem with losing type information is that it is needed to
properly support many advanced C++ features--especially multiple
inheritance. For example, suppose you had code like this:
</p>
<div class="code">
<pre>
class A {
public:
int x;
};
class B {
public:
int y;
};
class C : public A, public B {
};
int A_function(A *a) {
return a->x;
}
int B_function(B *b) {
return b->y;
}
</pre>
</div>
<p>
Now, consider the following code that uses <tt>void *</tt>.
</p>
<div class="code">
<pre>
C *c = new C();
void *p = (void *) c;
...
int x = A_function((A *) p);
int y = B_function((B *) p);
</pre>
</div>
<p>
In this code, both <tt>A_function()</tt> and <tt>B_function()</tt> may
legally accept an object of type <tt>C *</tt> (via inheritance).
However, one of the functions will always return the wrong result when
used as shown. The reason for this is that even though <tt>p</tt>
points to an object of type <tt>C</tt>, the casting operation doesn't
work like you would expect. Internally, this has to do with the data
representation of <tt>C</tt>. With multiple inheritance, the data from
each base class is stacked together. For example:
</p>
<div class="diagram">
<pre>
------------ <--- (C *), (A *)
| A |
|------------| <--- (B *)
| B |
------------
</pre>
</div>
<p>
Because of this stacking, a pointer of type <tt>C *</tt> may change
value when it is converted to a <tt>A *</tt> or <tt>B *</tt>.
However, this adjustment does <em>not</em> occur if you are converting from a
<tt>void *</tt>.
</p>
<p>
The use of type tags marks all pointers with the real type of the
underlying object. This extra information is then used by SWIG
generated wrappers to correctly cast pointer values under inheritance
(avoiding the above problem).
</p>
<p>
Some of the language modules are able to solve the problem by storing multiple instances of the pointer, for example, <tt>A *</tt>,
in the A proxy class as well as <tt>C *</tt> in the C proxy class. The correct cast can then be made by choosing the correct <tt>void *</tt>
pointer to use and is guaranteed to work as the cast to a void pointer and back to the same type does not lose any type information:
</p>
<div class="code">
<pre>
C *c = new C();
void *p = (void *) c;
void *pA = (void *) c;
void *pB = (void *) c;
...
int x = A_function((A *) pA);
int y = B_function((B *) pB);
</pre>
</div>
<p>
In practice, the pointer is held as an integral number in the target language proxy class.
</p>
<H2><a name="SWIGPlus_overloaded_methods">6.15 Wrapping Overloaded Functions and Methods</a></H2>
<p>
In many language modules, SWIG provides partial support for overloaded functions, methods, and
constructors. For example, if you supply SWIG with overloaded functions like this:
</p>
<div class="code">
<pre>
void foo(int x) {
printf("x is %d\n", x);
}
void foo(char *x) {
printf("x is '%s'\n", x);
}
</pre>
</div>
<p>
The function is used in a completely natural way. For example:
</p>
<div class="targetlang">
<pre>
>>> foo(3)
x is 3
>>> foo("hello")
x is 'hello'
>>>
</pre>
</div>
<p>
Overloading works in a similar manner for methods and constructors. For example if you have
this code,
</p>
<div class="code">
<pre>
class Foo {
public:
Foo();
Foo(const Foo &); // Copy constructor
void bar(int x);
void bar(char *s, int y);
};
</pre>
</div>
<p>
it might be used like this
</p>
<div class="targetlang">
<pre>
>>> f = Foo() # Create a Foo
>>> f.bar(3)
>>> g = Foo(f) # Copy Foo
>>> f.bar("hello", 2)
</pre>
</div>
<H3><a name="SWIGPlus_nn24">6.15.1 Dispatch function generation</a></H3>
<p>
The implementation of overloaded functions and methods is somewhat
complicated due to the dynamic nature of scripting languages. Unlike
C++, which binds overloaded methods at compile time, SWIG must
determine the proper function as a runtime check for scripting language targets. This check is
further complicated by the typeless nature of certain scripting languages. For instance,
in Tcl, all types are simply strings. Therefore, if you have two overloaded functions
like this,
</p>
<div class="code">
<pre>
void foo(char *x);
void foo(int x);
</pre>
</div>
<p>
the order in which the arguments are checked plays a rather critical role.
</p>
<p>
For statically typed languages, SWIG uses the language's method overloading mechanism.
To implement overloading for the scripting languages, SWIG generates a dispatch function that checks the
number of passed arguments and their types. To create this function, SWIG
first examines all of the overloaded methods and ranks them according
to the following rules:
</p>
<ol>
<li><b>Number of required arguments.</b> Methods are sorted by increasing number of
required arguments.
</li>
<li><p><b>Argument type precedence.</b> All C++ datatypes are assigned a numeric type precedence value
(which is determined by the language module).</p>
<div class="diagram">
<pre>
Type Precedence
---------------- ----------
TYPE * 0 (High)
void * 20
Integers 40
Floating point 60
char 80
Strings 100 (Low)
</pre>
</div>
<p>
Using these precedence values, overloaded methods with the same number of required arguments are sorted in increased
order of precedence values.
</p>
</li>
</ol>
<p>
This may sound very confusing, but an example will help. Consider the following collection of
overloaded methods:
</p>
<div class="code">
<pre>
void foo(double);
void foo(int);
void foo(Bar *);
void foo();
void foo(int x, int y, int z, int w);
void foo(int x, int y, int z = 3);
void foo(double x, double y);
void foo(double x, Bar *z);
</pre>
</div>
<p>
The first rule simply ranks the functions by required argument count.
This would produce the following list:
</p>
<div class="diagram">
<pre>
rank
-----
[0] foo()
[1] foo(double);
[2] foo(int);
[3] foo(Bar *);
[4] foo(int x, int y, int z = 3);
[5] foo(double x, double y)
[6] foo(double x, Bar *z)
[7] foo(int x, int y, int z, int w);
</pre>
</div>
<p>
The second rule, simply refines the ranking by looking at argument type precedence values.
</p>
<div class="diagram">
<pre>
rank
-----
[0] foo()
[1] foo(Bar *);
[2] foo(int);
[3] foo(double);
[4] foo(int x, int y, int z = 3);
[5] foo(double x, Bar *z)
[6] foo(double x, double y)
[7] foo(int x, int y, int z, int w);
</pre>
</div>
<p>
Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply
checked in the same order as they appear in this ranking.
</p>
<p>
If you're still confused, don't worry about it---SWIG is probably doing the right thing.
</p>
<H3><a name="SWIGPlus_nn25">6.15.2 Ambiguity in Overloading</a></H3>
<p>
Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider
the following example:
</p>
<div class="code">
<pre>
void foo(int x);
void foo(long x);
</pre>
</div>
<p>
In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer
object. Therefore, which one of these functions do you pick? Clearly, there is no way to truly make a distinction
just by looking at the value of the integer itself (<tt>int</tt> and <tt>long</tt> may even be the same precision).
Therefore, when SWIG encounters this situation, it may generate a warning message like this for scripting languages:
</p>
<div class="shell">
<pre>
example.i:4: Warning 509: Overloaded method foo(long) effectively ignored,
example.i:3: Warning 509: as it is shadowed by foo(int).
</pre>
</div>
<p>
or for statically typed languages like Java:
</p>
<div class="shell">
<pre>
example.i:4: Warning 516: Overloaded method foo(long) ignored,
example.i:3: Warning 516: using foo(int) instead.
at example.i:3 used.
</pre>
</div>
<p>
This means that the second overloaded function will be inaccessible
from a scripting interface or the method won't be wrapped at all.
This is done as SWIG does not know how to disambiguate it from an earlier method.
</p>
<p>
Ambiguity problems are known to arise in the following situations:
</p>
<ul>
<li>Integer conversions. Datatypes such as <tt>int</tt>, <tt>long</tt>, and <tt>short</tt> cannot be disambiguated in some languages. Shown above.
</li>
<li>Floating point conversion. <tt>float</tt> and <tt>double</tt> can not be disambiguated in some languages.
</li>
<li>Pointers and references. For example, <tt>Foo *</tt> and <tt>Foo &</tt>.
</li>
<li>Pointers and arrays. For example, <tt>Foo *</tt> and <tt>Foo [4]</tt>.
</li>
<li>Pointers and instances. For example, <tt>Foo</tt> and <tt>Foo *</tt>. Note: SWIG converts all
instances to pointers.
</li>
<li>Qualifiers. For example, <tt>const Foo *</tt> and <tt>Foo *</tt>.
</li>
<li>Default vs. non default arguments. For example, <tt>foo(int a, int b)</tt> and <tt>foo(int a, int b = 3)</tt>.
</li>
</ul>
<p>
When an ambiguity arises, methods are checked in the same order as they appear in the interface file.
Therefore, earlier methods will shadow methods that appear later.
</p>
<p>
When wrapping an overloaded function, there is a chance that you will get a warning message like this:
</p>
<div class="shell">
<pre>
example.i:3: Warning 467: Overloaded foo(int) not supported (incomplete type checking rule -
no precedence level in typecheck typemap for 'int').
</pre>
</div>
<p>
This error means that the target language module supports overloading,
but for some reason there is no type-checking rule that can be used to
generate a working dispatch function. The resulting behavior is then
undefined. You should report this as a bug to the
<a href="http://www.swig.org/bugs.html">SWIG bug tracking database</a>
if this is due to one of the typemaps supplied with SWIG.
</p>
<p>
If you get an error message such as the following,
</p>
<div class="shell">
<pre>
foo.i:6. Overloaded declaration ignored. Spam::foo(double )
foo.i:5. Previous declaration is Spam::foo(int )
foo.i:7. Overloaded declaration ignored. Spam::foo(Bar *, Spam *, int )
foo.i:5. Previous declaration is Spam::foo(int )
</pre>
</div>
<p>
it means that the target language module has not yet implemented support for overloaded
functions and methods. The only way to fix the problem is to read the next section.
</p>
<H3><a name="SWIGPlus_ambiguity_resolution_renaming">6.15.3 Ambiguity resolution and renaming</a></H3>
<p>
If an ambiguity in overload resolution occurs or if a module doesn't
allow overloading, there are a few strategies for dealing with the
problem. First, you can tell SWIG to ignore one of the methods. This
is easy---simply use the <tt>%ignore</tt> directive. For example:
</p>
<div class="code">
<pre>
%ignore foo(long);
void foo(int);
void foo(long); // Ignored. Oh well.
