1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
<html>
<head>
<title>SWIG:Examples:tcl:class</title>
</head>
<body bgcolor="#ffffff">
<tt>SWIG/Examples/tcl/class/</tt>
<hr>
<H2>Wrapping a simple C++ class</H2>
<p>
This example illustrates the most primitive form of C++ class wrapping performed
by SWIG. In this case, C++ classes are simply transformed into a collection of
C-style functions that provide access to class members.
<h2>The C++ Code</h2>
Suppose you have some C++ classes described by the following (and admittedly lame)
header file:
<blockquote>
<pre>
/* File : example.h */
class Shape {
public:
Shape() {
nshapes++;
}
virtual ~Shape() {
nshapes--;
}
double x, y;
void move(double dx, double dy);
virtual double area() = 0;
virtual double perimeter() = 0;
static int nshapes;
};
class Circle : public Shape {
private:
double radius;
public:
Circle(double r) : radius(r) { }
virtual double area();
virtual double perimeter();
};
class Square : public Shape {
private:
double width;
public:
Square(double w) : width(w) { }
virtual double area();
virtual double perimeter();
};
</pre>
</blockquote>
<h2>The SWIG interface</h2>
A simple SWIG interface for this can be built by simply grabbing the header file
like this:
<blockquote>
<pre>
/* File : example.i */
%module example
%{
#include "example.h"
%}
/* Let's just grab the original header file here */
%include "example.h"
</pre>
</blockquote>
Note: when creating a C++ extension, you must run SWIG with the <tt>-c++</tt> option like this:
<blockquote>
<pre>
% swig -c++ -tcl example.i
</pre>
</blockquote>
<h2>Some sample Tcl scripts</h2>
SWIG performs two forms of C++ wrapping-- a low level interface and a high level widget-like interface.
<ul>
<li>
Click <a href="runme.tcl">here</a> to see a script that calls the C++ functions using the
low-level interface.
<li>
Click <a href="runme2.tcl">here</a> to see the same script written with the high-level
interface.
</ul>
<h2>Key points</h2>
<ul>
<li>The low-level C++ interface works like this:
<p>
<ul>
<li>To create a new object, you call a constructor like this:
<blockquote>
<pre>
set c [new_Circle 10.0]
</pre>
</blockquote>
<p>
<li>To access member data, a pair of accessor functions are used.
For example:
<blockquote>
<pre>
Shape_x_set $c 15 ;# Set member data
set x [Shape_x_get $c] ;# Get member data
</pre>
</blockquote>
Note: when accessing member data, the name of the base class must
be used such as <tt>Shape_x_get</tt>
<p>
<li>To invoke a member function, you simply do this
<blockquote>
<pre>
puts "The area is [Shape_area $c]"
</pre>
</blockquote>
<p>
<li>Type checking knows about the inheritance structure of C++. For example:
<blockquote>
<pre>
Shape_area $c # Works (c is a Shape)
Circle_area $c # Works (c is a Circle)
Square_area $c # Fails (c is definitely not a Square)
</pre>
</blockquote>
<p>
<li>To invoke a destructor, simply do this
<blockquote>
<pre>
delete_Shape $c # Deletes a shape
</pre>
</blockquote>
<p>
<li>Static member variables are wrapped as C global variables. For example:
<blockquote>
<pre>
set n $Shape_nshapes # Get a static data member
set Shapes_nshapes 13 # Set a static data member
</pre>
</blockquote>
</ul>
<p>
<li>The high-level interface works like a Tk widget
<p>
<ul>
<li>To create a new object, you call a constructor like this:
<blockquote>
<pre>
Circle c 10 # c becomes a name for the Circle object
</pre>
</blockquote>
<p>
<li>To access member data, use cget and configure methods.
For example:
<blockquote>
<pre>
c configure -x 15 ;# Set member data
set x [c cget -x] ;# Get member data
</pre>
</blockquote>
<p>
<li>To invoke a member function, you simply do this
<blockquote>
<pre>
puts "The area is [c area]"
</pre>
</blockquote>
<p>
<li>To invoke a destructor, simply destroy the object name like this:
<blockquote>
<pre>
rename c "" # c goes away
</pre>
</blockquote>
<p>
<li>Static member variables are wrapped as C global variables. For example:
<blockquote>
<pre>
set n $Shape_nshapes # Get a static data member
set Shapes_nshapes 13 # Set a static data member
</pre>
</blockquote>
</ul>
</ul>
<h2>General Comments</h2>
<ul>
<li>The low-level function interface is much faster than the high-level interface.
In fact, all the higher level interface does is call functions in the low-level interface.
<li>SWIG <b>does</b> know how to properly perform upcasting of objects in an inheritance
hierarchy (including multiple inheritance). Therefore it is perfectly safe to pass
an object of a derived class to any function involving a base class.
<li>C++ Namespaces - %nspace isn't yet supported for Tcl.
</ul>
<hr>
</body>
</html>
|