File: vk_cbuffer_zoo.cpp

package info (click to toggle)
renderdoc 1.24%2Bdfsg-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 105,156 kB
  • sloc: cpp: 759,405; ansic: 309,460; python: 26,606; xml: 22,599; java: 11,365; cs: 7,181; makefile: 6,707; yacc: 5,682; ruby: 4,648; perl: 3,461; sh: 2,354; php: 2,119; lisp: 1,835; javascript: 1,524; tcl: 1,068; ml: 747
file content (809 lines) | stat: -rw-r--r-- 37,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/******************************************************************************
 * The MIT License (MIT)
 *
 * Copyright (c) 2019-2022 Baldur Karlsson
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 ******************************************************************************/

#include "vk_test.h"

RD_TEST(VK_CBuffer_Zoo, VulkanGraphicsTest)
{
  static constexpr const char *Description =
      "Tests every kind of constant that can be in a cbuffer to make sure it's decoded correctly.";

  std::string glslpixel = R"EOSHADER(
#version 460 core

layout(location = 0, index = 0) out vec4 Color;

struct vec3_1 { vec3 a; float b; };

struct nested { vec3_1 a; vec4 b[4]; vec3_1 c[4]; };

struct float2_struct { float x; float y; };

struct nested_with_padding
{
  float a;                              // 0, <1, 2, 3>
  vec4 b;                               // {4, 5, 6, 7}
  float c;                              // 8, <9, 10, 11>
  vec3 d[4];                            // [0]: {12, 13, 14}, <15>
                                        // [1]: {16, 17, 18}, <19>
                                        // [2]: {20, 21, 22}, <23>
                                        // [3]: {24, 25, 26}, <27>
};

struct misaligned_struct
{
  vec4 a;
  vec2 b;
};

layout(set = 0, binding = 0, std140) uniform constsbuf
{
  // dummy* entries are just to 'reset' packing to avoid pollution between tests

  vec4 a;                               // basic vec4 = {0, 1, 2, 3}
  vec3 b;                               // should have a padding word at the end = {4, 5, 6}, <7>

  vec2 c; vec2 d;                       // should be packed together = {8, 9}, {10, 11}
  float e; vec3 f;                      // can't be packed together = 12, <13, 14, 15>, {16, 17, 18}, <19>
  vec4 dummy0;
  float j; vec2 k;                      // should have a padding word before the vec2 = 24, <25>, {26, 27}
  vec2 l; float m;                      // should have a padding word at the end = {28, 29}, 30, <31>

  float n[4];                           // should cover 4 vec4s = 32, <33..35>, 36, <37..39>, 40, <41..43>, 44
  vec4 dummy1;

  float o[4];                           // should cover 4 vec4s = 52, <53..55>, 56, <57..59>, 60, <61..63>, 64
  float p;                              // can't be packed in with above array = 68, <69, 70, 71>
  vec4 dummy2;

  layout(column_major) mat4x4 q;        // should cover 4 vec4s.
                                        // row0: {76, 80, 84, 88}
                                        // row1: {77, 81, 85, 89}
                                        // row2: {78, 82, 86, 90}
                                        // row3: {79, 83, 87, 91}
  layout(row_major) mat4x4 r;           // should cover 4 vec4s
                                        // row0: {92, 93, 94, 95}
                                        // row1: {96, 97, 98, 99}
                                        // row2: {100, 101, 102, 103}
                                        // row3: {104, 105, 106, 107}

  layout(column_major) mat4x3 s;        // covers 4 vec4s with padding at end of each column
                                        // row0: {108, 112, 116, 120}
                                        // row1: {109, 113, 117, 121}
                                        // row2: {110, 114, 118, 122}
                                        //       <111, 115, 119, 123>
  vec4 dummy3;
  layout(row_major) mat4x3 t;           // covers 3 vec4s with no padding
                                        // row0: {128, 129, 130, 131}
                                        // row1: {132, 133, 134, 135}
                                        // row2: {136, 137, 138, 139}
  vec4 dummy4;

