1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/* ResidualVM - A 3D game interpreter
*
* ResidualVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
/*
* Quaternion-math originally borrowed from plib http://plib.sourceforge.net/index.html
* This code was originally made available under the LGPLv2 license (or later).
*
* Quaternion routines are Copyright (C) 1999
* Kevin B. Thompson <kevinbthompson@yahoo.com>
* Modified by Sylvan W. Clebsch <sylvan@stanford.edu>
* Largely rewritten by "Negative0" <negative0@earthlink.net>
*
* This code (and our modifications) is made available here under the GPLv2 (or later).
*
* Additional changes written based on the math presented in
* http://www.swarthmore.edu/NatSci/mzucker1/e27/diebel2006attitude.pdf
*
*/
#include "common/streamdebug.h"
#include "common/math.h"
#include "math/quat.h"
namespace Math {
Quaternion::Quaternion(const Matrix3 &m) {
fromMatrix(m);
normalize();
}
Quaternion::Quaternion(const Matrix4 &m) {
fromMatrix(m.getRotation());
}
Quaternion::Quaternion(const Vector3d &axis, const Angle &angle) {
float s = (angle / 2).getSine();
float c = (angle / 2).getCosine();
set(axis.x() * s, axis.y() * s, axis.z() * s, c);
}
Quaternion Quaternion::xAxis(const Angle &angle) {
Quaternion q(Vector3d(1.0f, 0.0f, 0.0f), angle);
return q;
}
Quaternion Quaternion::yAxis(const Angle &angle) {
Quaternion q(Vector3d(0.0f, 1.0f, 0.0f), angle);
return q;
}
Quaternion Quaternion::zAxis(const Angle &angle) {
Quaternion q(Vector3d(0.0f, 0.0f, 1.0f), angle);
return q;
}
Quaternion Quaternion::slerpQuat(const Quaternion& to, const float t) const {
Quaternion dst;
float scale0, scale1;
float flip = 1.0f;
float angle = this->dotProduct(to);
// Make sure the rotation is the short one
if (angle < 0.0f) {
angle = -angle;
flip = -1.0f;
}
// Spherical Interpolation
// Threshold of 1e-6
if (angle < 1.0f - (float) 1E-6f) {
float theta = acosf(angle);
float invSineTheta = 1.0f / sinf(theta);
scale0 = sinf((1.0f - t) * theta) * invSineTheta;
scale1 = (sinf(t * theta) * invSineTheta) * flip;
// Linear Interpolation
} else {
scale0 = 1.0f - t;
scale1 = t * flip;
}
// Apply the interpolation
dst = (*this * scale0) + (to * scale1);
return dst;
}
Quaternion& Quaternion::normalize() {
const float scale = sqrtf(square(x()) + square(y()) + square(z()) + square(w()));
// Already normalized if the scale is 1.0
if (scale != 1.0f && scale != 0.0f)
set(x() / scale, y() / scale, z() / scale, w() / scale);
return *this;
}
void Quaternion::transform(Vector3d &v) const {
const Vector3d im = Vector3d(x(), y(), z());
v += 2.0 * Vector3d::crossProduct(im, Vector3d::crossProduct(im, v) + w() * v);
}
void Quaternion::fromMatrix(const Matrix3 &m) {
float qx, qy, qz, qw;
float tr = m.getValue(0, 0) + m.getValue(1, 1) + m.getValue(2, 2);
float s;
if (tr > 0.0f) {
s = sqrtf(tr + 1.0f);
qw = s * 0.5f;
s = 0.5f / s;
qx = (m.getValue(2, 1) - m.getValue(1, 2)) * s;
qy = (m.getValue(0, 2) - m.getValue(2, 0)) * s;
qz = (m.getValue(1, 0) - m.getValue(0, 1)) * s;
} else {
int h = 0;
if (m.getValue(1, 1) > m.getValue(0, 0))
h = 1;
if (m.getValue(2, 2) > m.getValue(h, h))
h = 2;
if (h == 0) {
s = sqrt(m.getValue(0, 0) - (m.getValue(1,1) + m.getValue(2, 2)) + 1.0f);
qx = s * 0.5f;
s = 0.5f / s;
qy = (m.getValue(0, 1) + m.getValue(1, 0)) * s;
qz = (m.getValue(2, 0) + m.getValue(0, 2)) * s;
qw = (m.getValue(2, 1) - m.getValue(1, 2)) * s;
} else if (h == 1) {
s = sqrt(m.getValue(1, 1) - (m.getValue(2,2) + m.getValue(0, 0)) + 1.0f);
