1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
//
// std::vector
//
%include <std_container.i>
// Vector
%define %std_vector_methods(vector...)
%std_sequence_methods(vector)
void reserve(size_type n);
size_type capacity() const;
%enddef
%define %std_vector_methods_val(vector...)
%std_sequence_methods_val(vector)
void reserve(size_type n);
size_type capacity() const;
%enddef
// ------------------------------------------------------------------------
// std::vector
//
// The aim of all that follows would be to integrate std::vector with
// as much as possible, namely, to allow the user to pass and
// be returned tuples or lists.
// const declarations are used to guess the intent of the function being
// exported; therefore, the following rationale is applied:
//
// -- f(std::vector<T>), f(const std::vector<T>&):
// the parameter being read-only, either a sequence or a
// previously wrapped std::vector<T> can be passed.
// -- f(std::vector<T>&), f(std::vector<T>*):
// the parameter may be modified; therefore, only a wrapped std::vector
// can be passed.
// -- std::vector<T> f(), const std::vector<T>& f():
// the vector is returned by copy; therefore, a sequence of T:s
// is returned which is most easily used in other functions
// -- std::vector<T>& f(), std::vector<T>* f():
// the vector is returned by reference; therefore, a wrapped std::vector
// is returned
// -- const std::vector<T>* f(), f(const std::vector<T>*):
// for consistency, they expect and return a plain vector pointer.
// ------------------------------------------------------------------------
%{
#include <vector>
%}
// exported classes
namespace std {
template<class _Tp, class _Alloc = allocator< _Tp > >
class vector {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Alloc allocator_type;
%traits_swigtype(_Tp);
%traits_enum(_Tp);
%fragment(SWIG_Traits_frag(std::vector< _Tp, _Alloc >), "header",
fragment=SWIG_Traits_frag(_Tp),
fragment="StdVectorTraits") {
namespace swig {
template <> struct traits<std::vector< _Tp, _Alloc > > {
typedef pointer_category category;
static const char* type_name() {
return "std::vector<" #_Tp "," #_Alloc " >";
}
};
}
}
%typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector< _Tp, _Alloc >);
#ifdef %swig_vector_methods
// Add swig/language extra methods
%swig_vector_methods(std::vector< _Tp, _Alloc >);
#endif
%std_vector_methods(vector);
};
// ***
// This specialization should disappear or get simplified when
// a 'const SWIGTYPE*&' can be defined
// ***
template<class _Tp, class _Alloc >
class vector< _Tp*, _Alloc > {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type reference;
typedef value_type const_reference;
typedef _Alloc allocator_type;
%traits_swigtype(_Tp);
%fragment(SWIG_Traits_frag(std::vector< _Tp*, _Alloc >), "header",
fragment=SWIG_Traits_frag(_Tp),
fragment="StdVectorTraits") {
namespace swig {
template <> struct traits<std::vector< _Tp*, _Alloc > > {
typedef value_category category;
static const char* type_name() {
return "std::vector<" #_Tp " *," #_Alloc " >";
}
};
}
}
%typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector< _Tp*, _Alloc >);
#ifdef %swig_vector_methods_val
// Add swig/language extra methods
%swig_vector_methods_val(std::vector< _Tp*, _Alloc >);
#endif
%std_vector_methods_val(vector);
};
// ***
// const pointer specialization
// ***
template<class _Tp, class _Alloc >
class vector< _Tp const *, _Alloc > {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp const * value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type reference;
typedef value_type const_reference;
typedef _Alloc allocator_type;
%traits_swigtype(_Tp);
%fragment(SWIG_Traits_frag(std::vector< _Tp const*, _Alloc >), "header",
fragment=SWIG_Traits_frag(_Tp),
fragment="StdVectorTraits") {
namespace swig {
template <> struct traits<std::vector< _Tp const*, _Alloc > > {
typedef value_category category;
static const char* type_name() {
return "std::vector<" #_Tp " const*," #_Alloc " >";
}
};
}
}
%typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector< _Tp const*, _Alloc >);
#ifdef %swig_vector_methods_val
// Add swig/language extra methods
%swig_vector_methods_val(std::vector< _Tp const*, _Alloc >);
#endif
%std_vector_methods_val(vector);
};
// ***
// bool specialization
// ***
template<class _Alloc >
class vector<bool,_Alloc > {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef bool value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type reference;
typedef value_type const_reference;
typedef _Alloc allocator_type;
%traits_swigtype(bool);
%fragment(SWIG_Traits_frag(std::vector<bool, _Alloc >), "header",
fragment=SWIG_Traits_frag(bool),
fragment="StdVectorTraits") {
namespace swig {
template <> struct traits<std::vector<bool, _Alloc > > {
typedef value_category category;
static const char* type_name() {
return "std::vector<bool, _Alloc >";
}
};
}
}
%typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector<bool, _Alloc >);
#ifdef %swig_vector_methods_val
// Add swig/language extra methods
%swig_vector_methods_val(std::vector<bool, _Alloc >);
#endif
%std_vector_methods_val(vector);
#if defined(SWIG_STD_MODERN_STL) && !defined(SWIG_STD_NOMODERN_STL)
void flip();
#endif
};
}
|