  layout(column_major) mat3x2 u;        // covers 3 vec4s with padding at end of each column (but not row)
                                        // row0: {144, 148, 152}
                                        // row1: {145, 149, 153}
                                        //       <146, 150, 154>
                                        //       <147, 151, 155>
  vec4 dummy5;
  layout(row_major) mat3x2 v;           // covers 2 vec4s with padding at end of each row (but not column)
                                        // row0: {160, 161, 162}, <163>
                                        // row1: {164, 165, 166}, <167>
  vec4 dummy6;

  layout(column_major) mat2x2 w;        // covers 2 vec4s with padding at end of each column (but not row)
                                        // row0: {172, 176}
                                        // row1: {173, 177}
                                        //       <174, 178>
                                        //       <175, 179>
  vec4 dummy7;
  layout(row_major) mat2x2 x;           // covers 2 vec4s with padding at end of each row (but not column)
                                        // row0: {184, 185}, <186, 187>
                                        // row1: {188, 189}, <190, 191>
  vec4 dummy8;

  layout(row_major) mat2x2 y;           // covers the same as above, and checks z doesn't overlap
                                        // row0: {196, 197}, <198, 199>
                                        // row1: {200, 201}, <202, 203>
  float z;                              // can't overlap = 204, <205, 206, 207>

  // GL Doesn't have single-column matrices
/*
  layout(row_major) mat1x4 aa;          // covers 4 vec4s with maximum padding
                                        // row0: {208}, <209, 210, 211>
                                        // row1: {212}, <213, 214, 215>
                                        // row2: {216}, <217, 218, 219>
                                        // row3: {220}, <221, 222, 223>

  layout(column_major) mat1x4 ab;       // covers 1 vec4 (equivalent to a plain vec4)
                                        // row0: {224}
                                        // row1: {225}
                                        // row2: {226}
                                        // row3: {227}
*/
  vec4 dummy9[5];

  vec4 multiarray[3][2];                // [0][0] = {228, 229, 230, 231}
                                        // [0][1] = {232, 233, 234, 235}
                                        // [1][0] = {236, 237, 238, 239}
                                        // [1][1] = {240, 241, 242, 243}
                                        // [2][0] = {244, 245, 246, 247}
                                        // [2][1] = {248, 249, 250, 251}

  nested structa[2];                    // [0] = {
                                        //   .a = { { 252, 253, 254 }, 255 }
                                        //   .b[0] = { 256, 257, 258, 259 }
                                        //   .b[1] = { 260, 261, 262, 263 }
                                        //   .b[2] = { 264, 265, 266, 267 }
                                        //   .b[3] = { 268, 269, 270, 271 }
                                        //   .c[0] = { { 272, 273, 274 }, 275 }
                                        //   .c[1] = { { 276, 277, 278 }, 279 }
                                        //   .c[2] = { { 280, 281, 282 }, 283 }
                                        //   .c[3] = { { 284, 285, 286 }, 287 }
                                        // }
                                        // [1] = {
                                        //   .a = { { 288, 289, 290 }, 291 }
                                        //   .b[0] = { 292, 293, 294, 295 }
                                        //   .b[1] = { 296, 297, 298, 299 }
                                        //   .b[2] = { 300, 301, 302, 303 }
                                        //   .b[3] = { 304, 305, 306, 307 }
                                        //   .c[0] = { { 308, 309, 310 }, 311 }
                                        //   .c[1] = { { 312, 313, 314 }, 315 }
                                        //   .c[2] = { { 316, 317, 318 }, 319 }
                                        //   .c[3] = { { 320, 321, 322 }, 323 }
                                        // }

  layout(column_major) mat2x3 ac;       // covers 2 vec4s with padding at end of each column (but not row)
                                        // row0: {324, 328}
                                        // row1: {325, 329}
                                        // row2: {326, 330}
                                        //       <327, 331>
  layout(row_major) mat2x3 ad;          // covers 3 vec4s with padding at end of each row (but not column)
                                        // row0: {332, 333}, <334, 335>
                                        // row1: {336, 337}, <338, 339>
                                        // row2: {340, 341}, <342, 343>

