1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
/* license:BSD-3-Clause
* copyright-holders:Aaron Giles
****************************************************************************
huffman.c
Static Huffman compression and decompression helpers.
****************************************************************************
Maximum codelength is officially (alphabetsize - 1). This would be 255 bits
(since we use 1 byte values). However, it is also dependent upon the number
of samples used, as follows:
2 bits -> 3..4 samples
3 bits -> 5..7 samples
4 bits -> 8..12 samples
5 bits -> 13..20 samples
6 bits -> 21..33 samples
7 bits -> 34..54 samples
8 bits -> 55..88 samples
9 bits -> 89..143 samples
10 bits -> 144..232 samples
11 bits -> 233..376 samples
12 bits -> 377..609 samples
13 bits -> 610..986 samples
14 bits -> 987..1596 samples
15 bits -> 1597..2583 samples
16 bits -> 2584..4180 samples -> note that a 4k data size guarantees codelength <= 16 bits
17 bits -> 4181..6764 samples
18 bits -> 6765..10945 samples
19 bits -> 10946..17710 samples
20 bits -> 17711..28656 samples
21 bits -> 28657..46367 samples
22 bits -> 46368..75024 samples
23 bits -> 75025..121392 samples
24 bits -> 121393..196417 samples
25 bits -> 196418..317810 samples
26 bits -> 317811..514228 samples
27 bits -> 514229..832039 samples
28 bits -> 832040..1346268 samples
29 bits -> 1346269..2178308 samples
30 bits -> 2178309..3524577 samples
31 bits -> 3524578..5702886 samples
32 bits -> 5702887..9227464 samples
Looking at it differently, here is where powers of 2 fall into these buckets:
256 samples -> 11 bits max
512 samples -> 12 bits max
1k samples -> 14 bits max
2k samples -> 15 bits max
4k samples -> 16 bits max
8k samples -> 18 bits max
16k samples -> 19 bits max
32k samples -> 21 bits max
64k samples -> 22 bits max
128k samples -> 24 bits max
256k samples -> 25 bits max
512k samples -> 27 bits max
1M samples -> 28 bits max
2M samples -> 29 bits max
4M samples -> 31 bits max
8M samples -> 32 bits max
****************************************************************************
Delta-RLE encoding works as follows:
Starting value is assumed to be 0. All data is encoded as a delta
from the previous value, such that final[i] = final[i - 1] + delta.
Long runs of 0s are RLE-encoded as follows:
0x100 = repeat count of 8
0x101 = repeat count of 9
0x102 = repeat count of 10
0x103 = repeat count of 11
0x104 = repeat count of 12
0x105 = repeat count of 13
0x106 = repeat count of 14
0x107 = repeat count of 15
0x108 = repeat count of 16
0x109 = repeat count of 32
0x10a = repeat count of 64
0x10b = repeat count of 128
0x10c = repeat count of 256
0x10d = repeat count of 512
0x10e = repeat count of 1024
0x10f = repeat count of 2048
Note that repeat counts are reset at the end of a row, so if a 0 run
extends to the end of a row, a large repeat count may be used.
The reason for starting the run counts at 8 is that 0 is expected to
be the most common symbol, and is typically encoded in 1 or 2 bits.
***************************************************************************/
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <libchdr/huffman.h>
#include <libchdr/minmax.h>
/***************************************************************************
* MACROS
***************************************************************************
*/
#define MAKE_LOOKUP(code,bits) (((code) << 5) | ((bits) & 0x1f))
/***************************************************************************
* IMPLEMENTATION
***************************************************************************
*/
/*-------------------------------------------------
* huffman_context_base - create an encoding/
* decoding context
*-------------------------------------------------
*/
struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
{
struct huffman_decoder* decoder;
/* limit to 24 bits */
if (maxbits > 24)
return NULL;
decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
decoder->numcodes = numcodes;
decoder->maxbits = maxbits;
decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes);
decoder->datahisto = NULL;
decoder->prevdata = 0;
decoder->rleremaining = 0;
return decoder;
}
void delete_huffman_decoder(struct huffman_decoder* decoder)
{
if (decoder != NULL)
{
if (decoder->lookup != NULL)
free(decoder->lookup);
if (decoder->huffnode != NULL)
free(decoder->huffnode);
free(decoder);
}
}
/*-------------------------------------------------
* decode_one - decode a single code from the
* huffman stream
*-------------------------------------------------
*/
uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
/* peek ahead to get maxbits worth of data */
uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits);
/* look it up, then remove the actual number of bits for this code */
lookup_value lookup = decoder->lookup[bits];
bitstream_remove(bitbuf, lookup & 0x1f);
/* return the value */
return lookup >> 5;
}
/*-------------------------------------------------
* import_tree_rle - import an RLE-encoded
* huffman tree from a source data stream
*-------------------------------------------------
*/
enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
enum huffman_error error;
/* bits per entry depends on the maxbits */
int numbits;
int curnode;
if (decoder->maxbits >= 16)
numbits = 5;
else if (decoder->maxbits >= 8)
numbits = 4;
else
numbits = 3;
/* loop until we read all the nodes */
for (curnode = 0; curnode < (int)decoder->numcodes; /* blank */)
{
/* a non-one value is just raw */
int nodebits = bitstream_read(bitbuf, numbits);
if (nodebits != 1)
decoder->huffnode[curnode++].numbits = nodebits;
/* a one value is an escape code */
else
{
/* a double 1 is just a single 1 */
nodebits = bitstream_read(bitbuf, numbits);
if (nodebits == 1)
decoder->huffnode[curnode++].numbits = nodebits;
