1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
from __future__ import print_function, unicode_literals
from sympy import symbols, Matrix, pi, cos, sin, simplify
import io
matrix_names = [
"xdx",
"xdy",
"xdz",
"xdw",
"ydx",
"ydy",
"ydz",
"ydw",
"zdx",
"zdy",
"zdz",
"zdw",
"wdx",
"wdy",
"wdz",
"wdw",
]
def prefixed_matrix(prefix):
"""
Returns a matrix where each entry is of the for prefix___name.
"""
return Matrix(4, 4, [ symbols(prefix + "___" + i) for i in matrix_names ])
###############################################################################
generators = [ ]
class Generator(object):
def __init__(self, name, docs):
self.pyd_f = io.StringIO()
self.pyx_f = io.StringIO()
self.f = io.StringIO()
self.name = name
self.docs = docs
generators.append(self)
self.first_let = True
def parameters(self, params):
# PYD.
print(" @staticmethod", file=self.pyd_f)
print(" cdef Matrix c{}({})".format(
self.name,
", ".join("float " + i for i in params.split())), file=self.pyd_f)
# PYX.
print(" @staticmethod", file=self.pyx_f)
print(" cdef Matrix c{}({}):".format(
self.name,
", ".join("float " + i for i in params.split())), file=self.pyx_f)
print(" return {}_matrix({})".format(
self.name, ", ".join(params.split())), file=self.pyx_f)
print(file=self.pyx_f)
print(" @staticmethod", file=self.pyx_f)
print(" def {}({}):".format(
self.name,
", ".join(params.split())), file=self.pyx_f)
if self.docs:
print(' """' + self.docs.replace("\n", "\n ") + '"""', file=self.pyx_f)
print(" return {}_matrix({})".format(
self.name, ", ".join(params.split())), file=self.pyx_f)
# PXI.
print(file=self.f)
print(file=self.f)
print("cpdef Matrix {}_matrix({}):".format(
self.name,
", ".join("float " + i for i in params.split())), file=self.f)
if params.split():
return symbols(params)
def let(self, name, value):
if self.first_let:
print(file=self.f)
self.first_let = False
value = simplify(value, rational=True)
print(" cdef float {} = {}".format(name, str(value)), file=self.f)
return symbols(name)
def matrix(self, m):
print(file=self.f)
print(" cdef Matrix rv = Matrix(None)", file=self.f)
print(file=self.f)
for name, value in zip(matrix_names, m):
if value == 0.0:
continue
print(" rv.{} =".format(name), simplify(value, rational=True), file=self.f)
print(file=self.f)
print(" return rv", file=self.f)
def generate(func):
g = Generator(func.__name__, func.__doc__)
func(g)
return func
def write(fn):
with open(fn, "w") as f:
for i in generators:
f.write(i.f.getvalue())
print("pxd ---------------------------------")
for i in generators:
print(i.pyd_f.getvalue())
print("pyx ---------------------------------")
for i in generators:
print(i.pyx_f.getvalue())
@generate
def identity(g):
"""
Returns an identity matrix.
"""
g.parameters("")
g.matrix(Matrix(4, 4, [
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0,
]))
@generate
def offset(g):
"""
Returns a matrix that offsets the vertex by a fixed amount.
"""
x, y, z = g.parameters("x y z")
g.matrix(Matrix(4, 4, [
1.0, 0.0, 0.0, x,
0.0, 1.0, 0.0, y,
0.0, 0.0, 1.0, z,
0.0, 0.0, 0.0, 1.0,
]))
@generate
def rotate(g):
"""
Returns a matrix that rotates the displayable around the
origin.
`x`, `y`, `x`
The amount to rotate around the origin, in degrees.
The rotations are applied in order:
* A clockwise rotation by `x` degrees in the Y/Z plane.
* A clockwise rotation by `y` degrees in the Z/X plane.
* A clockwise rotation by `z` degrees in the X/Y plane.