  layout(column_major) mat2x3 ae[2];    // covers 2 vec4s with padding at end of each column (but not row)
                                        // [0] = {
                                        //   row0: {344, 348}
                                        //   row1: {345, 349}
                                        //   row2: {346, 350}
                                        //         <347, 351>
                                        // }
                                        // [1] = {
                                        //   row0: {352, 356}
                                        //   row1: {353, 357}
                                        //   row2: {354, 358}
                                        //         <355, 359>
                                        // }
  layout(row_major) mat2x3 af[2];       // covers 3 vec4s with padding at end of each row (but not column)
                                        // [0] = {
                                        //   row0: {360, 361}, <362, 363>
                                        //   row1: {364, 365}, <366, 367>
                                        //   row2: {368, 369}, <370, 371>
                                        // }
                                        // [1] = {
                                        //   row0: {372, 373}, <374, 375>
                                        //   row1: {376, 377}, <378, 379>
                                        //   row2: {380, 381}, <382, 383>
                                        // }

  vec2 dummy10;                         // should have padding at the end = {384, 385}, <386, 387>

  layout(row_major) mat2x2 ag;          // each row is aligned to float4:
                                        // row0: {388, 389}, <390, 391>
                                        // row1: {392, 393}, <394, 395>

  vec2 dummy11;                         // should have padding at the end = {396, 397}, <398, 399>

  layout(column_major) mat2x2 ah;       // each column is aligned to float4:
                                        // row0: {400, 404}
                                        // row1: {401, 405}
                                        //       <402, 406>
                                        //       <403, 407>

  layout(row_major) mat2x2 ai[2];       // [0] = {
                                        //   row0: {408, 409}, <410, 411>
                                        //   row1: {412, 413}, <414, 415>
                                        // }
                                        // [1] = {
                                        //   row0: {416, 417}, <418, 419>
                                        //   row1: {420, 421}, <422, 423>
                                        // }
  layout(column_major) mat2x2 aj[2];    // [0] = {
                                        //   row0: {424, 428}
                                        //   row1: {425, 429}
                                        //         <426, 430>
                                        //         <427, 431>
                                        // }
                                        // [1] = {
                                        //   row0: {432, 436}
                                        //   row1: {433, 437}
                                        //         <434, 438>
                                        //         <435, 439>
                                        // }

  nested_with_padding ak[2];            // 440 - 467, 468 - 495

  vec4 dummy12;                         // forces no trailing overlap with ak

  float al;                             // {500}, <501, 502, 503>

  // struct is always float4 aligned, can't be packed with al
  float2_struct am;                     // {504, 505}, <506, 507>

  // struct doesn't allow trailing things into padding
  float an;                             // {508}

  vec4 dummy13[2];                      // empty structs on D3D

  misaligned_struct ao[2];              // [0] = {
                                        //   .a = { 520, 521, 522, 523 }
                                        //   .b = { 524, 525 } <526, 527>
                                        // }
                                        // [1] = {
                                        //   .a = { 528, 529, 530, 531 }
                                        //   .b = { 532, 533 } <534, 535>
                                        // }

  vec4 test;                            // {536, 537, 538, 539}
};

// this comes from inline uniform block data, where available

layout(set = 0, binding = 1, std140) uniform inlineconsts
{
  vec4 inline_zero;
  vec4 inline_a;
  vec2 inline_b, inline_c;
  vec3_1 inline_d;
};

layout (constant_id = 0) const int A = 10;
layout (constant_id = 1) const float B = 0;
layout (constant_id = 3) const bool C = false;

void main()
{
  Color = test + inline_zero + vec4(0.1f, 0.0f, 0.0f, 0.0f);
}

)EOSHADER";

  std::string hlslpixel = R"EOSHADER(

struct float3_1 { float3 a; float b; };

struct nested { float3_1 a; float4 b[4]; float3_1 c[4]; };

struct float2_struct { float x; float y; };

struct nested_with_padding
{
  float a;                              // 0, <1, 2, 3>
  float4 b;                             // {4, 5, 6, 7}
  float c;                              // 8, <9, 10, 11>
  float3 d[4];                          // [0]: {12, 13, 14}, <15>
                                        // [1]: {16, 17, 18}, <19>
                                        // [2]: {20, 21, 22}, <23>
                                        // [3]: {24, 25, 26}, <27>
};