</pre>
</div>
<p>
The other alternative is to rename one of the methods. This can be
done using <tt>%rename</tt>. For example:
</p>
<div class="code">
<pre>
%rename("foo_short") foo(short);
%rename(foo_long) foo(long);
void foo(int);
void foo(short); // Accessed as foo_short()
void foo(long); // Accessed as foo_long()
</pre>
</div>
<p>
Note that the quotes around the new name are optional, however,
should the new name be a C/C++ keyword they would be essential in order to avoid a parsing error.
The <tt>%ignore</tt> and <tt>%rename</tt> directives are both rather powerful
in their ability to match declarations. When used in their simple form, they apply to
both global functions and methods. For example:
</p>
<div class="code">
<pre>
/* Forward renaming declarations */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
...
void foo(int); // Becomes 'foo_i'
void foo(char *c); // Stays 'foo' (not renamed)
class Spam {
public:
void foo(int); // Becomes 'foo_i'
void foo(double); // Becomes 'foo_d'
...
};
</pre>
</div>
<p>
If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used.
For example:
</p>
<div class="code">
<pre>
%rename(foo_i) ::foo(int); // Only rename foo(int) in the global scope.
// (will not rename class members)
%rename(foo_i) Spam::foo(int); // Only rename foo(int) in class Spam
</pre>
</div>
<p>
When a renaming operator is applied to a class as in <tt>Spam::foo(int)</tt>, it is applied to
that class and all derived classes. This can be used to apply a consistent renaming across
an entire class hierarchy with only a few declarations. For example:
</p>
<div class="code">
<pre>
%rename(foo_i) Spam::foo(int);
%rename(foo_d) Spam::foo(double);
class Spam {
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
...
};
class Bar : public Spam {
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
...
};
class Grok : public Bar {
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
...
};
</pre>
</div>
<p>
It is also possible to include <tt>%rename</tt> specifications in the
class definition itself. For example:
</p>
<div class="code">
<pre>
class Spam {
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
...
};
class Bar : public Spam {
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
...
};
</pre>
</div>
<p>
In this case, the <tt>%rename</tt> directives still get applied across the entire
inheritance hierarchy, but it's no longer necessary to explicitly specify the
class prefix <tt>Spam::</tt>.
</p>
<p>
A special form of <tt>%rename</tt> can be used to apply a renaming just to class
members (of all classes):
</p>
<div class="code">
<pre>
%rename(foo_i) *::foo(int); // Only rename foo(int) if it appears in a class.
</pre>
</div>
<p>
Note: the <tt>*::</tt> syntax is non-standard C++, but the '*' is meant to be a
wildcard that matches any class name (we couldn't think of a better
alternative so if you have a better idea, send email to
the <a href="http://www.swig.org/mail.html">swig-devel mailing list</a>.
</p>
<p>
Although this discussion has primarily focused on <tt>%rename</tt> all of the same rules
also apply to <tt>%ignore</tt>. For example:
</p>
<div class="code">
<pre>
%ignore foo(double); // Ignore all foo(double)
%ignore Spam::foo; // Ignore foo in class Spam
%ignore Spam::foo(double); // Ignore foo(double) in class Spam
%ignore *::foo(double); // Ignore foo(double) in all classes
</pre>
</div>
<p>
When applied to a base class, <tt>%ignore</tt> forces all definitions in derived classes
to disappear. For example, <tt>%ignore Spam::foo(double)</tt> will eliminate <tt>foo(double)</tt> in
<tt>Spam</tt> and all classes derived from <tt>Spam</tt>.
</p>
<p>
<b>Notes on %rename and %ignore:</b>
</p>
<ul>
<li><p>Since, the <tt>%rename</tt> declaration is used to declare a renaming in advance, it can be
placed at the start of an interface file. This makes it possible to apply a consistent name
resolution without having to modify header files. For example:</p>
<div class="code">
<pre>
%module foo
/* Rename these overloaded functions */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
%include "header.h"
</pre>
</div>
</li>
<li><p>The scope qualifier (::) can also be used on simple names. For example:</p>
<div class="code">
<pre>
%rename(bar) ::foo; // Rename foo to bar in global scope only
%rename(bar) Spam::foo; // Rename foo to bar in class Spam only
%rename(bar) *::foo; // Rename foo in classes only
</pre>
</div>
</li>
<li><p>Name matching tries to find the most specific match that is
defined. A qualified name such as <tt>Spam::foo</tt> always has
higher precedence than an unqualified name <tt>foo</tt>.
<tt>Spam::foo</tt> has higher precedence than <tt>*::foo</tt> and
<tt>*::foo</tt> has higher precedence than <tt>foo</tt>. A
parameterized name has higher precedence than an unparameterized name
within the same scope level. However, an unparameterized name with a
scope qualifier has higher precedence than a parameterized name in
global scope (e.g., a renaming of <tt>Spam::foo</tt> takes precedence
over a renaming of <tt>foo(int)</tt>).</p>
</li>
<li><p>
The order in which <tt>%rename</tt> directives are defined does not matter
as long as they appear before the declarations to be renamed. Thus, there is no difference
between saying:</p>
<div class="code">
<pre>
%rename(bar) foo;
%rename(foo_i) Spam::foo(int);
%rename(Foo) Spam::foo;
</pre>
</div>
<p>
and this
</p>
<div class="code">
<pre>
%rename(Foo) Spam::foo;
%rename(bar) foo;
%rename(foo_i) Spam::foo(int);
</pre>
</div>
<p>
(the declarations are not stored in a linked list and order has no
importance). Of course, a repeated <tt>%rename</tt> directive will
change the setting for a previous <tt>%rename</tt> directive if exactly the
same name, scope, and parameters are supplied.
</p>
</li>
<li>For multiple inheritance where renaming rules are defined for multiple base classes,
the first renaming rule found on a depth-first traversal of the class hierarchy
is used.
</li>
<li><p>The name matching rules strictly follow member qualification rules.
For example, if you have a class like this:</p>
<div class="code">
<pre>
class Spam {
public:
...
void bar() const;
...
};
</pre>
</div>
<p>
the declaration
</p>
<div class="code">
<pre>
%rename(name) Spam::bar();
</pre>
</div>
<p>
will not apply as there is no unqualified member <tt>bar()</tt>. The following will apply as
the qualifier matches correctly:
</p>
<div class="code">
<pre>
%rename(name) Spam::bar() const;
</pre>
</div>
<p>
An often overlooked C++ feature is that classes can define two different overloaded members
that differ only in their qualifiers, like this:
</p>
<div class="code">
<pre>
class Spam {
public:
...
void bar(); // Unqualified member
void bar() const; // Qualified member
...
};
</pre>
</div>
<p>
%rename can then be used to target each of the overloaded methods individually.
For example we can give them separate names in the target language:
</p>
<div class="code">
<pre>
%rename(name1) Spam::bar();
%rename(name2) Spam::bar() const;
</pre>
</div>
<p>
Similarly, if you
merely wanted to ignore one of the declarations, use <tt>%ignore</tt>
with the full qualification. For example, the following directive
would tell SWIG to ignore the <tt>const</tt> version of <tt>bar()</tt>
above:
</p>
<div class="code">
<pre>
%ignore Spam::bar() const; // Ignore bar() const, but leave other bar() alone
</pre>
</div>
</li>
<li><p>
Currently no resolution is performed in order to match function parameters. This means function parameter types must match exactly.
For example, namespace qualifiers and typedefs will not work. The following usage of typedefs demonstrates this:
</p>
<div class="code">
<pre>
typedef int Integer;
%rename(foo_i) foo(int);
class Spam {
public:
void foo(Integer); // Stays 'foo' (not renamed)
};
class Ham {
public:
void foo(int); // Renamed to foo_i
};
</pre>
</div>
<li><p>
The name matching rules also use default arguments for finer control when wrapping methods that have default arguments.
Recall that methods with default arguments are wrapped as if the equivalent overloaded methods had been parsed
(<a href="#SWIGPlus_default_args">Default arguments</a> section).
Let's consider the following example class:</p>
<div class="code">
<pre>
class Spam {
public:
...
void bar(int i=-1, double d=0.0);
...
};
</pre>
</div>
<p>
The following <tt>%rename</tt> will match exactly and apply to all the target language overloaded methods because the declaration with the default arguments
exactly matches the wrapped method:
</p>
<div class="code">
<pre>
%rename(newbar) Spam::bar(int i=-1, double d=0.0);
</pre>
</div>
<p>
The C++ method can then be called from the target language with the new name no matter how many arguments are specified, for example:
<tt>newbar(2, 2.0)</tt>, <tt>newbar(2)</tt> or <tt>newbar()</tt>.
However, if the <tt>%rename</tt> does not contain the default arguments, it will only apply to the single equivalent target language overloaded method.
So if instead we have:
</p>
<div class="code">
<pre>
%rename(newbar) Spam::bar(int i, double d);
</pre>
</div>
<p>
The C++ method must then be called from the target language with the new name <tt>newbar(2, 2.0)</tt> when both arguments are supplied
or with the original name as <tt>bar(2)</tt> (one argument) or <tt>bar()</tt> (no arguments).
In fact it is possible to use <tt>%rename</tt> on the equivalent overloaded methods, to rename all the equivalent overloaded methods:
</p>
<div class="code">
<pre>
%rename(bar_2args) Spam::bar(int i, double d);
%rename(bar_1arg) Spam::bar(int i);
%rename(bar_default) Spam::bar();
</pre>
</div>
<p>
Similarly, the extra overloaded methods can be selectively ignored using <tt>%ignore</tt>.
</p>
<p>
<b>Compatibility note:</b> The <tt>%rename</tt> directive introduced the default argument matching rules in SWIG-1.3.23 at the same time as the changes
to wrapping methods with default arguments was introduced.
</p>
</li>
</ul>
<H3><a name="SWIGPlus_nn27">6.15.4 Comments on overloading</a></H3>
<p>
Support for overloaded methods was first added in SWIG-1.3.14. The implementation
is somewhat unusual when compared to similar tools. For instance, the order in which
declarations appear is largely irrelevant in SWIG. Furthermore, SWIG does not rely
upon trial execution or exception handling to figure out which method to invoke.
</p>
<p>
Internally, the overloading mechanism is completely configurable by the target language
module. Therefore, the degree of overloading support may vary from language to language.
As a general rule, statically typed languages like Java are able to provide more support
than dynamically typed languages like Perl, Python, Ruby, and Tcl.
</p>
<H2><a name="SWIGPlus_nn28">6.16 Wrapping overloaded operators</a></H2>
<p>
C++ overloaded operator declarations can be wrapped.
