1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/* Copyright (C) 2010-2020 The RetroArch team
*
* ---------------------------------------------------------------------------------------
* The following license statement only applies to this file (eq.c).
* ---------------------------------------------------------------------------------------
*
* Permission is hereby granted, free of charge,
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <retro_inline.h>
#include <retro_miscellaneous.h>
#include <filters.h>
#include <libretro_dspfilter.h>
#include "fft/fft.c"
struct eq_data
{
fft_t *fft;
float *save;
float *block;
fft_complex_t *filter;
fft_complex_t *fftblock;
float buffer[8 * 1024];
unsigned block_size;
unsigned block_ptr;
};
struct eq_gain
{
float freq;
float gain; /* Linear. */
};
static void eq_free(void *data)
{
struct eq_data *eq = (struct eq_data*)data;
if (!eq)
return;
fft_free(eq->fft);
free(eq->save);
free(eq->block);
free(eq->fftblock);
free(eq->filter);
free(eq);
}
static void eq_process(void *data, struct dspfilter_output *output,
const struct dspfilter_input *input)
{
float *out;
const float *in;
unsigned input_frames;
struct eq_data *eq = (struct eq_data*)data;
output->samples = eq->buffer;
output->frames = 0;
out = eq->buffer;
in = input->samples;
input_frames = input->frames;
while (input_frames)
{
unsigned write_avail = eq->block_size - eq->block_ptr;
if (input_frames < write_avail)
write_avail = input_frames;
memcpy(eq->block + eq->block_ptr * 2, in, write_avail * 2 * sizeof(float));
in += write_avail * 2;
input_frames -= write_avail;
eq->block_ptr += write_avail;
/* Convolve a new block. */
if (eq->block_ptr == eq->block_size)
{
unsigned i, c;
for (c = 0; c < 2; c++)
{
fft_process_forward(eq->fft, eq->fftblock, eq->block + c, 2);
for (i = 0; i < 2 * eq->block_size; i++)
eq->fftblock[i] = fft_complex_mul(eq->fftblock[i], eq->filter[i]);
fft_process_inverse(eq->fft, out + c, eq->fftblock, 2);
}
/* Overlap add method, so add in saved block now. */
for (i = 0; i < 2 * eq->block_size; i++)
out[i] += eq->save[i];
/* Save block for later. */
memcpy(eq->save, out + 2 * eq->block_size, 2 * eq->block_size * sizeof(float));
out += eq->block_size * 2;
output->frames += eq->block_size;
eq->block_ptr = 0;
}
}
}
static int gains_cmp(const void *a_, const void *b_)
{
const struct eq_gain *a = (const struct eq_gain*)a_;
const struct eq_gain *b = (const struct eq_gain*)b_;
if (a->freq < b->freq)
return -1;
if (a->freq > b->freq)
return 1;
return 0;
}
static void generate_response(fft_complex_t *response,
const struct eq_gain *gains, unsigned num_gains, unsigned samples)
{
unsigned i;
float start_freq = 0.0f;
float start_gain = 1.0f;
float end_freq = 1.0f;
float end_gain = 1.0f;
if (num_gains)
{
end_freq = gains->freq;
end_gain = gains->gain;
num_gains--;
gains++;
}
/* Create a response by linear interpolation between
* known frequency sample points. */
for (i = 0; i <= samples; i++)
{
float gain;
float lerp = 0.5f;
float freq = (float)i / samples;
while (freq >= end_freq)
{
if (num_gains)
{
start_freq = end_freq;
start_gain = end_gain;
end_freq = gains->freq;
end_gain = gains->gain;
gains++;
num_gains--;
}
else
{
start_freq = end_freq;
start_gain = end_gain;
end_freq = 1.0f;
end_gain = 1.0f;
break;
}
}
/* Edge case where i == samples. */
if (end_freq > start_freq)
lerp = (freq - start_freq) / (end_freq - start_freq);
gain = (1.0f - lerp) * start_gain + lerp * end_gain;
response[i].real = gain;
response[i].imag = 0.0f;
response[2 * samples - i].real = gain;
response[2 * samples - i].imag = 0.0f;
}
}
static void create_filter(struct eq_data *eq, unsigned size_log2,
struct eq_gain *gains, unsigned num_gains, double beta, const char *filter_path)
{
int i;
int half_block_size = eq->block_size >> 1;
double window_mod = 1.0 / kaiser_window_function(0.0, beta);
fft_t *fft = fft_new(size_log2);
float *time_filter = (float*)calloc(eq->block_size * 2 + 1, sizeof(*time_filter));
if (!fft || !time_filter)
goto end;
/* Make sure bands are in correct order. */
qsort(gains, num_gains, sizeof(*gains), gains_cmp);
/* Compute desired filter response. */
generate_response(eq->filter, gains, num_gains, half_block_size);
/* Get equivalent time-domain filter. */
fft_process_inverse(fft, time_filter, eq->filter, 1);
/* ifftshift() to create the correct linear phase filter.