struct misaligned_struct
{
  float4 a;
  float2 b;
};

layout(set = 0, binding = 0) cbuffer consts
{
  // dummy* entries are just to 'reset' packing to avoid pollution between tests

  float4 a;                               // basic float4 = {0, 1, 2, 3}
  float3 b;                               // should have a padding word at the end = {4, 5, 6}, <7>

  float2 c; float2 d;                     // should be packed together = {8, 9}, {10, 11}
  float e; float3 f;                      // should be packed together = 12, {13, 14, 15}
  float g; float2 h; float i;             // should be packed together = 16, {17, 18}, 19
  float j; float2 k;                      // should have a padding word at the end = 20, {21, 22}, <23>
  float2 l; float m;                      // should have a padding word at the end = {24, 25}, 26, <27>

  float n[4];                             // should cover 4 float4s = 28, <29..31>, 32, <33..35>, 36, <37..39>, 40
  float4 dummy1;

  float o[4];                             // should cover 4 float4s = 48, <..>, 52, <..>, 56, <..>, 60
  float p;                                // can't be packed in with above array = 64, <65, 66, 67>
  float4 dummy2;
  float4 gldummy;

  // HLSL majorness is flipped to match column-major SPIR-V with row-major HLSL.
  // This means column major declared matrices will show up as row major in any reflection and SPIR-V
  // it also means that dimensions are flipped, so a float3x4 is declared as a float4x3, and a 'row'
  // is really a column, and vice-versa a 'column' is really a row.

  column_major float4x4 q;                // should cover 4 float4s.
                                          // row1: {76, 77, 78, 79}
                                          // row2: {80, 81, 82, 83}
                                          // row3: {84, 85, 86, 87}
                                          // row3: {88, 89, 90, 91}
  row_major float4x4 r;                   // should cover 4 float4s
                                          // row0: {92, 96, 100, 104}
                                          // row1: {93, 97, 101, 105}
                                          // row2: {94, 98, 102, 106}
                                          // row3: {95, 99, 103, 107}

  column_major float3x4 s;                // covers 4 float4s with padding at end of each 'row'
                                          // row0: {108, 109, 110}, <111>
                                          // row1: {112, 113, 114}, <115>
                                          // row2: {116, 117, 118}, <119>
                                          // row3: {120, 121, 122}, <123>
  float4 dummy3;
  row_major float3x4 t;                   // covers 3 float4s with no padding
                                          // row0: {128, 132, 136}
                                          // row1: {129, 133, 137}
                                          // row2: {130, 134, 138}
                                          // row3: {131, 135, 139}
  float4 dummy4;

  column_major float2x3 u;                // covers 3 float4s with padding at end of each 'row' (but not 'column')
                                          // row0: {144, 145}, <146, 147>
                                          // row1: {148, 149}, <150, 151>
                                          // row2: {152, 153}, <154, 155>
  float4 dummy5;
  row_major float2x3 v;                   // covers 2 float4s with padding at end of each 'column' (but not 'row')
                                          // row0: {160, 164}
                                          // row1: {161, 165}
                                          // row2: {162, 166}
                                          //       <163, 167>
  float4 dummy6;

  column_major float2x2 w;                // covers 2 float4s with padding at end of each 'row' (but not 'column')
                                          // row0: {172, 173}, <174, 175>
                                          // row1: {176, 177}, <178, 179>
  float4 dummy7;
  row_major float2x2 x;                   // covers 2 float4s with padding at end of each 'column' (but not 'row')
                                          // row0: {184, 188}
                                          // row1: {185, 189}
                                          //       <186, 190>
                                          //       <187, 191>
  float4 dummy8;

  row_major float2x2 y;                   // covers the same as above, proving z doesn't overlap
                                          // row0: {196, 200}
                                          // row1: {197, 201}
                                          //       <198, 202>
                                          //       <199, 203>
  float z;                                // doesn't overlap in final row = 204, <205, 206, 207>