For example, consider a class like this:
</p>
<div class="code">
<pre>
class Complex {
private:
double rpart, ipart;
public:
Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
Complex &operator=(const Complex &c) {
rpart = c.rpart;
ipart = c.ipart;
return *this;
}
Complex operator+(const Complex &c) const {
return Complex(rpart+c.rpart, ipart+c.ipart);
}
Complex operator-(const Complex &c) const {
return Complex(rpart-c.rpart, ipart-c.ipart);
}
Complex operator*(const Complex &c) const {
return Complex(rpart*c.rpart - ipart*c.ipart,
rpart*c.ipart + c.rpart*ipart);
}
Complex operator-() const {
return Complex(-rpart, -ipart);
}
double re() const { return rpart; }
double im() const { return ipart; }
};
</pre>
</div>
<p>
When operator declarations appear, they are handled in
<em>exactly</em> the same manner as regular methods. However, the
names of these methods are set to strings like "<tt>operator +</tt>"
or "<tt>operator -</tt>". The problem with these names is that they
are illegal identifiers in most scripting languages. For instance,
you can't just create a method called "<tt>operator +</tt>" in
Python--there won't be any way to call it.
</p>
<p>
Some language modules already know how to automatically handle certain
operators (mapping them into operators in the target language).
However, the underlying implementation of this is really managed in a
very general way using the <tt>%rename</tt> directive. For example,
in Python a declaration similar to this is used:
</p>
<div class="code">
<pre>
%rename(__add__) Complex::operator+;
</pre>
</div>
<p>
This binds the + operator to a method called <tt>__add__</tt> (which
is conveniently the same name used to implement the Python + operator).
Internally, the generated wrapper code for a wrapped operator will look
something like this pseudocode:
</p>
<div class="code">
<pre>
_wrap_Complex___add__(args) {
... get args ...
obj->operator+(args);
...
}
</pre>
</div>
<p>
When used in the target language, it may now be possible to use the overloaded
operator normally. For example:
</p>
<div class="targetlang">
<pre>
>>> a = Complex(3, 4)
>>> b = Complex(5, 2)
>>> c = a + b # Invokes __add__ method
</pre>
</div>
<p>
It is important to realize that there is nothing magical happening
here. The <tt>%rename</tt> directive really only picks a valid method
name. If you wrote this:
</p>
<div class="code">
<pre>
%rename(add) operator+;
</pre>
</div>
<p>
The resulting scripting interface might work like this:
</p>
<div class="targetlang">
<pre>
a = Complex(3, 4)
b = Complex(5, 2)
c = a.add(b) # Call a.operator+(b)
</pre>
</div>
<p>
All of the techniques described to deal with overloaded functions also
apply to operators. For example:
</p>
<div class="code">
<pre>
%ignore Complex::operator=; // Ignore = in class Complex
%ignore *::operator=; // Ignore = in all classes
%ignore operator=; // Ignore = everywhere.
%rename(__sub__) Complex::operator-;
%rename(__neg__) Complex::operator-(); // Unary -
</pre>
</div>
<p>
The last part of this example illustrates how multiple definitions of
the <tt>operator-</tt> method might be handled.
</p>
<p>
Handling operators in this manner is mostly straightforward. However, there are a few subtle
issues to keep in mind:
</p>
<ul>
<li><p>In C++, it is fairly common to define different versions of the operators to account for
different types. For example, a class might also include a friend function like this:</p>
<div class="code">
<pre>
class Complex {
public:
friend Complex operator+(Complex &, double);
};
Complex operator+(Complex &, double);
</pre>
</div>
<p>
SWIG simply ignores all <tt>friend</tt> declarations. Furthermore, it
doesn't know how to associate the associated <tt>operator+</tt> with
the class (because it's not a member of the class).
</p>
<p>
It's still possible to make a wrapper for this operator, but you'll
have to handle it like a normal function. For example:
</p>
<div class="code">
<pre>
%rename(add_complex_double) operator+(Complex &, double);
</pre>
</div>
</li>
<li><p>Certain operators are ignored by default. For instance, <tt>new</tt> and <tt>delete</tt> operators
are ignored as well as conversion and index operators. A warning such as the one below is shown:
</p>
<div class="shell">
<pre>
example.i:12: Warning 503: Can't wrap 'operator []' unless renamed to a valid identifier.
</pre>
</div>
</li>
<li><p>The index operator, <tt>operator[]</tt>, is particularly difficult to overload due to differences in C++
implementations. Specifically, the get and set operators in other languages typically are separated
into two methods such that additional logic can be packed into the operations; C# uses
<tt>this[type key] { get { ... } set { ... }}</tt>, Python uses
<tt>__getitem__</tt> and <tt>__setitem__</tt>, etc. In C++ if the return
type of <tt>operator[]</tt> is a reference and the method is const, it is often indicative of the <i>setter</i>,
and and the <i>getter</i> is usually a const function return an object by value.
In the absence of any hard and fast rules and the fact that there may be multiple index operators,
it is up to the user to choose the getter and setter to use by using %rename as shown earlier.
</p>
</li>
<li>The semantics of certain C++ operators may not match those in the target language.
</li>
</ul>
<H2><a name="SWIGPlus_class_extension">6.17 Class extension</a></H2>
<p>
New methods can be added to a class using the <tt>%extend</tt>
directive. This directive is primarily used in conjunction with proxy
classes to add additional functionality to an existing class. For
example :
</p>
<div class="code"><pre>
%module vector
%{
#include "vector.h"
%}
class Vector {
public:
double x, y, z;
Vector();
~Vector();
... bunch of C++ methods ...
%extend {
char *__str__() {
static char temp[256];
sprintf(temp, "[ %g, %g, %g ]", $self->x, $self->y, $self->z);
return &temp[0];
}
}
};
</pre></div>
<p>
This code adds a <tt>__str__</tt> method to our class for producing a
string representation of the object. In Python, such a method would
allow us to print the value of an object using the <tt>print</tt>
command.
</p>
<div class="targetlang"><pre>
>>>
>>> v = Vector();
>>> v.x = 3
>>> v.y = 4
>>> v.z = 0
>>> print(v)
[ 3.0, 4.0, 0.0 ]
>>>
</pre></div>
<p>
The C++ 'this' pointer is often needed to access member variables, methods etc.
The <tt>$self</tt> special variable should be used wherever you could use 'this'.
The example above demonstrates this for accessing member variables.
Note that the members dereferenced by <tt>$self</tt> must be public members as the code is ultimately generated
into a global function and so will not have any access to non-public members.
The implicit 'this' pointer that is present in C++ methods is not present in <tt>%extend</tt> methods.
In order to access anything in the extended class or its base class, an explicit 'this' is required.
The following example shows how one could access base class members:
</p>
<div class="code"><pre>
struct Base {
virtual void method(int v) {
...
}
int value;
};
struct Derived : Base {
};
%extend Derived {
virtual void method(int v) {
$self->Base::method(v); // akin to this->Base::method(v);
$self->value = v; // akin to this->value = v;
...
}
}
</pre></div>
<p>
The following special variables are expanded if used within a %extend block:
$name, $symname, $overname, $decl, $fulldecl, $parentclassname and $parentclasssymname.
The <a href="Customization.html#Customization_exception_special_variables">Special variables</a> section provides more information each of these special variables.
</p>
<p>
The <tt>%extend</tt> directive follows all of the same conventions
as its use with C structures. Please refer to the <a href="SWIG.html#SWIG_adding_member_functions">Adding member functions to C structures</a>
section for further details.
</p>
<p>
<b>Compatibility note:</b> The <tt>%extend</tt> directive is a new
name for the <tt>%addmethods</tt> directive in SWIG1.1. Since <tt>%addmethods</tt> could
be used to extend a structure with more than just methods, a more suitable
directive name has been chosen.
</p>
<H2><a name="SWIGPlus_nn30">6.18 Templates</a></H2>
<p>
Template type names may appear anywhere a type
is expected in an interface file. For example:
</p>
<div class="code">
<pre>
void foo(vector<int> *a, int n);
void bar(list<int, 100> *x);
</pre>
</div>
<p>
There are some restrictions on the use of non-type arguments. Simple literals
are supported, and so are some constant expressions. However, use of '<'
and '>' within a constant expressions currently is not supported by SWIG
('<=' and '>=' are though). For example:
</p>
<div class="code">
<pre>
void bar(list<int, 100> *x); // OK
void bar(list<int, 2*50> *x); // OK
void bar(list<int, (2>1 ? 100 : 50)> *x) // Not supported
</pre>
</div>
<p>
The type system is smart enough to figure out clever games
you might try to play with <tt>typedef</tt>. For instance, consider this code:
</p>
<div class="code">
<pre>
typedef int Integer;
void foo(vector<int> *x, vector<Integer> *y);
</pre>
</div>
<p>
In this case, <tt>vector<Integer></tt> is exactly the same type
as <tt>vector<int></tt>. The wrapper for <tt>foo()</tt> will
accept either variant.
</p>
<p>
Starting with SWIG-1.3.7, simple C++ template declarations can also be
wrapped. SWIG-1.3.12 greatly expands upon the earlier implementation. Before discussing this any further, there are a few things
you need to know about template wrapping. First, a bare C++ template
does not define any sort of runnable object-code for which SWIG can
normally create a wrapper. Therefore, in order to wrap a template,
you need to give SWIG information about a particular template
instantiation (e.g., <tt>vector<int></tt>,
<tt>array<double></tt>, etc.). Second, an instantiation name
such as <tt>vector<int></tt> is generally not a valid identifier
name in most target languages. Thus, you will need to give the
template instantiation a more suitable name such as <tt>intvector</tt>
when creating a wrapper.
</p>
<p>
To illustrate, consider the following template definition:
</p>
<div class="code"><pre>
template<class T> class List {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max) {
data = new T [max];
nitems = 0;
maxitems = max;
}
~List() {
delete [] data;
};
void append(T obj) {
if (nitems < maxitems) {
data[nitems++] = obj;
}
}
int length() {
return nitems;
}
T get(int n) {
return data[n];
}
};
</pre></div>
<p>
By itself, this template declaration is useless--SWIG simply ignores it
because it doesn't know how to generate any code until unless a definition of
<tt>T</tt> is provided.
</p>
<p>
One way to create wrappers for a specific template instantiation is to simply
provide an expanded version of the class directly like this:
</p>
<div class="code">
<pre>
%rename(intList) List<int>; // Rename to a suitable identifier
class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);
};
</pre>
</div>
<p>
The <tt>%rename</tt> directive is needed to give the template class an appropriate identifier
name in the target language (most languages would not recognize C++ template syntax as a valid
class name). The rest of the code is the same as what would appear in a normal
class definition.