"""
x, y, z = g.parameters("x y z")
sinx = g.let("sinx", sin(x * pi / 180.0))
cosx = g.let("cosx", cos(x * pi / 180.0))
siny = g.let("siny", sin(y * pi / 180.0))
cosy = g.let("cosy", cos(y * pi / 180.0))
sinz = g.let("sinz", sin(z * pi / 180.0))
cosz = g.let("cosz", cos(z * pi / 180.0))
rx = Matrix(4, 4, [
1, 0, 0, 0,
0, cosx, -sinx, 0,
0, sinx, cosx, 0,
0, 0, 0, 1 ])
ry = Matrix(4, 4, [
cosy, 0, siny, 0,
0, 1, 0, 0,
-siny, 0, cosy, 0,
0, 0, 0, 1])
rz = Matrix(4, 4, [
cosz, -sinz, 0, 0,
sinz, cosz, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1, ])
g.matrix(rz * ry * rx)
@generate
def scale(g):
"""
Returns a matrix that scales the displayable.
`x`, `y`, `z`
The factor to scale each axis by.
"""
x, y, z = g.parameters("x y z")
m = Matrix(4, 4, [
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1 ])
g.matrix(m)
@generate
def perspective(g):
"""
Returns the Ren'Py projection matrix. This is a view into a 3d space
where (0, 0) is the top left corner (`w`/2, `h`/2) is the center, and
(`w`,`h`) is the bottom right, when the z coordinate is 0.
`w`, `h`
The width and height of the input plane, in pixels.
`n`
The distance of the near plane from the camera.
`p`
The distance of the 1:1 plane from the camera. This is where 1 pixel
is one coordinate unit.
`f`
The distance of the far plane from the camera.
"""
w, h, n, p, f = g.parameters('w h n p f')
offset = Matrix(4, 4, [
1.0, 0.0, 0.0, -w / 2.0,
0.0, 1.0, 0.0, -h / 2.0,
0.0, 0.0, 1.0, -p,
0.0, 0.0, 0.0, 1.0,
])
projection = Matrix(4, 4, [
2.0 * p / w, 0.0, 0.0, 0.0,
0.0, 2.0 * p / h, 0.0, 0.0,
0.0, 0.0, -(f + n) / (f - n), -2 * f * n / (f - n),
0.0, 0.0, -1.0, 0.0,
])
reverse_offset = Matrix(4, 4, [
w / 2.0, 0.0, 0.0, w / 2.0,
0.0, h / 2.0, 0.0, h / 2.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0,
])
g.matrix(reverse_offset * projection * offset)
@generate
def screen_projection(g):
"""
This generates a matrix that projects the Ren'Py space, where (0, 0) is the
top left and (`w`, `h`) is the bottom right, into the OpenGL viewport, where
(-1.0, 1.0) is the top left and (1.0, -1.0) is the bottom.
Generates the matrix that projects the Ren'Py screen to the OpenGL screen.
"""
w, h = g.parameters("w h")
m = Matrix(4, 4, [
2.0 / w, 0.0, 0.0, -1.0,
0.0, -2.0 / h, 0.0, 1.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
])
g.matrix(m)
@generate
def texture_projection(g):
"""
This generates a matrix that project the Ren'Py space, where (0, 0) is the
top left and (`w`, `h`) is the bottom right, into the OpenGL render-to-texture
space, where (-1.0, -1.0) is the top left and (1.0, 1.0) is the bottom.
Generates the matrix that projects the Ren'Py screen to the OpenGL screen.
"""
w, h = g.parameters("w h")
m = Matrix(4, 4, [
2.0 / w, 0.0, 0.0, -1.0,
0.0, 2.0 / h, 0.0, -1.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
])
g.matrix(m)
if __name__ == "__main__":
import os
RENPY = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
write(os.path.join(RENPY, "renpy", "display", "matrix_functions.pxi"))
|