  // SPIR-V can't represent single-dimension matrices properly at the moment
/*
  row_major float4x1 aa;                  // covers 4 float4s with maximum padding
                                          // row0: {208, 212, 216, 220}
                                          //       <209, 213, 217, 221>
                                          //       <210, 214, 218, 222>
                                          //       <211, 215, 219, 223>

  column_major float4x1 ab;               // covers 1 float4 (equivalent to a plain float4 after row/column swap)
                                          // row0: {224, 225, 226, 227}
*/
  float4 dummy9[5];

  float4 multiarray[3][2];                // [0][0] = {228, 229, 230, 231}
                                          // [0][1] = {232, 233, 234, 235}
                                          // [1][0] = {236, 237, 238, 239}
                                          // [1][1] = {240, 241, 242, 243}
                                          // [2][0] = {244, 245, 246, 247}
                                          // [2][1] = {248, 249, 250, 251}

  nested structa[2];                      // [0] = {
                                          //   .a = { { 252, 253, 254 }, 255 }
                                          //   .b[0] = { 256, 257, 258, 259 }
                                          //   .b[1] = { 260, 261, 262, 263 }
                                          //   .b[2] = { 264, 265, 266, 267 }
                                          //   .b[3] = { 268, 269, 270, 271 }
                                          //   .c[0] = { { 272, 273, 274 }, 275 }
                                          //   .c[1] = { { 276, 277, 278 }, 279 }
                                          //   .c[2] = { { 280, 281, 282 }, 283 }
                                          //   .c[3] = { { 284, 285, 286 }, 287 }
                                          // }
                                          // [1] = {
                                          //   .a = { { 288, 289, 290 }, 291 }
                                          //   .b[0] = { 292, 293, 294, 295 }
                                          //   .b[1] = { 296, 297, 298, 299 }
                                          //   .b[2] = { 300, 301, 302, 303 }
                                          //   .b[3] = { 304, 305, 306, 307 }
                                          //   .c[0] = { { 308, 309, 310 }, 311 }
                                          //   .c[1] = { { 312, 313, 314 }, 315 }
                                          //   .c[2] = { { 316, 317, 318 }, 319 }
                                          //   .c[3] = { { 320, 321, 322 }, 323 }
                                          // }

  column_major float3x2 ac;               // covers 2 float4s with padding at end of each column (but not row)
                                          // row0: {324, 328}
                                          // row1: {325, 329}
                                          // row2: {326, 330}
                                          //       <327, 331>
  row_major float3x2 ad;                  // covers 3 float4s with padding at end of each row (but not column)
                                          // row0: {332, 333}, <334, 335>
                                          // row1: {336, 337}, <338, 339>
                                          // row2: {340, 341}, <342, 343>

  column_major float3x2 ae[2];            // covers 2 float4s with padding at end of each column (but not row)
                                          // [0] = {
                                          //   row0: {344, 348}
                                          //   row1: {345, 349}
                                          //   row2: {346, 350}
                                          //         <347, 351>
                                          // }
                                          // [1] = {
                                          //   row0: {352, 356}
                                          //   row1: {353, 357}
                                          //   row2: {354, 358}
                                          //         <355, 359>
                                          // }
  row_major float3x2 af[2];               // covers 3 float4s with padding at end of each row (but not column)
                                          // [0] = {
                                          //   row0: {360, 361}, <362, 363>
                                          //   row1: {364, 365}, <366, 367>
                                          //   row2: {368, 369}, <370, 371>
                                          // }
                                          // [1] = {
                                          //   row0: {372, 373}, <374, 375>
                                          //   row1: {376, 377}, <378, 379>
                                          //   row2: {380, 381},
                                          // }

  float2 dummy10;                          // consumes leftovers from above array = {382, 383}

  float2 dummy11;                         // should have padding at the end = {384, 385}, <386, 387>

  row_major float2x2 ag;                  // each row is aligned to float4:
                                          // row0: {388, 389}, <390, 391>
                                          // row1: {392, 393},

  float2 dummy12;                         // consumes leftovers from above matrix = {394, 395}
  float2 dummy13;                         // should have padding at the end = {396, 397}, <398, 399>