</p>
<p>
Since manual expansion of templates gets old in a hurry, the <tt>%template</tt> directive can
be used to create instantiations of a template class. Semantically, <tt>%template</tt> is
simply a shortcut---it expands template code in exactly the same way as shown above. Here
are some examples:
</p>
<div class="code">
<pre>
/* Instantiate a few different versions of the template */
%template(intList) List<int>;
%template(doubleList) List<double>;
</pre>
</div>
<p>
The argument to <tt>%template()</tt> is the name of the instantiation
in the target language. The name you choose should not conflict with
any other declarations in the interface file with one exception---it
is okay for the template name to match that of a typedef declaration.
For example:
</p>
<div class="code">
<pre>
%template(intList) List<int>;
...
typedef List<int> intList; // OK
</pre>
</div>
<p>
SWIG can also generate wrappers for function templates using a similar technique.
For example:
</p>
<div class="code">
<pre>
// Function template
template<class T> T max(T a, T b) { return a > b ? a : b; }
// Make some different versions of this function
%template(maxint) max<int>;
%template(maxdouble) max<double>;
</pre>
</div>
<p>
In this case, <tt>maxint</tt> and <tt>maxdouble</tt> become unique names for specific
instantiations of the function.
</p>
<p>
The number of arguments supplied to <tt>%template</tt> should match that in the
original template definition. Template default arguments are supported. For example:
</p>
<div class="code">
<pre>
template vector<typename T, int max=100> class vector {
...
};
%template(intvec) vector<int>; // OK
%template(vec1000) vector<int, 1000>; // OK
</pre>
</div>
<p>
The <tt>%template</tt> directive should not be used to wrap the same
template instantiation more than once in the same scope. This will
generate an error. For example:
</p>
<div class="code">
<pre>
%template(intList) List<int>;
%template(Listint) List<int>; // Error. Template already wrapped.
</pre>
</div>
<p>
This error is caused because the template expansion results in two
identical classes with the same name. This generates a symbol table
conflict. Besides, it probably more efficient to only wrap a specific
instantiation only once in order to reduce the potential for code
bloat.
</p>
<p>
Since the type system knows how to handle <tt>typedef</tt>, it is
generally not necessary to instantiate different versions of a template
for typenames that are equivalent. For instance, consider this code:
</p>
<div class="code">
<pre>
%template(intList) vector<int>;
typedef int Integer;
...
void foo(vector<Integer> *x);
</pre>
</div>
<p>
In this case, <tt>vector<Integer></tt> is exactly the same type as
<tt>vector<int></tt>. Any use of <tt>Vector<Integer></tt> is mapped back to the
instantiation of <tt>vector<int></tt> created earlier. Therefore, it is
not necessary to instantiate a new class for the type <tt>Integer</tt> (doing so is
redundant and will simply result in code bloat).
</p>
<p>
When a template is instantiated using <tt>%template</tt>, information
about that class is saved by SWIG and used elsewhere in the program.
For example, if you wrote code like this,
</p>
<div class="code">
<pre>
...
%template(intList) List<int>;
...
class UltraList : public List<int> {
...
};
</pre>
</div>
<p>
then SWIG knows that <tt>List<int></tt> was already wrapped as a class called
<tt>intList</tt> and arranges to handle the inheritance correctly. If, on the other hand,
nothing is known about <tt>List<int></tt>, you will get a warning message similar to this:
</p>
<div class="shell">
<pre>
example.h:42: Warning 401. Nothing known about class 'List<int >'. Ignored.
example.h:42: Warning 401. Maybe you forgot to instantiate 'List<int >' using %template.
</pre>
</div>
<p>
If a template class inherits from another template class, you need to
make sure that base classes are instantiated before derived classes.
For example:
</p>
<div class="code">
<pre>
template<class T> class Foo {
...
};
template<class T> class Bar : public Foo<T> {
...
};
// Instantiate base classes first
%template(intFoo) Foo<int>;
%template(doubleFoo) Foo<double>;
// Now instantiate derived classes
%template(intBar) Bar<int>;
%template(doubleBar) Bar<double>;
</pre>
</div>
<p>
The order is important since SWIG uses the instantiation names to
properly set up the inheritance hierarchy in the resulting wrapper
code (and base classes need to be wrapped before derived classes).
Don't worry--if you get the order wrong, SWIG should generate a warning message.
</p>
<p>
Occasionally, you may need to tell SWIG about base classes that are defined by templates,
but which aren't supposed to be wrapped. Since SWIG is not able to automatically
instantiate templates for this purpose, you must do it manually. To do this, simply
use the empty template instantiation, that is, <tt>%template</tt> with no name. For example:
</p>
<div class="code">
<pre>
// Instantiate traits<double, double>, but don't wrap it.
%template() traits<double, double>;
</pre>
</div>
<p>
If you have to instantiate a lot of different classes for many different types,
you might consider writing a SWIG macro. For example:
</p>
<div class="code">
<pre>
%define TEMPLATE_WRAP(prefix, T...)
%template(prefix ## Foo) Foo<T >;
%template(prefix ## Bar) Bar<T >;
...
%enddef
TEMPLATE_WRAP(int, int)
TEMPLATE_WRAP(double, double)
TEMPLATE_WRAP(String, char *)
TEMPLATE_WRAP(PairStringInt, std::pair<string, int>)
...
</pre>
</div>
<p>
Note the use of a vararg macro for the type T. If this wasn't used, the comma in the templated type in the last example would not be possible.
</p>
<p>
The SWIG template mechanism <em>does</em> support specialization. For instance, if you define
a class like this,
</p>
<div class="code">
<pre>
template<> class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);
};
</pre>
</div>
<p>
then SWIG will use this code whenever the user expands <tt>List<int></tt>. In practice,
this may have very little effect on the underlying wrapper code since
specialization is often used to provide slightly modified method bodies (which
are ignored by SWIG). However, special SWIG
directives such as <tt>%typemap</tt>, <tt>%extend</tt>, and so forth can be attached
to a specialization to provide customization for specific types.
</p>
<p>
Partial template specialization is partially supported by SWIG. For example, this
code defines a template that is applied when the template argument is a pointer.
</p>
<div class="code">
<pre>
template<class T> class List<T*> {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
T get(int n);
};
</pre>
</div>
<p>
SWIG supports both template explicit specialization and partial specialization. Consider:
</p>
<div class="code">
<pre>
template<class T1, class T2> class Foo { }; // (1) primary template
template<> class Foo<double *, int *> { }; // (2) explicit specialization
template<class T1, class T2> class Foo<T1, T2 *> { }; // (3) partial specialization
</pre>
</div>
<p>
SWIG is able to properly match explicit instantiations:
</p>
<div class="code">
<pre>
<tt>Foo<double *, int *></tt> // explicit specialization matching (2)
</pre>
</div>
<p>
SWIG implements template argument deduction so that the following partial specialization examples work just like they would with a C++ compiler:
</p>
<div class="code">
<pre>
<tt>Foo<int *, int *></tt> // partial specialization matching (3)
<tt>Foo<int *, const int *></tt> // partial specialization matching (3)
<tt>Foo<int *, int **></tt> // partial specialization matching (3)
</pre>
</div>
<p>
Member function templates are supported. The underlying principle is the same
as for normal templates--SWIG can't create a wrapper unless you provide
more information about types. For example, a class with a member template might
look like this:
</p>
<div class="code">
<pre>
class Foo {
public:
template<class T> void bar(T x, T y) { ... };
...
};
</pre>
</div>
<p>
To expand the template, simply use <tt>%template</tt> inside the class.
</p>
<div class="code">
<pre>
class Foo {
public:
template<class T> void bar(T x, T y) { ... };
...
%template(barint) bar<int>;
%template(bardouble) bar<double>;
};
</pre>
</div>
<p>
Or, if you want to leave the original class definition alone, just do this:
</p>
<div class="code">
<pre>
class Foo {
public:
template<class T> void bar(T x, T y) { ... };
...
};
...
%extend Foo {
%template(barint) bar<int>;
%template(bardouble) bar<double>;
};
</pre>
</div>
<p>
or simply
</p>
<div class="code">
<pre>
class Foo {
public:
template<class T> void bar(T x, T y) { ... };
...
};
...
%template(bari) Foo::bar<int>;
%template(bard) Foo::bar<double>;
</pre>
</div>
<p>
In this case, the <tt>%extend</tt> directive is not needed, and
<tt>%template</tt> does exactly the same job, i.e., it adds two new
methods to the Foo class.
</p>
<p>
Note: because of the way that templates are handled, the <tt>%template</tt> directive
must always appear <em>after</em> the definition of the template to be expanded.
</p>
<p>
Now, if your target language supports overloading, you can even try
</p>
<div class="code">
<pre>
%template(bar) Foo::bar<int>;
%template(bar) Foo::bar<double>;
</pre>
</div>
<p>
and since the two new wrapped methods have the same name 'bar', they will be
overloaded, and when called, the correct method will be dispatched
depending on the argument type.
</p>
<p>
When used with members, the <tt>%template</tt> directive may be placed in another
template class. Here is a slightly perverse example:
</p>
<div class="code">
<pre>
// A template
template<class T> class Foo {
public:
// A member template
template<class S> T bar(S x, S y) { ... };
...
};
// Expand a few member templates
%extend Foo {
%template(bari) bar<int>;
%template(bard) bar<double>;
}
// Create some wrappers for the template
%template(Fooi) Foo<int>;
%template(Food) Foo<double>;
</pre>
</div>
<p>
Miraculously, you will find that each expansion of <tt>Foo</tt> has member
functions <tt>bari()</tt> and <tt>bard()</tt> added.
</p>
<p>
A common use of member templates is to define constructors for copies
and conversions. For example:
</p>
<div class="code">
<pre>
template<class T1, class T2> struct pair {
T1 first;
T2 second;
pair() : first(T1()), second(T2()) { }
pair(const T1 &x, const T2 &y) : first(x), second(y) { }
template<class U1, class U2> pair(const pair<U1, U2> &x)
: first(x.first), second(x.second) { }
};
</pre>
</div>
<p>
This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored
unless you explicitly expand it. To do that, you could expand a few versions of the constructor
in the template class itself. For example:
</p>
<div class="code">
<pre>
%extend pair {
%template(pair) pair<T1, T2>; // Generate default copy constructor
};
</pre>
</div>
<p>
When using <tt>%extend</tt> in this manner, notice how you can still use the template parameters in
the original template definition.