* The filter response was designed with zero phase, which
* won't work unless we compensate
* for the repeating property of the FFT here
* by flipping left and right blocks. */
for (i = 0; i < half_block_size; i++)
{
float tmp = time_filter[i + half_block_size];
time_filter[i + half_block_size] = time_filter[i];
time_filter[i] = tmp;
}
/* Apply a window to smooth out the frequency response. */
for (i = 0; i < (int)eq->block_size; i++)
{
/* Kaiser window. */
double phase = (double)i / eq->block_size;
phase = 2.0 * (phase - 0.5);
time_filter[i] *= window_mod * kaiser_window_function(phase, beta);
}
#ifdef DEBUG
/* Debugging. */
if (filter_path)
{
FILE *file = fopen(filter_path, "w");
if (file)
{
for (i = 0; i < (int)eq->block_size - 1; i++)
fprintf(file, "%.8f\n", time_filter[i + 1]);
fclose(file);
}
}
#endif
/* Padded FFT to create our FFT filter.
* Make our even-length filter odd by discarding the first coefficient.
* For some interesting reason, this allows us to design an odd-length linear phase filter.
*/
fft_process_forward(eq->fft, eq->filter, time_filter + 1, 1);
end:
fft_free(fft);
free(time_filter);
}
static void *eq_init(const struct dspfilter_info *info,
const struct dspfilter_config *config, void *userdata)
{
int size_log2;
float beta;
float *frequencies, *gain;
unsigned num_freq, num_gain, i, size;
struct eq_gain *gains = NULL;
char *filter_path = NULL;
const float default_freq[] = { 0.0f, info->input_rate };
const float default_gain[] = { 0.0f, 0.0f };
struct eq_data *eq = (struct eq_data*)calloc(1, sizeof(*eq));
if (!eq)
return NULL;
config->get_float(userdata, "window_beta", &beta, 4.0f);
config->get_int(userdata, "block_size_log2", &size_log2, 8);
size = 1 << size_log2;
config->get_float_array(userdata, "frequencies", &frequencies, &num_freq, default_freq, 2);
config->get_float_array(userdata, "gains", &gain, &num_gain, default_gain, 2);
if (!config->get_string(userdata, "impulse_response_output", &filter_path, ""))
{
config->free(filter_path);
filter_path = NULL;
}
num_gain = num_freq = MIN(num_gain, num_freq);
if (!(gains = (struct eq_gain*)calloc(num_gain, sizeof(*gains))))
goto error;
for (i = 0; i < num_gain; i++)
{
gains[i].freq = frequencies[i] / (0.5f * info->input_rate);
gains[i].gain = pow(10.0, gain[i] / 20.0);
}
config->free(frequencies);
config->free(gain);
eq->block_size = size;
eq->save = (float*)calloc( size, 2 * sizeof(*eq->save));
eq->block = (float*)calloc(2 * size, 2 * sizeof(*eq->block));
eq->fftblock = (fft_complex_t*)calloc(2 * size, sizeof(*eq->fftblock));
eq->filter = (fft_complex_t*)calloc(2 * size, sizeof(*eq->filter));
/* Use an FFT which is twice the block size with zero-padding
* to make circular convolution => proper convolution.
*/
eq->fft = fft_new(size_log2 + 1);
if (!eq->fft || !eq->fftblock || !eq->save || !eq->block || !eq->filter)
goto error;
create_filter(eq, size_log2, gains, num_gain, beta, filter_path);
config->free(filter_path);
filter_path = NULL;
free(gains);
return eq;
error:
free(gains);
eq_free(eq);
return NULL;
}
static const struct dspfilter_implementation eq_plug = {
eq_init,
eq_process,
eq_free,
DSPFILTER_API_VERSION,
"Linear-Phase FFT Equalizer",
"eq",
};
#ifdef HAVE_FILTERS_BUILTIN
#define dspfilter_get_implementation eq_dspfilter_get_implementation
#endif
const struct dspfilter_implementation *dspfilter_get_implementation(dspfilter_simd_mask_t mask)
{
return &eq_plug;
}
#undef dspfilter_get_implementation
|