  column_major float2x2 ah;               // each column is aligned to float4:
                                          // row0: {400, 404}
                                          // row1: {401, 405}
                                          //       <402, 406>
                                          //       <403, 407>

  row_major float2x2 ai[2];               // [0] = {
                                          //   row0: {408, 409}, <410, 411>
                                          //   row1: {412, 413}, <414, 415>
                                          // }
                                          // [1] = {
                                          //   row0: {416, 417}, <418, 419>
                                          //   row1: {420, 421}, <422, 423>
                                          // }
  column_major float2x2 aj[2];            // [0] = {
                                          //   row0: {424, 428}
                                          //   row1: {425, 429}
                                          //         <426, 430>
                                          //         <427, 431>
                                          // }
                                          // [1] = {
                                          //   row0: {432, 436}
                                          //   row1: {433, 437}
                                          //         <434, 438>
                                          //         <435, 439>
                                          // }
                                          
  nested_with_padding ak[2];              // 440 - 467, 468 - 494
  
  float4 dummy14;                         // forces no trailing overlap with ak

  float al;                               // {500}, <501, 502, 503>

  // struct is always float4 aligned, can't be packed with al
  float2_struct am;                       // {504, 505}, <506, 507>

  // struct doesn't allow trailing things into padding
  float an;                               // {508}
  
  float4 dummy15[2];                      // empty structs on D3D

  misaligned_struct ao[2];                // [0] = {
                                          //   .a = { 520, 521, 522, 523 }
                                          //   .b = { 524, 525 } <526, 527>
                                          // }
                                          // [1] = {
                                          //   .a = { 528, 529, 530, 531 }
                                          //   .b = { 532, 533 } <534, 535>
                                          // }

  float4 test;                            // {536, 537, 538, 539}
};

// this comes from inline uniform block data, where available
layout(set = 0, binding = 1) cbuffer inlineconsts
{
  float4 inline_zero;
  float4 inline_a;
  float2 inline_b, inline_c;
  float3_1 inline_d;
};

float4 main() : SV_Target0
{
	return test + inline_zero + float4(0.1f, 0.0f, 0.0f, 0.0f);
}

)EOSHADER";

  struct float3_1
  {
    float a[3];
    float b;
  };

  struct InlineData
  {
    float inline_zero[4];
    float inline_a[4];
    float inline_b[2], inline_c[2];
    float3_1 inline_d;
  };

  void Prepare(int argc, char **argv)
  {
    devExts.push_back(VK_KHR_RELAXED_BLOCK_LAYOUT_EXTENSION_NAME);
    optDevExts.push_back(VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME);

    VulkanGraphicsTest::Prepare(argc, argv);

    static VkPhysicalDeviceInlineUniformBlockFeaturesEXT inlineFeats = {
        VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT,
    };

    if(hasExt(VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME))
    {
      inlineFeats.inlineUniformBlock = VK_TRUE;
      inlineFeats.pNext = (void *)devInfoNext;
      devInfoNext = &inlineFeats;
    }
  }

  int main()
  {
    // initialise, create window, create context, etc
    if(!Init())
      return 3;

    VkDescriptorType descType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    uint32_t descCount = 1;

    if(hasExt(VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME))
    {
      descType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
      descCount = 16 * sizeof(float);
    }

    VkDescriptorSetLayout setlayout = createDescriptorSetLayout(vkh::DescriptorSetLayoutCreateInfo({
        {0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
        {1, descType, descCount, VK_SHADER_STAGE_FRAGMENT_BIT},
    }));

    VkPipelineLayout layout = createPipelineLayout(vkh::PipelineLayoutCreateInfo({setlayout}));

    AllocatedImage img(
        this,
        vkh::ImageCreateInfo(mainWindow->scissor.extent.width, mainWindow->scissor.extent.height, 0,
                             VK_FORMAT_R32G32B32A32_SFLOAT,
                             VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT),
        VmaAllocationCreateInfo({0, VMA_MEMORY_USAGE_GPU_ONLY}));