</p>
<p>
Alternatively, you could expand the constructor template in selected instantiations. For example:
</p>
<div class="code">
<pre>
// Instantiate a few versions
%template(pairii) pair<int, int>;
%template(pairdd) pair<double, double>;
// Create a default constructor only
%extend pair<int, int> {
%template(paird) pair<int, int>; // Default constructor
};
// Create default and conversion constructors
%extend pair<double, double> {
%template(paird) pair<double, dobule>; // Default constructor
%template(pairc) pair<int, int>; // Conversion constructor
};
</pre>
</div>
<p>And if your target language supports overloading, then you can try
instead:
</p>
<div class="code">
<pre>
// Create default and conversion constructors
%extend pair<double, double> {
%template(pair) pair<double, dobule>; // Default constructor
%template(pair) pair<int, int>; // Conversion constructor
};
</pre>
</div>
<p>
In this case, the default and conversion constructors have the same
name. Hence, SWIG will overload them and define an unique visible
constructor, that will dispatch the proper call depending on the argument
type.
</p>
<p>
If all of this isn't quite enough and you really want to make
someone's head explode, SWIG directives such as
<tt>%rename</tt>, <tt>%extend</tt>, and <tt>%typemap</tt> can be
included directly in template definitions. For example:
</p>
<div class="code"><pre>
// File : list.h
template<class T> class List {
...
public:
%rename(__getitem__) get(int);
List(int max);
~List();
...
T get(int index);
%extend {
char *__str__() {
/* Make a string representation */
...
}
}
};
</pre></div>
<p>
In this example, the extra SWIG directives are propagated to <em>every</em> template
instantiation.
</p>
<p>
It is also possible to separate these declarations from the template class. For example:
</p>
<div class="code">
<pre>
%rename(__getitem__) List::get;
%extend List {
char *__str__() {
/* Make a string representation */
...
}
/* Make a copy */
T *__copy__() {
return new List<T>(*$self);
}
};
...
template<class T> class List {
...
public:
List() { }
T get(int index);
...
};
</pre>
</div>
<p>
When <tt>%extend</tt> is decoupled from the class definition, it is
legal to use the same template parameters as provided in the class definition.
These are replaced when the template is expanded.
In addition, the <tt>%extend</tt> directive can be used to add
additional methods to a specific instantiation. For example:
</p>
<div class="code">
<pre>
%template(intList) List<int>;
%extend List<int> {
void blah() {
printf("Hey, I'm an List<int>!\n");
}
};
</pre>
</div>
<p>
SWIG even supports overloaded templated functions. As usual the <tt>%template</tt> directive
is used to wrap templated functions. For example:
</p>
<div class="code">
<pre>
template<class T> void foo(T x) { };
template<class T> void foo(T x, T y) { };
%template(foo) foo<int>;
</pre>
</div>
<p>
This will generate two overloaded wrapper methods, the first will take a single integer as an argument
and the second will take two integer arguments.
</p>
<p>
It is even possible to extend a class via <tt>%extend</tt> with template methods, for example:
</p>
<div class="code">
<pre>
%include <std_string.i>
%inline %{
class ExtendMe {
public:
template <typename T>
T do_stuff_impl(int a, T b, double d) {
return b;
}
};
%}
%extend ExtendMe {
template<typename T>
T do_overloaded_stuff(T b) {
return $self->do_stuff_impl(0, b, 4.0);
}
}
%template(do_overloaded_stuff) ExtendMe::do_overloaded_stuff<std::string>;
%template(do_overloaded_stuff) ExtendMe::do_overloaded_stuff<double>;
</pre>
</div>
<p>
The wrapped <tt>ExtendMe</tt> class will then have two (overloaded) methods called <tt>do_overloaded_stuff</tt>.
</p>
<p>
<b>Compatibility Note</b>: Extending a class with template methods was added in version 3.0.12
</p>
<p>
Needless to say, SWIG's template support provides plenty of opportunities to
break the universe. That said, an important final point is that <b>SWIG does
not perform extensive error checking of templates!</b> Specifically, SWIG does
not perform type checking nor does it check to see if the actual contents of the
template declaration make any sense. Since the C++ compiler checks this when it
compiles the resulting wrapper file, there is no practical reason for SWIG to
duplicate this functionality.
</p>
<a name="SWIGPlus_template_nested_class_example"></a>
<p>
As SWIG's template support does not perform type checking <tt>%template</tt>
can be used as early as after a template declaration. You can, and rarely have
to, use <tt>%template</tt> before the template parameters have been declared.
For example:
</p>
<div class="code">
<pre>
template <class T> class OuterTemplateClass {};
// The nested class OuterClass::InnerClass inherits from the template class
// OuterTemplateClass<OuterClass::InnerStruct> and thus the template needs
// to be expanded with %template before the OuterClass declaration.
%template(OuterTemplateClass_OuterClass__InnerStruct)
OuterTemplateClass<OuterClass::InnerStruct>
// Don't forget to use %feature("flatnested") for OuterClass::InnerStruct and
// OuterClass::InnerClass if the target language doesn't support nested classes.
class OuterClass {
public:
// Forward declarations:
struct InnerStruct;
class InnerClass;
};
struct OuterClass::InnerStruct {};
// Expanding the template at this point with %template is too late as the
// OuterClass::InnerClass declaration is processed inside OuterClass.
class OuterClass::InnerClass : public OuterTemplateClass<InnerStruct> {};
</pre>
</div>
<p>
<b>Compatibility Note</b>: The first implementation of template support relied heavily on
macro expansion in the preprocessor. Templates have been more tightly integrated into
the parser and type system in SWIG-1.3.12 and the preprocessor is no longer used. Code
that relied on preprocessing features in template expansion will no longer work. However,
SWIG still allows the # operator to be used to generate a string from a template argument.
</p>
<p>
<b>Compatibility Note</b>: In earlier versions of SWIG, the <tt>%template</tt> directive
introduced a new class name. This name could then be used with other directives. For example:
</p>
<div class="code">
<pre>
%template(vectori) vector<int>;
%extend vectori {
void somemethod() { }
};
</pre>
</div>
<p>
This behavior is no longer supported. Instead, you should use the original template name
as the class name. For example:
</p>
<div class="code">
<pre>
%template(vectori) vector<int>;
%extend vector<int> {
void somemethod() { }
};
</pre>
</div>
<p>
Similar changes apply to typemaps and other customization features.
</p>
<H2><a name="SWIGPlus_namespaces">6.19 Namespaces</a></H2>
<p>
Support for C++ namespaces is comprehensive, but by default simple, however,
some target languages can turn on more advanced namespace support via the
<a href="#SWIGPlus_nspace">nspace feature</a>, described later.
Code within unnamed namespaces is ignored as there is no external
access to symbols declared within the unnamed namespace.
Before detailing the default implementation for named namespaces,
it is worth noting that the semantics of C++ namespaces is extremely
non-trivial--especially with regard to the C++ type system and class
machinery. At a most basic level, namespaces are sometimes used to
encapsulate common functionality. For example:
</p>
<div class="code">
<pre>
namespace math {
double sin(double);
double cos(double);
class Complex {
double im, re;
public:
...
};
...
};
</pre>
</div>
<p>
Members of the namespace are accessed in C++ by prepending the namespace prefix
to names. For example:
</p>
<div class="code">
<pre>
double x = math::sin(1.0);
double magnitude(math::Complex *c);
math::Complex c;
...
</pre>
</div>
<p>
At this level, namespaces are relatively easy to manage. However, things start to get
very ugly when you throw in the other ways a namespace can be used. For example,
selective symbols can be exported from a namespace with <tt>using</tt>.
</p>
<div class="code">
<pre>
using math::Complex;
double magnitude(Complex *c); // Namespace prefix stripped
</pre>
</div>
<p>
Similarly, the contents of an entire namespace can be made available like this:
</p>
<div class="code">
<pre>
using namespace math;
double x = sin(1.0);
double magnitude(Complex *c);
</pre>
</div>
<p>
Alternatively, a namespace can be aliased:
</p>
<div class="code">
<pre>
namespace M = math;
double x = M::sin(1.0);
double magnitude(M::Complex *c);
</pre>
</div>
<p>
Using combinations of these features, it is possible to write head-exploding code like this:
</p>
<div class="code">
<pre>
namespace A {
class Foo {
};
}
namespace B {
namespace C {
using namespace A;
}
typedef C::Foo FooClass;
}
namespace BIGB = B;
namespace D {
using BIGB::FooClass;
class Bar : public FooClass {
}
};
class Spam : public D::Bar {
};
void evil(A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
BIGB::C::Foo *e, D::FooClass *f);
</pre>
</div>
<p>
Given the possibility for such perversion, it's hard to imagine how
every C++ programmer might want such code wrapped into the target
language. Clearly this code defines three different classes. However, one
of those classes is accessible under at least six different names!
</p>
<p>
SWIG fully supports C++ namespaces in its internal type system and
class handling code. If you feed SWIG the above code, it will be
parsed correctly, it will generate compilable wrapper code, and it
will produce a working scripting language module. However, the
default wrapping behavior is to flatten namespaces in the target
language. This means that the contents of all namespaces are merged
together in the resulting scripting language module. For example, if
you have code like this,
</p>
<div class="code">
<pre>
%module foo
namespace foo {
void bar(int);
void spam();
}
namespace bar {
void blah();
}
</pre>
</div>
<p>
then SWIG simply creates three wrapper functions <tt>bar()</tt>,
<tt>spam()</tt>, and <tt>blah()</tt> in the target language. SWIG
does not prepend the names with a namespace prefix nor are the
functions packaged in any kind of nested scope.
</p>
<p>
There is some rationale for taking this approach. Since C++
namespaces are often used to define modules in C++, there is a natural
correlation between the likely contents of a SWIG module and the contents of
a namespace. For instance, it would not be unreasonable to assume
that a programmer might make a separate extension module for each C++
namespace. In this case, it would be redundant to prepend everything
with an additional namespace prefix when the module itself already
serves as a namespace in the target language. Or put another way, if
you want SWIG to keep namespaces separate, simply wrap each namespace with its
own SWIG interface.
</p>
<p>
Because namespaces are flattened, it is possible for symbols defined in different
namespaces to generate a name conflict in the target language. For example:
</p>
<div class="code">
<pre>
namespace A {
void foo(int);
}
namespace B {
void foo(double);
}
</pre>
</div>
<p>
When this conflict occurs, you will get an error message that resembles this:
</p>
<div class="shell">
<pre>
example.i:26. Error. 'foo' is multiply defined in the generated target language module.
example.i:23. Previous declaration of 'foo'
</pre>
</div>
<p>
To resolve this error, simply use <tt>%rename</tt> to disambiguate the declarations. For example:
</p>
<div class="code">
<pre>
%rename(B_foo) B::foo;
...
namespace A {
void foo(int);
}
namespace B {
void foo(double); // Gets renamed to B_foo
}
</pre>
</div>
<p>
Similarly, <tt>%ignore</tt> can be used to ignore declarations.
