1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""Construct resampy filters by Bayesian parameter search"""
import sys
import functools
from argparse import ArgumentParser
import numpy as np
import scipy
import scipy.signal
import optuna
import resampy
def parse_arguments(args):
parser = ArgumentParser(description=__doc__)
parser.add_argument(
"-n",
"--num-trials",
dest="n_trials",
default=1500,
help="Number of trials",
type=int,
)
parser.add_argument(
"-z",
"--num-zeros",
dest="num_zeros",
required=True,
type=int,
help="Number of zero-crossings",
)
parser.add_argument(
"--min-rolloff",
dest="min_rolloff",
default=0.9,
help="Minimum rolloff frequency (fraction of Nyquist)",
type=float,
)
parser.add_argument(
"-p",
"--precision",
dest="precision",
default=13,
help="Precision for filter interpolation",
type=int,
)
parser.add_argument(
"--min-beta",
dest="min_beta",
default=8,
help="Minimum beta for kaiser filter",
type=float,
)
parser.add_argument(
"--max-beta",
dest="max_beta",
default=20,
help="Maximum beta for kaiser filter",
type=float,
)
parser.add_argument(
"--attenuation",
dest="attenuation",
default=-120,
help="Stop-band attenuation",
type=float,
)
parser.add_argument(dest="output_file", type=str, help="Path to store filter")
return parser.parse_args(args)
def get_window(beta=None, rolloff=None, num_zeros=None):
"""Build the full window from a specification"""
win = functools.partial(scipy.signal.kaiser, beta=beta)
fil = resampy.filters.sinc_window(
num_zeros=num_zeros, precision=1, window=win, rolloff=rolloff
)[0]
# The windowed filter
fil = np.concatenate([fil[-1:0:-1], fil])
return fil
def _objective(beta, rolloff, attenuation=-120, num_zeros=40):
"""Internal objective function:
Minimize the mean passband-deviation from unity gain +
maximum stop-band gain above target attenuation
"""
fil = get_window(beta, rolloff, num_zeros=num_zeros)
W, H = scipy.signal.freqz(fil, worN=2048)
H = np.abs(H)
H_pass = H[W < 0.5 * np.pi]
H_stop = H[W >= 0.5 * np.pi]
err_pass = 20 * np.mean(np.abs(np.log10(H_pass)))
err_stop = np.max(
np.abs(np.maximum(20 * np.log10(H_stop), attenuation) - attenuation)
)
return err_pass + err_stop
def objective(trial, num_zeros, min_beta, max_beta, min_rolloff, attenuation):
"""Objective wrapper for the optimizer"""
beta = trial.suggest_float("beta", min_beta, max_beta)
rolloff = trial.suggest_float("rolloff", min_rolloff, 1.0)
loss = _objective(beta, rolloff, num_zeros=num_zeros, attenuation=attenuation)
return loss
if __name__ == "__main__":
params = parse_arguments(sys.argv[1:])
optuna.logging.set_verbosity(optuna.logging.WARNING)
sampler = optuna.samplers.TPESampler(seed=20220629)
study = optuna.create_study(direction="minimize", sampler=sampler)
func = functools.partial(
objective,
num_zeros=params.num_zeros,
min_beta=params.min_beta,
max_beta=params.max_beta,
min_rolloff=params.min_rolloff,
attenuation=params.attenuation,
)
study.optimize(func, n_trials=params.n_trials, show_progress_bar=True)
print(f"Parameters for {params.output_file}:")
print("-" * 40)
print(f"\tbeta = {study.best_params['beta']:g}")
print(f"\troll = {study.best_params['rolloff']:g}")
print(f"\t# zeros = {params.num_zeros}")
print(f"\tprecision = {params.precision}")
print(f"\tattenuation = {params.attenuation}")
print("-" * 40)
print(f"Objective value: {study.best_value:g}")
window = functools.partial(scipy.signal.kaiser, beta=study.best_params["beta"])
half_win, precision, roll = resampy.filters.sinc_window(
num_zeros=params.num_zeros,
precision=params.precision,
window=window,
rolloff=study.best_params["rolloff"],
)
np.savez(
params.output_file, half_window=half_win, precision=precision, rolloff=roll
)
|