    VkImageView imgview = createImageView(
        vkh::ImageViewCreateInfo(img.image, VK_IMAGE_VIEW_TYPE_2D, VK_FORMAT_R32G32B32A32_SFLOAT));

    vkh::RenderPassCreator renderPassCreateInfo;

    renderPassCreateInfo.attachments.push_back(
        vkh::AttachmentDescription(VK_FORMAT_R32G32B32A32_SFLOAT, VK_IMAGE_LAYOUT_UNDEFINED,
                                   VK_IMAGE_LAYOUT_GENERAL, VK_ATTACHMENT_LOAD_OP_CLEAR));

    renderPassCreateInfo.addSubpass({VkAttachmentReference({0, VK_IMAGE_LAYOUT_GENERAL})});

    VkRenderPass renderPass = createRenderPass(renderPassCreateInfo);

    VkFramebuffer framebuffer = createFramebuffer(
        vkh::FramebufferCreateInfo(renderPass, {imgview}, mainWindow->scissor.extent));

    vkh::GraphicsPipelineCreateInfo pipeCreateInfo;

    pipeCreateInfo.layout = layout;
    pipeCreateInfo.renderPass = renderPass;

    pipeCreateInfo.vertexInputState.vertexBindingDescriptions = {vkh::vertexBind(0, DefaultA2V)};
    pipeCreateInfo.vertexInputState.vertexAttributeDescriptions = {
        vkh::vertexAttr(0, 0, DefaultA2V, pos), vkh::vertexAttr(1, 0, DefaultA2V, col),
        vkh::vertexAttr(2, 0, DefaultA2V, uv),
    };

    pipeCreateInfo.stages = {
        CompileShaderModule(VKDefaultVertex, ShaderLang::glsl, ShaderStage::vert, "main"),
        CompileShaderModule(glslpixel, ShaderLang::glsl, ShaderStage::frag, "main"),
    };

    float data[2] = {20.0f, 0.0f};

    // data[1] is a bool
    VkBool32 btrue = true;
    memcpy(&data[1], &btrue, sizeof(btrue));

    VkSpecializationMapEntry specmap[2] = {
        {1, 0, sizeof(float)}, {3, 4, sizeof(VkBool32)},
    };

    VkSpecializationInfo spec = {};
    spec.mapEntryCount = 2;
    spec.pMapEntries = specmap;
    spec.dataSize = sizeof(data);
    spec.pData = data;

    pipeCreateInfo.stages[1].pSpecializationInfo = &spec;

    VkPipeline glslpipe = createGraphicsPipeline(pipeCreateInfo);

    pipeCreateInfo.stages[1] =
        CompileShaderModule(hlslpixel, ShaderLang::hlsl, ShaderStage::frag, "main");

    VkPipeline hlslpipe = createGraphicsPipeline(pipeCreateInfo);

    AllocatedBuffer vb(
        this, vkh::BufferCreateInfo(sizeof(DefaultTri), VK_BUFFER_USAGE_VERTEX_BUFFER_BIT |
                                                            VK_BUFFER_USAGE_TRANSFER_DST_BIT),
        VmaAllocationCreateInfo({0, VMA_MEMORY_USAGE_CPU_TO_GPU}));

    vb.upload(DefaultTri);

    const size_t bindOffset = 16;

    Vec4f cbufferdata[512 + bindOffset];

    for(int i = 0; i < bindOffset; i++)
      cbufferdata[i] = Vec4f(-99.9f, -88.8f, -77.7f, -66.6f);

    for(int i = 0; i < 512; i++)
      cbufferdata[i + bindOffset] =
          Vec4f(float(i * 4 + 0), float(i * 4 + 1), float(i * 4 + 2), float(i * 4 + 3));

    AllocatedBuffer cb(
        this, vkh::BufferCreateInfo(sizeof(cbufferdata), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT |
                                                             VK_BUFFER_USAGE_TRANSFER_DST_BIT),
        VmaAllocationCreateInfo({0, VMA_MEMORY_USAGE_CPU_TO_GPU}));

    cb.upload(cbufferdata);