</p>
<p>
<tt>using</tt> declarations do not have any effect on the generated wrapper
code. They are ignored by SWIG language modules and they do not result in any
code. However, these declarations <em>are</em> used by the internal type
system to track type-names. Therefore, if you have code like this:
</p>
<div class="code">
<pre>
namespace A {
typedef int Integer;
}
using namespace A;
void foo(Integer x);
</pre>
</div>
<p>
SWIG knows that <tt>Integer</tt> is the same as <tt>A::Integer</tt> which
is the same as <tt>int</tt>.
</p>
<P>
Namespaces may be combined with templates. If necessary, the
<tt>%template</tt> directive can be used to expand a template defined
in a different namespace. For example:
</p>
<div class="code">
<pre>
namespace foo {
template<typename T> T max(T a, T b) { return a > b ? a : b; }
}
using foo::max;
%template(maxint) max<int>; // Okay.
%template(maxfloat) foo::max<float>; // Okay (qualified name).
namespace bar {
using namespace foo;
%template(maxdouble) max<double>; // Okay.
}
</pre>
</div>
<p>
The combination of namespaces and other SWIG directives may introduce subtle scope-related problems.
The key thing to keep in mind is that all SWIG generated wrappers are produced
in the <em>global</em> namespace. Symbols from other namespaces are always accessed using fully
qualified names---names are never imported into the global space unless the interface happens to
do so with a <tt>using</tt> declaration. In almost all cases, SWIG adjusts typenames and symbols
to be fully qualified. However, this is not done in code fragments such as function bodies,
typemaps, exception handlers, and so forth. For example, consider the following:
</p>
<div class="code">
<pre>
namespace foo {
typedef int Integer;
class bar {
public:
...
};
}
%extend foo::bar {
Integer add(Integer x, Integer y) {
Integer r = x + y; // Error. Integer not defined in this scope
return r;
}
};
</pre>
</div>
<p>
In this case, SWIG correctly resolves the added method parameters and return type to
<tt>foo::Integer</tt>. However, since function bodies aren't parsed and such code is
emitted in the global namespace, this code produces a compiler error about <tt>Integer</tt>.
To fix the problem, make sure you use fully qualified names. For example:
</p>
<div class="code">
<pre>
%extend foo::bar {
Integer add(Integer x, Integer y) {
foo::Integer r = x + y; // Ok.
return r;
}
};
</pre>
</div>
<p>
<b>Note:</b> SWIG does <em>not</em> propagate <tt>using</tt> declarations to
the resulting wrapper code. If these declarations appear in an interface,
they should <em>also</em> appear in any header files that might have been
included in a <tt>%{ ... %}</tt> section. In other words, don't insert extra
<tt>using</tt> declarations into a SWIG interface unless they also appear
in the underlying C++ code.
</p>
<p>
<b>Note:</b> Code inclusion directives such as <tt>%{ ... %}</tt> or
<tt>%inline %{ ... %}</tt> should not be placed inside a namespace declaration.
The code emitted by these directives will not be enclosed in a namespace and
you may get very strange results. If you need to use namespaces with
these directives, consider the following:
</p>
<div class="code">
<pre>
// Good version
%inline %{
namespace foo {
void bar(int) { ... }
...
}
%}
// Bad version. Emitted code not placed in namespace.
namespace foo {
%inline %{
void bar(int) { ... } /* I'm bad */
...
%}
}
</pre>
</div>
<p>
<b>Note:</b> When the <tt>%extend</tt> directive is used inside a namespace, the namespace name is
included in the generated functions. For example, if you have code like this,
</p>
<div class="code">
<pre>
namespace foo {
class bar {
public:
%extend {
int blah(int x);
};
};
}
</pre>
</div>
<p>
the added method <tt>blah()</tt> is mapped to a function <tt>int foo_bar_blah(foo::bar *self, int x)</tt>.
This function resides in the global namespace.
</p>
<p>
<b>Note:</b> Although namespaces are flattened in the target language, the SWIG generated wrapper
code observes the same namespace conventions as used in the input file. Thus, if there are no symbol
conflicts in the input, there will be no conflicts in the generated code.
</p>
<p>
<b>Note:</b> In the same way that no resolution is performed on parameters, a conversion operator name must match exactly to how it is defined. Do not change the qualification of the operator. For example, suppose you had an interface like this:
</p>
<div class="code">
<pre>
namespace foo {
class bar;
class spam {
public:
...
operator bar(); // Conversion of spam -> bar
...
};
}
</pre>
</div>
<p>
The following is how the feature is expected to be written for a successful match:
</p>
<div class="code">
<pre>
%rename(tofoo) foo::spam::operator bar();
</pre>
</div>
<p>
The following does not work as no namespace resolution is performed in the matching of conversion operator names:
</p>
<div class="code">
<pre>
%rename(tofoo) foo::spam::operator <b>foo::</b>bar();
</pre>
</div>
<p>
Note, however, that if the operator is defined using a qualifier in its name, then the feature must use it too...
</p>
<div class="code">
<pre>
%rename(tofoo) foo::spam::operator bar(); // will not match
%rename(tofoo) foo::spam::operator foo::bar(); // will match
namespace foo {
class bar;
class spam {
public:
...
operator foo::bar();
...
};
}
</pre>
</div>
<p>
<b>Compatibility Note:</b> Versions of SWIG prior to 1.3.32 were inconsistent in this approach. A fully qualified name was usually required, but would not work in some situations.
</p>
<p>
<b>Note:</b> The flattening of namespaces is only intended to serve as
a basic namespace implementation.
None of the target language modules are currently programmed
with any namespace awareness. In the future, language modules may or may not provide
more advanced namespace support.
</p>
<H3><a name="SWIGPlus_nspace">6.19.1 The nspace feature for namespaces</a></H3>
<p>
Some target languages provide support for the <tt>nspace</tt> <a href="Customization.html#Customization_features">feature</a>.
The feature can be applied to any class, struct, union or enum declared within a named namespace.
The feature wraps the type within the target language specific concept of a namespace,
for example, a Java package or C# namespace.
Please see the language specific sections to see if the target language you are interested in supports the nspace feature.
</p>
<p>
The feature is demonstrated below for C# using the following example:
</p>
<div class="code">
<pre>
%feature("nspace") MyWorld::Material::Color;
%nspace MyWorld::Wrapping::Color; // %nspace is a macro for %feature("nspace")
namespace MyWorld {
namespace Material {
class Color {
...
};
}
namespace Wrapping {
class Color {
...
};
}
}
</pre>
</div>
<p>
Without the <tt>nspace</tt> feature directives above or <tt>%rename</tt>, you would get the following warning resulting in just one of the <tt>Color</tt> classes being available for use from the target language:
</p>
<div class="shell">
<pre>
example.i:9: Error: 'Color' is multiply defined in the generated target language module.
example.i:5: Error: Previous declaration of 'Color'
</pre>
</div>
<p>
With the <tt>nspace</tt> feature the two <tt>Color</tt> classes are wrapped into the equivalent C# namespaces.
A fully qualified constructor call of each these two types in C# is then:
</p>
<div class="targetlang">
<pre>
MyWorld.Material.Color materialColor = new MyWorld.Material.Color();
MyWorld.Wrapping.Color wrappingColor = new MyWorld.Wrapping.Color();
</pre>
</div>
<p>
Note that the <tt>nspace</tt> feature does not apply to variables and functions simply declared in a namespace. For example, the following symbols cannot co-exist in the target language without renaming. This may change in a future version.
</p>
<div class="code">
<pre>
namespace MyWorld {
namespace Material {
int quantity;
void dispatch();
}
namespace Wrapping {
int quantity;
void dispatch();
}
}
</pre>
</div>
<p>
<b>Compatibility Note:</b> The nspace feature was first introduced in SWIG-2.0.0.
</p>
<H2><a name="SWIGPlus_renaming_templated_types_namespaces">6.20 Renaming templated types in namespaces</a></H2>
<p>
As has been mentioned, when %rename includes parameters, the parameter types must match exactly (no typedef or namespace resolution is performed).
SWIG treats templated types slightly differently and has an additional matching rule so unlike non-templated types, an exact match is not always required.
If the fully qualified templated type is specified, it will have a higher precedence over the generic template type.
In the example below, the generic template type is used to rename to <tt>bbb</tt> and the fully qualified type is used to rename to <tt>ccc</tt>.
</p>
<div class="code">
<pre>
%rename(bbb) Space::ABC::aaa(T t); // will match but with lower precedence than ccc
%rename(ccc) Space::ABC<Space::XYZ>::aaa(Space::XYZ t);// will match but with higher precedence
// than bbb
namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}
};
}
%template(ABCXYZ) Space::ABC<Space::XYZ>;
</pre>
</div>
<p>
It should now be apparent that there are many ways to achieve a renaming with %rename. This is demonstrated
by the following two examples, which are effectively the same as the above example.
Below shows how %rename can be placed inside a namespace.
</p>
<div class="code">
<pre>
namespace Space {
%rename(bbb) ABC::aaa(T t); // will match but with lower precedence than ccc
%rename(ccc) ABC<Space::XYZ>::aaa(Space::XYZ t);// will match but with higher precedence than bbb
%rename(ddd) ABC<Space::XYZ>::aaa(XYZ t); // will not match
}
namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}
};
}
%template(ABCXYZ) Space::ABC<Space::XYZ>;
</pre>
</div>
<p>
Note that <tt>ddd</tt> does not match as there is no namespace resolution for parameter types and the fully qualified type must be specified for template type expansion.
The following example shows how %rename can be placed within %extend.
</p>
<div class="code">
<pre>
namespace Space {
%extend ABC {
%rename(bbb) aaa(T t); // will match but with lower precedence than ccc
}
%extend ABC<Space::XYZ> {
%rename(ccc) aaa(Space::XYZ t);// will match but with higher precedence than bbb
%rename(ddd) aaa(XYZ t); // will not match
}
}
namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}
};
}
%template(ABCXYZ) Space::ABC<Space::XYZ>;
</pre>
</div>
<H2><a name="SWIGPlus_exception_specifications">6.21 Exception specifications</a></H2>
<p>
When C++ programs utilize exceptions, exceptional behavior is sometimes specified as
part of a function or method declaration. For example:
</p>
<div class="code">
<pre>
class Error { };
class Foo {
public:
...
void blah() throw(Error);
...
