1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/******************************************************************************
* The MIT License (MIT)
*
* Copyright (c) 2018 Baldur Karlsson
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
******************************************************************************/
#include "vk_test.h"
struct VK_CBuffer_Zoo : VulkanGraphicsTest
{
static constexpr const char *Description =
"Tests every kind of constant that can be in a cbuffer to make sure it's decoded correctly.";
std::string common = R"EOSHADER(
#version 430 core
struct v2f
{
vec4 pos;
vec4 col;
vec4 uv;
};
)EOSHADER";
std::string vertex = R"EOSHADER(
layout(location = 0) in vec3 Position;
layout(location = 1) in vec4 Color;
layout(location = 2) in vec2 UV;
layout(location = 0) out v2f vertOut;
void main()
{
vertOut.pos = vec4(Position.xyz, 1);
gl_Position = vertOut.pos;
vertOut.col = Color;
vertOut.uv = vec4(UV.xy, 0, 1);
}
)EOSHADER";
std::string glslpixel = R"EOSHADER(
layout(location = 0) in v2f vertIn;
layout(location = 0, index = 0) out vec4 Color;
struct vec3_1 { vec3 a; float b; };
struct nested { vec3_1 a; vec4 b[4]; vec3_1 c[4]; };
layout(set = 0, binding = 0, std140) uniform constsbuf
{
// dummy* entries are just to 'reset' packing to avoid pollution between tests
vec4 a; // basic vec4 = {0, 1, 2, 3}
vec3 b; // should have a padding word at the end = {4, 5, 6}, <7>
vec2 c; vec2 d; // should be packed together = {8, 9}, {10, 11}
float e; vec3 f; // can't be packed together = 12, <13, 14, 15>, {16, 17, 18}, <19>
vec4 dummy0;
float j; vec2 k; // should have a padding word before the vec2 = 24, <25>, {26, 27}
vec2 l; float m; // should have a padding word at the end = {28, 29}, 30, <31>
float n[4]; // should cover 4 vec4s = 32, <33..35>, 36, <37..39>, 40, <41..43>, 44
vec4 dummy1;
float o[4]; // should cover 4 vec4s = 52, <53..55>, 56, <57..59>, 60, <61..63>, 64
float p; // can't be packed in with above array = 68, <69, 70, 71>
vec4 dummy2;
layout(column_major) mat4x4 q; // should cover 4 vec4s.
// row0: {76, 80, 84, 88}
// row1: {77, 81, 85, 89}
// row2: {78, 82, 86, 90}
// row3: {79, 83, 87, 91}
layout(row_major) mat4x4 r; // should cover 4 vec4s
// row0: {92, 93, 94, 95}
// row1: {96, 97, 98, 99}
// row2: {100, 101, 102, 103}
// row3: {104, 105, 106, 107}
layout(column_major) mat4x3 s; // covers 4 vec4s with padding at end of each column
// row0: {108, 112, 116, 120}
// row1: {109, 113, 117, 121}
// row2: {110, 114, 118, 122}
// <111, 115, 119, 123>
vec4 dummy3;
layout(row_major) mat4x3 t; // covers 3 vec4s with no padding
// row0: {128, 129, 130, 131}
// row1: {132, 133, 134, 135}
// row2: {136, 137, 138, 139}
vec4 dummy4;
layout(column_major) mat3x2 u; // covers 3 vec4s with padding at end of each column (but not row)
// row0: {144, 148, 152}
// row1: {145, 149, 153}
// <146, 150, 154>
// <147, 151, 155>
vec4 dummy5;
layout(row_major) mat3x2 v; // covers 2 vec4s with padding at end of each row (but not column)
// row0: {160, 161, 162}, <163>
// row1: {164, 165, 166}, <167>
vec4 dummy6;
layout(column_major) mat2x2 w; // covers 2 vec4s with padding at end of each column (but not row)
// row0: {172, 176}
// row1: {173, 177}