    InlineData inlinedata = {};

    inlinedata.inline_a[0] = 10.0f;
    inlinedata.inline_a[1] = 20.0f;
    inlinedata.inline_a[2] = 30.0f;
    inlinedata.inline_a[3] = 40.0f;

    inlinedata.inline_b[0] = 50.0f;
    inlinedata.inline_b[1] = 60.0f;

    inlinedata.inline_c[0] = 70.0f;
    inlinedata.inline_c[1] = 80.0f;

    inlinedata.inline_d.a[0] = 90.0f;
    inlinedata.inline_d.a[1] = 100.0f;
    inlinedata.inline_d.a[2] = 110.0f;
    inlinedata.inline_d.b = 120.0f;

    AllocatedBuffer inlinecb(
        this, vkh::BufferCreateInfo(sizeof(cbufferdata), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT |
                                                             VK_BUFFER_USAGE_TRANSFER_DST_BIT),
        VmaAllocationCreateInfo({0, VMA_MEMORY_USAGE_CPU_TO_GPU}));

    {
      byte *ptr = inlinecb.map();
      memcpy(ptr + bindOffset * sizeof(Vec4f), &inlinedata, sizeof(inlinedata));
      inlinecb.unmap();
    }

    VkDescriptorSet descset = allocateDescriptorSet(setlayout);

    vkh::updateDescriptorSets(
        device, {
                    vkh::WriteDescriptorSet(
                        descset, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
                        {vkh::DescriptorBufferInfo(cb.buffer, bindOffset * sizeof(Vec4f))}),
                });

    if(hasExt(VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME))
    {
      VkWriteDescriptorSetInlineUniformBlockEXT inlineUpdate = {};
      inlineUpdate.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT;
      inlineUpdate.pData = &inlinedata;
      inlineUpdate.dataSize = sizeof(inlinedata);
      vkh::updateDescriptorSets(
          device, {
                      vkh::WriteDescriptorSet(
                          descset, 1, inlineUpdate,
                          vkh::DescriptorBufferInfo(cb.buffer, bindOffset * sizeof(Vec4f))),
                  });
    }
    else
    {
      vkh::updateDescriptorSets(
          device, {
                      vkh::WriteDescriptorSet(
                          descset, 1, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
                          {vkh::DescriptorBufferInfo(inlinecb.buffer, bindOffset * sizeof(Vec4f))}),
                  });
    }

    while(Running())
    {
      VkCommandBuffer cmd = GetCommandBuffer();

      vkBeginCommandBuffer(cmd, vkh::CommandBufferBeginInfo());

      VkImage swapimg =
          StartUsingBackbuffer(cmd, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_GENERAL);

      vkCmdBeginRenderPass(cmd, vkh::RenderPassBeginInfo(renderPass, framebuffer, mainWindow->scissor,
                                                         {vkh::ClearValue(0.2f, 0.2f, 0.2f, 1.0f)}),
                           VK_SUBPASS_CONTENTS_INLINE);

      vkh::cmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, layout, 0, {descset}, {});
      vkCmdSetViewport(cmd, 0, 1, &mainWindow->viewport);
      vkCmdSetScissor(cmd, 0, 1, &mainWindow->scissor);
      vkh::cmdBindVertexBuffers(cmd, 0, {vb.buffer}, {0});

      vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, glslpipe);
      vkCmdDraw(cmd, 3, 1, 0, 0);

      vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, hlslpipe);
      vkCmdDraw(cmd, 3, 1, 0, 0);

      vkCmdEndRenderPass(cmd);

      vkh::cmdPipelineBarrier(
          cmd, {
                   vkh::ImageMemoryBarrier(VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
                                           VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_GENERAL,
                                           VK_IMAGE_LAYOUT_GENERAL, img.image),
               });

      blitToSwap(cmd, img.image, VK_IMAGE_LAYOUT_GENERAL, swapimg, VK_IMAGE_LAYOUT_GENERAL);

      FinishUsingBackbuffer(cmd, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_GENERAL);

      vkEndCommandBuffer(cmd);

      Submit(0, 1, {cmd});

      Present();
    }

    return 0;
  }
};

REGISTER_TEST();