};
</pre>
</div>
<p>
If an exception specification is used, SWIG automatically generates
wrapper code for catching the indicated exception and, when possible,
rethrowing it into the target language, or converting it into an error
in the target language otherwise. For example, in Python, you can
write code like this:
</p>
<div class="targetlang">
<pre>
f = Foo()
try:
f.blah()
except Error, e:
# e is a wrapped instance of "Error"
</pre>
</div>
<p>
Details of how to tailor code for handling the caught C++ exception and converting it into the target language's exception/error handling mechanism
is outlined in the <a href="Typemaps.html#throws_typemap">"throws" typemap</a> section.
</p>
<p>
Since exception specifications are sometimes only used sparingly, this alone may not be enough to
properly handle C++ exceptions. To do that, a different set of special SWIG directives are used.
Consult the "<a href="Customization.html#Customization_exception">Exception handling with %exception</a>" section for details.
The next section details a way of simulating an exception specification or replacing an existing one.
</p>
<H2><a name="SWIGPlus_catches">6.22 Exception handling with %catches</a></H2>
<p>
Exceptions are automatically handled for methods with an exception specification.
Similar handling can be achieved for methods without exception specifications through the <tt>%catches</tt> feature.
It is also possible to replace any declared exception specification using the <tt>%catches</tt> feature.
In fact, <tt>%catches</tt> uses the same <a href="Typemaps.html#throws_typemap">"throws" typemaps</a> that SWIG uses for exception specifications in handling exceptions.
The <tt>%catches</tt> feature must contain a list of possible types that can be thrown.
For each type that is in the list, SWIG will generate a catch handler, in the same way that it would for types declared in the exception specification.
Note that the list can also include the catch all specification "...".
For example,
</p>
<div class="code">
<pre>
struct EBase { virtual ~EBase(); };
struct Error1 : EBase { };
struct Error2 : EBase { };
struct Error3 : EBase { };
struct Error4 : EBase { };
%catches(Error1, Error2, ...) Foo::bar();
%catches(EBase) Foo::blah();
class Foo {
public:
...
void bar();
void blah() throw(Error1, Error2, Error3, Error4);
...
};
</pre>
</div>
<p>
For the <tt>Foo::bar()</tt> method, which can throw anything,
SWIG will generate catch handlers for <tt>Error1</tt>, <tt>Error2</tt> as well as a catch all handler (...).
Each catch handler will convert the caught exception and convert it into a target language error/exception.
The catch all handler will convert the caught exception into an unknown error/exception.
</p>
<p>
Without the <tt>%catches</tt> feature being attached to <tt>Foo::blah()</tt>,
SWIG will generate catch handlers for all of the types in the exception specification, that is, <tt>Error1, Error2, Error3, Error4</tt>.
However, with the <tt>%catches</tt> feature above,
just a single catch handler for the base class, <tt>EBase</tt> will be generated to convert the C++ exception into a target language error/exception.
</p>
<H2><a name="SWIGPlus_nn33">6.23 Pointers to Members</a></H2>
<p>
Starting with SWIG-1.3.7, there is limited parsing support for pointers to C++ class members.
For example:
</p>
<div class="code">
<pre>
double do_op(Object *o, double (Object::*callback)(double, double));
extern double (Object::*fooptr)(double, double);
%constant double (Object::*FOO)(double, double) = &Object::foo;
</pre>
</div>
<p>
Although these kinds of pointers can be parsed and represented by the
SWIG type system, few language modules know how to handle them due to
implementation differences from standard C pointers. Readers are
<em>strongly</em> advised to consult an advanced text such as the "The
Annotated C++ Manual" for specific details.
</p>
<p>
When pointers to members are supported, the pointer value might appear as a special
string like this:
</p>
<div class="targetlang">
<pre>
>>> print example.FOO
_ff0d54a800000000_m_Object__f_double_double__double
>>>
</pre>
</div>
<p>
In this case, the hexadecimal digits represent the entire value of the
pointer which is usually the contents of a small C++ structure on most
machines.
</p>
<p>
SWIG's type-checking mechanism is also more limited when working with
member pointers. Normally SWIG tries to keep track of inheritance
when checking types. However, no such support is currently provided
for member pointers.
</p>
<H2><a name="SWIGPlus_smart_pointers">6.24 Smart pointers and operator->()</a></H2>
<p>
In some C++ programs, objects are often encapsulated by smart-pointers
or proxy classes. This is sometimes done to implement automatic memory management (reference counting) or
persistence. Typically a smart-pointer is defined by a template class where
the <tt>-></tt> operator has been overloaded. This class is then wrapped
around some other class. For example:
</p>
<div class="code">
<pre>
// Smart-pointer class
template<class T> class SmartPtr {
T *pointee;
public:
SmartPtr(T *p) : pointee(p) { ... }
T *operator->() {
return pointee;
}
...
};
// Ordinary class
class Foo_Impl {
public:
int x;
virtual void bar();
...
};
// Smart-pointer wrapper
typedef SmartPtr<Foo_Impl> Foo;
// Create smart pointer Foo
Foo make_Foo() {
return SmartPtr<Foo_Impl>(new Foo_Impl());
}
// Do something with smart pointer Foo
void do_something(Foo f) {
printf("x = %d\n", f->x);
f->bar();
}
// Call the wrapped smart pointer proxy class in the target language 'Foo'
%template(Foo) SmartPtr<Foo_Impl>;
</pre>
</div>
<p>
A key feature of this approach is that by defining
<tt>operator-></tt> the methods and attributes of the object
wrapped by a smart pointer are transparently accessible. For example,
expressions such as these (from the previous example),
</p>
<div class="code">
<pre>
f->x
f->bar()
</pre>
</div>
<p>
are transparently mapped to the following
</p>
<div class="code">
<pre>
(f.operator->())->x;
(f.operator->())->bar();
</pre>
</div>
<p>
When generating wrappers, SWIG tries to emulate this functionality to
the extent that it is possible. To do this, whenever
<tt>operator->()</tt> is encountered in a class, SWIG looks at its
returned type and uses it to generate wrappers for accessing
attributes of the underlying object. For example, wrapping the above
code produces wrappers like this:
</p>
<div class="code">
<pre>
int Foo_x_get(Foo *f) {
return (*f)->x;
}
void Foo_x_set(Foo *f, int value) {
(*f)->x = value;
}
void Foo_bar(Foo *f) {
(*f)->bar();
}
</pre>
</div>
<p>
These wrappers take a smart-pointer instance as an argument, but
dereference it in a way to gain access to the object returned by
<tt>operator->()</tt>. You should carefully compare these wrappers
to those in the first part of this chapter (they are slightly
different).
</p>
<p>
The end result is that access looks very similar to C++. For
example, you could do this in Python:
</p>
<div class="targetlang">
<pre>
>>> f = make_Foo()
>>> print f.x
0
>>> f.bar()
>>>
</pre>
</div>
<p>
When generating wrappers through a smart-pointer, SWIG tries to
generate wrappers for all methods and attributes that might be
accessible through <tt>operator->()</tt>. This includes any methods
that might be accessible through inheritance. However, there are a number of restrictions:
</p>
<ul>
<li>Member variables and methods are wrapped through a smart
pointer. Enumerations, constructors, and destructors are not wrapped.
</li>
<li><p>If the smart-pointer class and the underlying object both define a method or
variable of the same name, then the smart-pointer version has precedence. For
example, if you have this code</p>
<div class="code">
<pre>
class Foo {
public:
int x;
};
class Bar {
public:
int x;
Foo *operator->();
};
</pre>
</div>
<p>
then the wrapper for <tt>Bar::x</tt> accesses the <tt>x</tt> defined in <tt>Bar</tt>, and
not the <tt>x</tt> defined in <tt>Foo</tt>.</p>
</li>
</ul>
<p>
If your intent is to only expose the smart-pointer class in the interface, it is not necessary to wrap both
the smart-pointer class and the class for the underlying object. However, you must still tell SWIG about both
classes if you want the technique described in this section to work. To only generate wrappers for the
smart-pointer class, you can use the %ignore directive. For example:
</p>
<div class="code">
<pre>
%ignore Foo;
class Foo { // Ignored
};
class Bar {
public:
Foo *operator->();
...
};
</pre>
</div>
<p>
Alternatively, you can import the definition of <tt>Foo</tt> from a separate file using
<tt>%import</tt>.
</p>
<p>
<b>Note:</b> When a class defines <tt>operator->()</tt>, the operator itself is wrapped
as a method <tt>__deref__()</tt>. For example:
</p>
<div class="targetlang">
<pre>
f = Foo() # Smart-pointer
p = f.__deref__() # Raw pointer from operator->
</pre>
</div>
<p>
<b>Note:</b> To disable the smart-pointer behavior, use <tt>%ignore</tt> to ignore
<tt>operator->()</tt>. For example:
</p>
<div class="code">
<pre>
%ignore Bar::operator->;
</pre>
</div>
<p>
<b>Note:</b> Smart pointer support was first added in SWIG-1.3.14.
</p>
<H2><a name="SWIGPlus_ref_unref">6.25 C++ reference counted objects - ref/unref feature</a></H2>
<p>
Another similar idiom in C++ is the use of reference counted objects. Consider for example:
</p>
<div class="code">
<pre>
class RCObj {
// implement the ref counting mechanism
int add_ref();
int del_ref();
int ref_count();
public:
virtual ~RCObj() = 0;
int ref() const {
return add_ref();
}
int unref() const {
if (ref_count() == 0 || del_ref() == 0 ) {
delete this;
return 0;
}
return ref_count();
}
};
class A : RCObj {
public:
A();
int foo();
};
class B {
A *_a;
public:
B(A *a) : _a(a) {
a->ref();
}
~B() {
a->unref();
}
};
int main() {
A *a = new A(); // (count: 0)
a->ref(); // 'a' ref here (count: 1)
B *b1 = new B(a); // 'a' ref here (count: 2)
if (1 + 1 == 2) {
B *b2 = new B(a); // 'a' ref here (count: 3)
delete b2; // 'a' unref, but not deleted (count: 2)
}
delete b1; // 'a' unref, but not deleted (count: 1)
a->unref(); // 'a' unref and deleted (count: 0)
}
</pre>
</div>
<p>
In the example above, the 'A' class instance 'a' is a reference counted
object, which can't be deleted arbitrarily since it is shared between
the objects 'b1' and 'b2'. 'A' is derived from a <i>Reference Counted
Object</i> 'RCObj', which implements the ref/unref idiom.