// <174, 178>
// <175, 179>
vec4 dummy7;
layout(row_major) mat2x2 x; // covers 2 vec4s with padding at end of each row (but not column)
// row0: {184, 185}, <186, 187>
// row1: {188, 189}, <190, 191>
vec4 dummy8;
layout(row_major) mat2x2 y; // covers the same as above, and checks z doesn't overlap
// row0: {196, 197}, <198, 199>
// row1: {200, 201}, <202, 203>
float z; // can't overlap = 204, <205, 206, 207>
// GL Doesn't have single-column matrices
/*
layout(row_major) mat1x4 aa; // covers 4 vec4s with maximum padding
// row0: {208}, <209, 210, 211>
// row1: {212}, <213, 214, 215>
// row2: {216}, <217, 218, 219>
// row3: {220}, <221, 222, 223>
layout(column_major) mat1x4 ab; // covers 1 vec4 (equivalent to a plain vec4)
// row0: {224}
// row1: {225}
// row2: {226}
// row3: {227}
*/
vec4 dummy9[5];
vec4 multiarray[3][2]; // [0][0] = {228, 229, 230, 231}
// [0][1] = {232, 233, 234, 235}
// [1][0] = {236, 237, 238, 239}
// [1][1] = {240, 241, 242, 243}
// [2][0] = {244, 245, 246, 247}
// [2][1] = {248, 249, 250, 251}
nested structa[2]; // [0] = {
// .a = { { 252, 253, 254 }, 255 }
// .b[0] = { 256, 257, 258, 259 }
// .b[1] = { 260, 261, 262, 263 }
// .b[2] = { 264, 265, 266, 267 }
// .b[3] = { 268, 269, 270, 271 }
// .c[0] = { { 272, 273, 274 }, 275 }
// .c[1] = { { 276, 277, 278 }, 279 }
// .c[2] = { { 280, 281, 282 }, 283 }
// .c[3] = { { 284, 285, 286 }, 287 }
// }
// [1] = {
// .a = { { 288, 289, 290 }, 291 }
// .b[0] = { 292, 293, 294, 295 }
// .b[1] = { 296, 297, 298, 299 }
// .b[2] = { 300, 301, 302, 303 }
// .b[3] = { 304, 305, 306, 307 }
// .c[0] = { { 308, 309, 310 }, 311 }
// .c[1] = { { 312, 313, 314 }, 315 }
// .c[2] = { { 316, 317, 318 }, 319 }
// .c[3] = { { 320, 321, 322 }, 323 }
// }
vec4 test; // {324, 325, 326, 327}
};
void main()
{
Color = test;
}
)EOSHADER";
std::string hlslpixel = R"EOSHADER(
struct float3_1 { float3 a; float b; };
struct nested { float3_1 a; float4 b[4]; float3_1 c[4]; };
layout(set = 0, binding = 0) cbuffer consts
{
// dummy* entries are just to 'reset' packing to avoid pollution between tests
float4 a; // basic float4 = {0, 1, 2, 3}
float3 b; // should have a padding word at the end = {4, 5, 6}, <7>
float2 c; float2 d; // should be packed together = {8, 9}, {10, 11}
float e; float3 f; // should be packed together = 12, {13, 14, 15}
float g; float2 h; float i; // should be packed together = 16, {17, 18}, 19
float j; float2 k; // should have a padding word at the end = 20, {21, 22}, <23>
float2 l; float m; // should have a padding word at the end = {24, 25}, 26, <27>
float n[4]; // should cover 4 float4s = 28, <29..31>, 32, <33..35>, 36, <37..39>, 40
float4 dummy1;
float o[4]; // should cover 4 float4s = 48, <..>, 52, <..>, 56, <..>, 60
float p; // can't be packed in with above array = 64, <65, 66, 67>
float4 dummy2;
float4 gldummy;
// HLSL majorness is flipped to match column-major SPIR-V with row-major HLSL.
// This means column major declared matrices will show up as row major in any reflection and SPIR-V
// it also means that dimensions are flipped, so a float3x4 is declared as a float4x3, and a 'row'
// is really a column, and vice-versa a 'column' is really a row.
column_major float4x4 q; // should cover 4 float4s.
