1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*
Defines the As/From conversors for double/float complex, you need to
provide complex Type, the Name you want to use in the converters,
the complex Constructor method, and the Real and Imag complex
accessor methods.
See the std_complex.i and ccomplex.i for concrete examples.
*/
%fragment("rb_complex_new","header")
{
%#if !defined(T_COMPLEX)
/* Ruby versions prior to 1.9 did not have native complex numbers. They were an extension in the STD library. */
SWIGINTERN VALUE rb_complex_new(VALUE x, VALUE y) {
static ID new_id = rb_intern("new");
static VALUE cComplex = rb_const_get(rb_cObject, rb_intern("Complex"));
return rb_funcall(cComplex, new_id, 2, x, y);
}
%#endif
}
%fragment("SWIG_Complex_Numbers","header")
{
%#if !defined(T_COMPLEX)
SWIGINTERN int SWIG_Is_Complex( VALUE obj ) {
static ID real_id = rb_intern("real");
static ID imag_id = rb_intern("imag");
return ( (rb_respond_to( obj, real_id ) ) &&
(rb_respond_to( obj, imag_id ) ) );
}
%#else
SWIGINTERN int SWIG_Is_Complex( VALUE obj ) {
return TYPE(obj) == T_COMPLEX;
}
%#endif
SWIGINTERN VALUE SWIG_Complex_Real(VALUE obj) {
static ID real_id = rb_intern("real");
return rb_funcall(obj, real_id, 0);
}
SWIGINTERN VALUE SWIG_Complex_Imaginary(VALUE obj) {
static ID imag_id = rb_intern("imag");
return rb_funcall(obj, imag_id, 0);
}
}
%init {
%#if !defined(T_COMPLEX)
rb_require("complex");
%#endif
}
/* the common from converter */
%define %swig_fromcplx_conv(Type, Real, Imag)
%fragment(SWIG_From_frag(Type),"header",fragment="rb_complex_new")
{
SWIGINTERNINLINE VALUE
SWIG_From(Type)(%ifcplusplus(const Type&, Type) c)
{
VALUE re = rb_float_new(Real(c));
VALUE im = rb_float_new(Imag(c));
return rb_complex_new(re, im);
}
}
%enddef
/* the double case */
%define %swig_cplxdbl_conv(Type, Constructor, Real, Imag)
%fragment(SWIG_AsVal_frag(Type),"header",
fragment=SWIG_AsVal_frag(double),
fragment="SWIG_Complex_Numbers")
{
SWIGINTERN int
SWIG_AsVal(Type) (VALUE o, Type* val)
{
if ( SWIG_Is_Complex( o ) ) {
if (val) {
VALUE real = SWIG_Complex_Real(o);
VALUE imag = SWIG_Complex_Imaginary(o);
double re = 0;
SWIG_AsVal_double( real, &re );
double im = 0;
SWIG_AsVal_double( imag, &im );
*val = Constructor(re, im);
}
return SWIG_OK;
} else {
double d;
int res = SWIG_AddCast(SWIG_AsVal(double)(o, &d));
if (SWIG_IsOK(res)) {
if (val) *val = Constructor(d, 0.0);
return res;
}
}
return SWIG_TypeError;
}
}
%swig_fromcplx_conv(Type, Real, Imag);
%enddef
/* the float case */
%define %swig_cplxflt_conv(Type, Constructor, Real, Imag)
%fragment(SWIG_AsVal_frag(Type),"header",
fragment=SWIG_AsVal_frag(float),
fragment=SWIG_AsVal_frag(double),
fragment="SWIG_Complex_Numbers") {
SWIGINTERN int
SWIG_AsVal(Type)(VALUE o, Type *val)
{
if ( SWIG_Is_Complex( o ) ) {
VALUE real = SWIG_Complex_Real(o);
VALUE imag = SWIG_Complex_Imaginary(o);
double re = 0;
SWIG_AsVal_double( real, &re );
double im = 0;
SWIG_AsVal_double( imag, &im );
if ((-FLT_MAX <= re && re <= FLT_MAX) &&
(-FLT_MAX <= im && im <= FLT_MAX)) {
if (val) *val = Constructor(%numeric_cast(re, float),
%numeric_cast(im, float));
return SWIG_OK;
} else {
return SWIG_OverflowError;
}
} else {
float re;
int res = SWIG_AddCast(SWIG_AsVal(float)(o, &re));
if (SWIG_IsOK(res)) {
if (val) *val = Constructor(re, 0.0);
return res;
}
}
return SWIG_TypeError;
}
}
%swig_fromcplx_conv(Type, Real, Imag);
%enddef
#define %swig_cplxflt_convn(Type, Constructor, Real, Imag) \
%swig_cplxflt_conv(Type, Constructor, Real, Imag)
#define %swig_cplxdbl_convn(Type, Constructor, Real, Imag) \
%swig_cplxdbl_conv(Type, Constructor, Real, Imag)
|