</p>
<p>
To tell SWIG that 'RCObj' and all its derived classes are reference
counted objects, use the "ref" and "unref" <a href="Customization.html#Customization_features">features</a>.
These are also available as <tt>%refobject</tt> and <tt>%unrefobject</tt>, respectively.
For example:
</p>
<div class="code">
<pre>
%module example
...
%feature("ref") RCObj "$this->ref();"
%feature("unref") RCObj "$this->unref();"
%include "rcobj.h"
%include "A.h"
...
</pre>
</div>
<p>
where the code passed to the "ref" and "unref" features will be
executed as needed whenever a new object is passed to python, or when
python tries to release the proxy object instance, respectively.
</p>
<p>
On the python side, the use of a reference counted object is no
different to any other regular instance:
</p>
<div class="targetlang">
<pre>
def create_A():
a = A() # SWIG ref 'a' - new object is passed to python (count: 1)
b1 = B(a) # C++ ref 'a (count: 2)
if 1 + 1 == 2:
b2 = B(a) # C++ ref 'a' (count: 3)
return a # 'b1' and 'b2' are released and deleted, C++ unref 'a' twice (count: 1)
a = create_A() # (count: 1)
exit # 'a' is released, SWIG unref 'a' called in the destructor wrapper (count: 0)
</pre>
</div>
<p>
Note that the user doesn't explicitly need to call 'a->ref()' nor 'a->unref()'
(and neither 'delete a'). Instead, SWIG takes cares of executing the "ref"
and "unref" calls as needed. If the user doesn't specify the
"ref/unref" feature for a type, SWIG will produce code equivalent to defining these
features:
</p>
<div class="code">
<pre>
%feature("ref") ""
%feature("unref") "delete $this;"
</pre>
</div>
<p>
In other words, SWIG will not do anything special when a new object
is passed to python, and it will always 'delete' the underlying object when
python releases the proxy instance.
</p>
<p>
The <a href="Customization.html#Customization_ownership">%newobject feature</a> is designed to indicate to
the target language that it should take ownership of the returned object.
When used in conjunction with a type that has the "ref" feature associated with it, it additionally emits the
code in the "ref" feature into the C++ wrapper.
Consider wrapping the following factory function in addition to the above:
</p>
<div class="code">
<pre>
%newobject AFactory;
A *AFactory() {
return new A();
}
</pre>
</div>
<p>
The <tt>AFactory</tt> function now acts much like a call to the <tt>A</tt> constructor with respect to memory handling:
</p>
<div class="targetlang">
<pre>
a = AFactory() # SWIG ref 'a' due to %newobject (count: 1)
exit # 'a' is released, SWIG unref 'a' called in the destructor wrapper (count: 0)
</pre>
</div>
<H2><a name="SWIGPlus_nn35">6.26 Using declarations and inheritance</a></H2>
<p>
<tt>using</tt> declarations are sometimes used to adjust access to members of
base classes. For example:
</p>
<div class="code">
<pre>
class Foo {
public:
int blah(int x);
};
class Bar {
public:
double blah(double x);
};
class FooBar : public Foo, public Bar {
public:
using Foo::blah;
using Bar::blah;
char *blah(const char *x);
};
</pre>
</div>
<p>
In this example, the <tt>using</tt> declarations make different
versions of the overloaded <tt>blah()</tt> method accessible from the
derived class. For example:
</p>
<div class="code">
<pre>
FooBar *f;
f->blah(3); // Ok. Invokes Foo::blah(int)
f->blah(3.5); // Ok. Invokes Bar::blah(double)
f->blah("hello"); // Ok. Invokes FooBar::blah(const char *);
</pre>
</div>
<p>
SWIG emulates the same functionality when creating wrappers. For example, if
you wrap this code in Python, the module works just like you would expect:
</p>
<div class="targetlang">
<pre>
>>> import example
>>> f = example.FooBar()
>>> f.blah(3)
>>> f.blah(3.5)
>>> f.blah("hello")
</pre>
</div>
<p>
<tt>using</tt> declarations can also be used to change access when applicable. For example:
</p>
<div class="code">
<pre>
class Foo {
protected:
int x;
int blah(int x);
};
class Bar : public Foo {
public:
using Foo::x; // Make x public
using Foo::blah; // Make blah public
};
</pre>
</div>
<p>
This also works in SWIG---the exposed declarations will be wrapped normally.
</p>
<p>
When <tt>using</tt> declarations are used as shown in these examples, declarations
from the base classes are copied into the derived class and wrapped normally. When
copied, the declarations retain any properties that might have been attached using
<tt>%rename</tt>, <tt>%ignore</tt>, or <tt>%feature</tt>. Thus, if a method is
ignored in a base class, it will also be ignored by a <tt>using</tt> declaration.
</p>
<p>
Because a <tt>using</tt> declaration does not provide fine-grained
control over the declarations that get imported, it may be difficult
to manage such declarations in applications that make heavy use of
SWIG customization features. If you can't get <tt>using</tt> to work
correctly, you can always change the interface to the following:
</p>
<div class="code">
<pre>
class FooBar : public Foo, public Bar {
public:
#ifndef SWIG
using Foo::blah;
using Bar::blah;
#else
int blah(int x); // explicitly tell SWIG about other declarations
double blah(double x);
#endif
char *blah(const char *x);
};
</pre>
</div>
<p>
<b>Notes:</b>
</p>
<ul>
<li><p>If a derived class redefines a method defined in a base class, then a <tt>using</tt> declaration
won't cause a conflict. For example:</p>
<div class="code">
<pre>
class Foo {
public:
int blah(int );
double blah(double);
};
class Bar : public Foo {
public:
using Foo::blah; // Only imports blah(double);
int blah(int);
};
</pre>
</div>
<li><p>Resolving ambiguity in overloading may prevent declarations from being
imported by <tt>using</tt>. For example:
</p>
<div class="code">
<pre>
%rename(blah_long) Foo::blah(long);
class Foo {
public:
int blah(int);
long blah(long); // Renamed to blah_long
};
class Bar : public Foo {
public:
using Foo::blah; // Only imports blah(int)
double blah(double x);
};
</pre>
</div>
</ul>
<H2><a name="SWIGPlus_nested_classes">6.27 Nested classes</a></H2>
<p>
If the target language supports the nested classes concept (like Java), the nested C++ classes
are wrapped as nested target language proxy classes. (In case of Java - "static" nested classes.)
Only public nested classes are wrapped. Otherwise there is little difference between nested and
normal classes.
</p>
<p>
If the target language doesn't support nested classes directly, or the support is not implemented in the
language module (like for python currently), then the visible nested classes are moved to the same name
space as the containing class (nesting hierarchy is "flattened"). The same behaviour may be turned on for
C# and Java by the %feature ("flatnested"); If there is a class with the same name in the outer namespace
the inner class (or the global one) may be renamed or ignored:
</p>
<div class="code">
<pre>
%rename (Bar_Foo) Bar::Foo;
class Foo {};
class Bar {
public:
class Foo {};
};
</pre>
</div>
<p>
If a nested class, within an outer class, has to be used as a template parameter within the outer class, then the template will
have to be instantiated with <tt>%template</tt> before the beginning of the outer class.
An example can be found in the
<a href="#SWIGPlus_template_nested_class_example">Templates</a> section.
</p>
<p>
<b>Compatibility Note:</b>
Prior to SWIG-3.0.0, there was limited nested class support. Nested classes were treated as opaque pointers.
However, there was a workaround for nested class support in these older versions requiring the user to replicate
the nested class in the global scope, adding in a typedef for the nested class in the global scope and
using the "nestedworkaround" feature on the nested class. This resulted in approximately the
same behaviour as the "flatnested" feature. With proper nested class support now available in SWIG-3.0.0, this
feature has been deprecated and no longer works requiring code changes. If you see the following warning:
</p>
<div class="shell">
<pre>
example.i:8: Warning 126: The nestedworkaround feature is deprecated
</pre>
</div>
<p>
consider using the "flatnested" feature discussed above which generates a non-nested proxy class, like the
"nestedworkaround" feature did. Alternatively, use the default nested class code generation, which may generate an
equivalent to a nested proxy class in the target language, depending on the target language support.
</p>
<p>
SWIG-1.3.40 and earlier versions did not have the <tt>nestedworkaround</tt> feature
and the generated code resulting from parsing nested classes did not always compile.
Nested class warnings could also not be suppressed using %warnfilter.
</p>
<H2><a name="SWIGPlus_const">6.28 A brief rant about const-correctness</a></H2>
<p>
A common issue when working with C++ programs is dealing with all
possible ways in which the <tt>const</tt> qualifier (or lack thereof)
will break your program, all programs linked against your program, and
all programs linked against those programs.
</p>
<p>
Although SWIG knows how to correctly deal with <tt>const</tt> in its
internal type system and it knows how to generate wrappers that are
free of const-related warnings, SWIG does not make any attempt to preserve
const-correctness in the target language. Thus, it is possible to
pass <tt>const</tt> qualified objects to non-const methods and functions.
For example, consider the following code in C++:
</p>
<div class="code">
<pre>
const Object * foo();
void bar(Object *);
...
// C++ code
void blah() {
bar(foo()); // Error: bar discards const
};
</pre>
</div>
<p>
Now, consider the behavior when wrapped into a Python module:
</p>
<div class="targetlang">
<pre>
>>> bar(foo()) # Okay
>>>
</pre>
</div>
<p>
Although this is clearly a violation of the C++ type-system, fixing
the problem doesn't seem to be worth the added implementation
complexity that would be required to support it in the SWIG run-time type
system. There are no plans to change this in future releases
(although we'll never rule anything out entirely).
</p>
<p>
The bottom line is that this particular issue does not appear to be a problem
for most SWIG projects. Of course, you might want to consider
using another tool if maintaining constness is the most important part
of your project.
</p>
<H2><a name="SWIGPlus_nn42">6.29 Where to go for more information</a></H2>
<p>
If you're wrapping serious C++ code, you might want to pick up a copy
of "The Annotated C++ Reference Manual" by Ellis and Stroustrup. This
is the reference document we use to guide a lot of SWIG's C++ support.
</p>
</body>
</html>
<!-- LocalWords: destructors Enums Namespaces const SWIG's STL OO adaptor tcl
-->
<!-- LocalWords: debuggable cxx OBJS Wiki accessor nodefault makedefault
-->
<!-- LocalWords: notabstract CopyFoo
-->
|