// row1: {76, 77, 78, 79}
// row2: {80, 81, 82, 83}
// row3: {84, 85, 86, 87}
// row3: {88, 89, 90, 91}
row_major float4x4 r; // should cover 4 float4s
// row0: {92, 96, 100, 104}
// row1: {93, 97, 101, 105}
// row2: {94, 98, 102, 106}
// row3: {95, 99, 103, 107}
column_major float3x4 s; // covers 4 float4s with padding at end of each 'row'
// row0: {108, 109, 110}, <111>
// row1: {112, 113, 114}, <115>
// row2: {116, 117, 118}, <119>
// row3: {120, 121, 122}, <123>
float4 dummy3;
row_major float3x4 t; // covers 3 float4s with no padding
// row0: {128, 132, 136}
// row1: {129, 133, 137}
// row2: {130, 134, 138}
// row3: {131, 135, 139}
float4 dummy4;
column_major float2x3 u; // covers 3 float4s with padding at end of each 'row' (but not 'column')
// row0: {144, 145}, <146, 147>
// row1: {148, 149}, <150, 151>
// row2: {152, 153}, <154, 155>
float4 dummy5;
row_major float2x3 v; // covers 2 float4s with padding at end of each 'column' (but not 'row')
// row0: {160, 164}
// row1: {161, 165}
// row2: {162, 166}
// <163, 167>
float4 dummy6;
column_major float2x2 w; // covers 2 float4s with padding at end of each 'row' (but not 'column')
// row0: {172, 173}, <174, 175>
// row1: {176, 177}, <178, 179>
float4 dummy7;
row_major float2x2 x; // covers 2 float4s with padding at end of each 'column' (but not 'row')
// row0: {184, 188}
// row1: {185, 189}
// <186, 190>
// <187, 191>
float4 dummy8;
row_major float2x2 y; // covers the same as above, proving z doesn't overlap
// row0: {196, 200}
// row1: {197, 201}
// <198, 202>
// <199, 203>
float z; // doesn't overlap in final row = 204, <205, 206, 207>
// SPIR-V can't represent single-dimension matrices properly at the moment
/*
row_major float4x1 aa; // covers 4 vec4s with maximum padding
// row0: {208, 212, 216, 220}
// <209, 213, 217, 221>
// <210, 214, 218, 222>
// <211, 215, 219, 223>
column_major float4x1 ab; // covers 1 float4 (equivalent to a plain float4 after row/column swap)
// row0: {224, 225, 226, 227}
*/
float4 dummy9[5];
float4 multiarray[3][2]; // [0][0] = {228, 229, 230, 231}
// [0][1] = {232, 233, 234, 235}
// [1][0] = {236, 237, 238, 239}
// [1][1] = {240, 241, 242, 243}
// [2][0] = {244, 245, 246, 247}
// [2][1] = {248, 249, 250, 251}
nested structa[2]; // [0] = {
// .a = { { 252, 253, 254 }, 255 }
// .b[0] = { 256, 257, 258, 259 }
// .b[1] = { 260, 261, 262, 263 }
// .b[2] = { 264, 265, 266, 267 }
// .b[3] = { 268, 269, 270, 271 }
// .c[0] = { { 272, 273, 274 }, 275 }
// .c[1] = { { 276, 277, 278 }, 279 }
// .c[2] = { { 280, 281, 282 }, 283 }
// .c[3] = { { 284, 285, 286 }, 287 }
// }
// [1] = {
// .a = { { 288, 289, 290 }, 291 }
// .b[0] = { 292, 293, 294, 295 }
// .b[1] = { 296, 297, 298, 299 }
// .b[2] = { 300, 301, 302, 303 }
// .b[3] = { 304, 305, 306, 307 }
// .c[0] = { { 308, 309, 310 }, 311 }
// .c[1] = { { 312, 313, 314 }, 315 }
// .c[2] = { { 316, 317, 318 }, 319 }
// .c[3] = { { 320, 321, 322 }, 323 }
// }
float4 test; // {324, 325, 326, 327}
};
float4 main() : SV_Target0
{
return test;
}
)EOSHADER";
int main(int argc, char **argv)
{
// initialise, create window, create context, etc
if(!Init(argc, argv))
return 3;
VkDescriptorSetLayout setlayout = createDescriptorSetLayout(vkh::DescriptorSetLayoutCreateInfo({
{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
}));
VkPipelineLayout layout = createPipelineLayout(vkh::PipelineLayoutCreateInfo({setlayout}));
AllocatedImage img(allocator, vkh::ImageCreateInfo(scissor.extent.width, scissor.extent.height,
