1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*
Multimaps
*/
%include <std_map.i>
%fragment("StdMultimapTraits","header",fragment="StdMapCommonTraits")
{
namespace swig {
template <class RubySeq, class K, class T >
inline void
assign(const RubySeq& rubyseq, std::multimap<K,T > *multimap) {
typedef typename std::multimap<K,T>::value_type value_type;
typename RubySeq::const_iterator it = rubyseq.begin();
for (;it != rubyseq.end(); ++it) {
multimap->insert(value_type(it->first, it->second));
}
}
template <class K, class T>
struct traits_asptr<std::multimap<K,T> > {
typedef std::multimap<K,T> multimap_type;
static int asptr(VALUE obj, std::multimap<K,T> **val) {
int res = SWIG_ERROR;
if ( TYPE(obj) == T_HASH ) {
static ID id_to_a = rb_intern("to_a");
VALUE items = rb_funcall(obj, id_to_a, 0);
return traits_asptr_stdseq<std::multimap<K,T>, std::pair<K, T> >::asptr(items, val);
} else {
multimap_type *p;
res = SWIG_ConvertPtr(obj,(void**)&p,swig::type_info<multimap_type>(),0);
if (SWIG_IsOK(res) && val) *val = p;
}
return res;
}
};
template <class K, class T >
struct traits_from<std::multimap<K,T> > {
typedef std::multimap<K,T> multimap_type;
typedef typename multimap_type::const_iterator const_iterator;
typedef typename multimap_type::size_type size_type;
static VALUE from(const multimap_type& multimap) {
swig_type_info *desc = swig::type_info<multimap_type>();
if (desc && desc->clientdata) {
return SWIG_NewPointerObj(new multimap_type(multimap), desc, SWIG_POINTER_OWN);
} else {
size_type size = multimap.size();
int rubysize = (size <= (size_type) INT_MAX) ? (int) size : -1;
if (rubysize < 0) {
SWIG_RUBY_THREAD_BEGIN_BLOCK;
rb_raise(rb_eRuntimeError,
"multimap size not valid in Ruby");
SWIG_RUBY_THREAD_END_BLOCK;
return Qnil;
}
VALUE obj = rb_hash_new();
for (const_iterator i= multimap.begin(); i!= multimap.end(); ++i) {
VALUE key = swig::from(i->first);
VALUE val = swig::from(i->second);
VALUE oldval = rb_hash_aref( obj, key );
if ( oldval == Qnil )
rb_hash_aset(obj, key, val);
else {
// Multiple values for this key, create array if needed
// and add a new element to it.
VALUE ary;
if ( TYPE(oldval) == T_ARRAY )
ary = oldval;
else
{
ary = rb_ary_new2(2);
rb_ary_push( ary, oldval );
rb_hash_aset( obj, key, ary );
}
rb_ary_push( ary, val );
}
}
return obj;
}
}
};
}
}
%define %swig_multimap_methods(MultiMap...)
%swig_map_common(%arg(MultiMap));
%extend {
VALUE __getitem__(const key_type& key) const {
MultiMap::const_iterator i = self->find(key);
if ( i != self->end() )
{
MultiMap::const_iterator e = $self->upper_bound(key);
VALUE ary = rb_ary_new();
for ( ; i != e; ++i )
{
rb_ary_push( ary, swig::from<MultiMap::mapped_type>( i->second ) );
}
if ( RARRAY_LEN(ary) == 1 )
return RARRAY_PTR(ary)[0];
return ary;
}
else
return Qnil;
}
void __setitem__(const key_type& key, const mapped_type& x) throw (std::out_of_range) {
self->insert(MultiMap::value_type(key,x));
}
VALUE inspect()
{
MultiMap::iterator i = $self->begin();
MultiMap::iterator e = $self->end();
const char *type_name = swig::type_name< MultiMap >();
VALUE str = rb_str_new2( type_name );
str = rb_str_cat2( str, " {" );
VALUE tmp;
while ( i != e )
{
const MultiMap::key_type& key = i->first;
const MultiMap::key_type& oldkey = key;
tmp = swig::from( key );
str = rb_str_buf_append( str, rb_inspect(tmp) );
str = rb_str_cat2( str, "=>" );
VALUE vals = rb_ary_new();
for ( ; i != e && key == oldkey; ++i )
{
const MultiMap::mapped_type& val = i->second;
tmp = swig::from( val );
rb_ary_push( vals, tmp );
}
if ( RARRAY_LEN(vals) == 1 )
{
str = rb_str_buf_append( str, rb_inspect(tmp) );
}
else
{
str = rb_str_buf_append( str, rb_inspect(vals) );
}
}
str = rb_str_cat2( str, "}" );
return str;
}
VALUE to_a()
{
MultiMap::const_iterator i = $self->begin();
MultiMap::const_iterator e = $self->end();
VALUE ary = rb_ary_new2( std::distance( i, e ) );
VALUE tmp;
while ( i != e )
{
const MultiMap::key_type& key = i->first;
const MultiMap::key_type& oldkey = key;
tmp = swig::from( key );
rb_ary_push( ary, tmp );
VALUE vals = rb_ary_new();
for ( ; i != e && key == oldkey; ++i )
{
const MultiMap::mapped_type& val = i->second;
tmp = swig::from( val );
rb_ary_push( vals, tmp );
}
if ( RARRAY_LEN(vals) == 1 )
{
rb_ary_push( ary, tmp );
}
else
{
rb_ary_push( ary, vals );
}
}
return ary;
}
VALUE to_s()
{
MultiMap::iterator i = $self->begin();
MultiMap::iterator e = $self->end();
VALUE str = rb_str_new2( "" );
VALUE tmp;
while ( i != e )
{
const MultiMap::key_type& key = i->first;
const MultiMap::key_type& oldkey = key;
tmp = swig::from( key );
tmp = rb_obj_as_string( tmp );
str = rb_str_buf_append( str, tmp );
VALUE vals = rb_ary_new();
for ( ; i != e && key == oldkey; ++i )
{
const MultiMap::mapped_type& val = i->second;
tmp = swig::from( val );
rb_ary_push( vals, tmp );
}
tmp = rb_obj_as_string( vals );
str = rb_str_buf_append( str, tmp );
}
return str;
}
}
%enddef
%mixin std::multimap "Enumerable";
%rename("delete") std::multimap::__delete__;
%rename("reject!") std::multimap::reject_bang;
%rename("map!") std::multimap::map_bang;
%rename("empty?") std::multimap::empty;
%rename("include?" ) std::multimap::__contains__ const;
%rename("has_key?" ) std::multimap::has_key const;
%alias std::multimap::push "<<";
%include <std/std_multimap.i>
|