qy = s * 0.5f;
s = 0.5f / s;
qz = (m.getValue(1, 2) + m.getValue(2, 1)) * s;
qx = (m.getValue(0, 1) + m.getValue(1, 0)) * s;
qw = (m.getValue(0, 2) - m.getValue(2, 0)) * s;
} else {
s = sqrt(m.getValue(2, 2) - (m.getValue(0,0) + m.getValue(1, 1)) + 1.0f);
qz = s * 0.5f;
s = 0.5f / s;
qx = (m.getValue(2, 0) + m.getValue(0, 2)) * s;
qy = (m.getValue(1, 2) + m.getValue(2, 1)) * s;
qw = (m.getValue(1, 0) - m.getValue(0, 1)) * s;
}
}
set(qx, qy, qz, qw);
}
void Quaternion::toMatrix(Matrix4 &dst) const {
float two_xx = x() * (x() + x());
float two_xy = x() * (y() + y());
float two_xz = x() * (z() + z());
float two_wx = w() * (x() + x());
float two_wy = w() * (y() + y());
float two_wz = w() * (z() + z());
float two_yy = y() * (y() + y());
float two_yz = y() * (z() + z());
float two_zz = z() * (z() + z());
float newMat[16] = {
1.0f - (two_yy + two_zz), two_xy - two_wz, two_xz + two_wy, 0.0f,
two_xy + two_wz, 1.0f - (two_xx + two_zz), two_yz - two_wx, 0.0f,
two_xz - two_wy, two_yz + two_wx, 1.0f - (two_xx + two_yy), 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
dst.setData(newMat);
}
Matrix4 Quaternion::toMatrix() const {
Matrix4 dst;
toMatrix(dst);
return dst;
}
Quaternion Quaternion::inverse() const {
Quaternion q = *this;
q.normalize();
q.x() = -q.x();
q.y() = -q.y();
q.z() = -q.z();
return q;
}
Vector3d Quaternion::directionVector(const int col) const {
Matrix4 dirMat = toMatrix();
return Vector3d(dirMat.getValue(0, col), dirMat.getValue(1, col), dirMat.getValue(2, col));
}
Angle Quaternion::getAngleBetween(const Quaternion &to) {
Quaternion q = this->inverse() * to;
Angle diff(Common::rad2deg(2 * acos(q.w())));
return diff;
}
Quaternion Quaternion::fromEuler(const Angle &first, const Angle &second, const Angle &third, EulerOrder order) {
// First create a matrix with the rotation
Matrix4 rot(first, second, third, order);
// Convert this rotation matrix to a Quaternion
return Quaternion(rot);
}
void Quaternion::getEuler(Angle *first, Angle *second, Angle *third, EulerOrder order) const {
// Create a matrix from the Quaternion
Matrix4 rot = toMatrix();
// Convert the matrix to Euler Angles
Angle f, s, t;
rot.getEuler(&f, &s, &t, order);
// Assign the Angles if we have a reference
if (first != nullptr)
*first = f;
if (second != nullptr)
*second = s;
if (third != nullptr)
*third = t;
}
Quaternion Quaternion::operator*(const Quaternion &o) const {
return Quaternion(
w() * o.x() + x() * o.w() + y() * o.z() - z() * o.y(),
w() * o.y() - x() * o.z() + y() * o.w() + z() * o.x(),
w() * o.z() + x() * o.y() - y() * o.x() + z() * o.w(),
w() * o.w() - x() * o.x() - y() * o.y() - z() * o.z()
);
}
Quaternion Quaternion::operator*(const float c) const {
return Quaternion(x() * c, y() * c, z() * c, w() * c);
}
Quaternion& Quaternion::operator*=(const Quaternion &o) {
*this = *this * o;
return *this;
}
Quaternion Quaternion::operator+(const Quaternion &o) const {
return Quaternion(x() + o.x(), y() + o.y(), z() + o.z(), w() + o.w());
}
Quaternion& Quaternion::operator+=(const Quaternion &o) {
*this = *this + o;
return *this;
}
bool Quaternion::operator==(const Quaternion &o) const {
float dw = fabs(w() - o.w());
float dx = fabs(x() - o.x());
float dy = fabs(y() - o.y());
float dz = fabs(z() - o.z());
// Threshold of equality
float th = 1E-5f;
if ((dw < th) && (dx < th) && (dy < th) && (dz < th)) {
return true;
}
return false;
}
bool Quaternion::operator!=(const Quaternion &o) const {
return !(*this == o);
}
} // End namespace Math
|