0, VK_FORMAT_R32G32B32A32_SFLOAT,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT),
VmaAllocationCreateInfo({0, VMA_MEMORY_USAGE_GPU_ONLY}));
VkImageView imgview = createImageView(
vkh::ImageViewCreateInfo(img.image, VK_IMAGE_VIEW_TYPE_2D, VK_FORMAT_R32G32B32A32_SFLOAT));
vkh::RenderPassCreator renderPassCreateInfo;
renderPassCreateInfo.attachments.push_back(
vkh::AttachmentDescription(VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_GENERAL, VK_ATTACHMENT_LOAD_OP_CLEAR));
renderPassCreateInfo.addSubpass({VkAttachmentReference({0, VK_IMAGE_LAYOUT_GENERAL})});
VkRenderPass renderPass = createRenderPass(renderPassCreateInfo);
VkFramebuffer framebuffer =
createFramebuffer(vkh::FramebufferCreateInfo(renderPass, {imgview}, scissor.extent));
vkh::GraphicsPipelineCreateInfo pipeCreateInfo;
pipeCreateInfo.layout = layout;
pipeCreateInfo.renderPass = renderPass;
pipeCreateInfo.vertexInputState.vertexBindingDescriptions = {vkh::vertexBind(0, DefaultA2V)};
pipeCreateInfo.vertexInputState.vertexAttributeDescriptions = {
vkh::vertexAttr(0, 0, DefaultA2V, pos), vkh::vertexAttr(1, 0, DefaultA2V, col),
vkh::vertexAttr(2, 0, DefaultA2V, uv),
};
pipeCreateInfo.stages = {
CompileShaderModule(common + vertex, ShaderLang::glsl, ShaderStage::vert, "main"),
CompileShaderModule(common + glslpixel, ShaderLang::glsl, ShaderStage::frag, "main"),
};
VkPipeline glslpipe = createGraphicsPipeline(pipeCreateInfo);
pipeCreateInfo.stages[1] =
CompileShaderModule(hlslpixel, ShaderLang::hlsl, ShaderStage::frag, "main");
VkPipeline hlslpipe = createGraphicsPipeline(pipeCreateInfo);
AllocatedBuffer vb(
allocator, vkh::BufferCreateInfo(sizeof(DefaultTri), VK_BUFFER_USAGE_VERTEX_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT),
VmaAllocationCreateInfo({0, VMA_MEMORY_USAGE_CPU_TO_GPU}));
vb.upload(DefaultTri);
Vec4f cbufferdata[512];
for(int i = 0; i < 512; i++)
cbufferdata[i] = Vec4f(float(i * 4 + 0), float(i * 4 + 1), float(i * 4 + 2), float(i * 4 + 3));
AllocatedBuffer cb(
allocator, vkh::BufferCreateInfo(sizeof(cbufferdata), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT),
VmaAllocationCreateInfo({0, VMA_MEMORY_USAGE_CPU_TO_GPU}));
cb.upload(cbufferdata);
VkDescriptorSet descset = allocateDescriptorSet(setlayout);
vkh::updateDescriptorSets(
device, {
vkh::WriteDescriptorSet(descset, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
{vkh::DescriptorBufferInfo(cb.buffer)}),
});
while(Running())
{
VkCommandBuffer cmd = GetCommandBuffer();
vkBeginCommandBuffer(cmd, vkh::CommandBufferBeginInfo());
VkImage swapimg =
StartUsingBackbuffer(cmd, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_GENERAL);
vkCmdClearColorImage(cmd, swapimg, VK_IMAGE_LAYOUT_GENERAL,
vkh::ClearColorValue(0.4f, 0.5f, 0.6f, 1.0f), 1,
vkh::ImageSubresourceRange());
vkCmdBeginRenderPass(cmd, vkh::RenderPassBeginInfo(renderPass, framebuffer, scissor,
{vkh::ClearValue(0.0f, 0.0f, 0.0f, 1.0f)}),
VK_SUBPASS_CONTENTS_INLINE);
vkh::cmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, layout, 0, {descset}, {});
vkCmdSetViewport(cmd, 0, 1, &viewport);
vkCmdSetScissor(cmd, 0, 1, &scissor);
vkh::cmdBindVertexBuffers(cmd, 0, {vb.buffer}, {0});
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, glslpipe);
vkCmdDraw(cmd, 3, 1, 0, 0);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, hlslpipe);
vkCmdDraw(cmd, 3, 1, 0, 0);
vkCmdEndRenderPass(cmd);
FinishUsingBackbuffer(cmd, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_GENERAL);
vkEndCommandBuffer(cmd);
Submit(0, 1, {cmd});
Present();
}
return 0;
}
};
REGISTER_TEST(VK_CBuffer_Zoo);
|