/* otherwise, we need one for value for the repeat count */
else
{
int repcount = bitstream_read(bitbuf, numbits) + 3;
while (repcount--)
decoder->huffnode[curnode++].numbits = nodebits;
}
}
}
/* make sure we ended up with the right number */
if (curnode != (int)decoder->numcodes)
return HUFFERR_INVALID_DATA;
/* assign canonical codes for all nodes based on their code lengths */
error = huffman_assign_canonical_codes(decoder);
if (error != HUFFERR_NONE)
return error;
/* build the lookup table */
huffman_build_lookup_table(decoder);
/* determine final input length and report errors */
return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
}
/*-------------------------------------------------
* import_tree_huffman - import a huffman-encoded
* huffman tree from a source data stream
*-------------------------------------------------
*/
enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
int last = 0;
int curcode;
uint32_t temp;
enum huffman_error error;
uint8_t rlefullbits = 0;
int index, count = 0;
int start;
/* start by parsing the lengths for the small tree */
struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
start = bitstream_read(bitbuf, 3) + 1;
for (index = 1; index < 24; index++)
{
if (index < start || count == 7)
smallhuff->huffnode[index].numbits = 0;
else
{
count = bitstream_read(bitbuf, 3);
smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count;
}
}
/* then regenerate the tree */
error = huffman_assign_canonical_codes(smallhuff);
if (error != HUFFERR_NONE)
return error;
huffman_build_lookup_table(smallhuff);
/* determine the maximum length of an RLE count */
temp = decoder->numcodes - 9;
while (temp != 0)
{
temp >>= 1;
rlefullbits++;
}
/* now process the rest of the data */
for (curcode = 0; curcode < (int)decoder->numcodes; /* blank */)
{
int value = huffman_decode_one(smallhuff, bitbuf);
if (value != 0)
decoder->huffnode[curcode++].numbits = last = value - 1;
else
{
int count = bitstream_read(bitbuf, 3) + 2;
if (count == 7+2)
count += bitstream_read(bitbuf, rlefullbits);
for (/* blank */; count != 0 && curcode < (int)decoder->numcodes; count--)
decoder->huffnode[curcode++].numbits = last;
}
}
/* make sure we ended up with the right number */
if (curcode != (int)decoder->numcodes)
{
delete_huffman_decoder(smallhuff);
return HUFFERR_INVALID_DATA;
}
/* assign canonical codes for all nodes based on their code lengths */
error = huffman_assign_canonical_codes(decoder);
if (error != HUFFERR_NONE)
{
delete_huffman_decoder(smallhuff);
return error;
}
/* build the lookup table */
huffman_build_lookup_table(decoder);
delete_huffman_decoder(smallhuff);
/* determine final input length and report errors */
return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
}
/*-------------------------------------------------
* compute_tree_from_histo - common backend for
* computing a tree based on the data histogram
*-------------------------------------------------
*/
enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
{
/* compute the number of data items in the histogram */
int i;
uint32_t upperweight;
uint32_t lowerweight = 0;
uint32_t sdatacount = 0;
for (i = 0; i < (int)decoder->numcodes; i++)
sdatacount += decoder->datahisto[i];
/* binary search to achieve the optimum encoding */
upperweight = sdatacount * 2;
for (;;)
{
/* build a tree using the current weight */
uint32_t curweight = (upperweight + lowerweight) / 2;
int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight);
/* apply binary search here */
if (curmaxbits <= decoder->maxbits)
{
lowerweight = curweight;
/* early out if it worked with the raw weights, or if we're done searching */
if (curweight == sdatacount || (upperweight - lowerweight) <= 1)
break;
}
else
upperweight = curweight;
}
/* assign canonical codes for all nodes based on their code lengths */
return huffman_assign_canonical_codes(decoder);
}
/***************************************************************************
* INTERNAL FUNCTIONS
***************************************************************************
*/
/*-------------------------------------------------
* tree_node_compare - compare two tree nodes
* by weight
*-------------------------------------------------
*/
static int huffman_tree_node_compare(const void *item1, const void *item2)
{
const struct node_t *node1 = *(const struct node_t **)item1;
const struct node_t *node2 = *(const struct node_t **)item2;
if (node2->weight != node1->weight)
return node2->weight - node1->weight;
if (node2->bits - node1->bits == 0)
fprintf(stderr, "identical node sort keys, should not happen!\n");
return (int)node1->bits - (int)node2->bits;
}
/*-------------------------------------------------
* build_tree - build a huffman tree based on the
* data distribution
*-------------------------------------------------
*/
int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
{
int nextalloc;
int maxbits = 0;
/* make a list of all non-zero nodes */
struct node_t** list = (struct node_t**)
malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
int curcode, listitems = 0;
memset(decoder->huffnode, 0,
decoder->numcodes * sizeof(decoder->huffnode[0]));
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
if (decoder->datahisto[curcode] != 0)
{
list[listitems++] = &decoder->huffnode[curcode];
decoder->huffnode[curcode].count = decoder->datahisto[curcode];
decoder->huffnode[curcode].bits = curcode;
/* scale the weight by the current effective length, ensuring we don't go to 0 */
decoder->huffnode[curcode].weight = (uint32_t)(((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata));
if (decoder->huffnode[curcode].weight == 0)
decoder->huffnode[curcode].weight = 1;
}
#if 0
{
unsigned i;
fprintf(stderr, "Pre-sort:\n");
for (i = 0; i < listitems; i++)
fprintf(stderr, "weight: %d code: %d\n",
list[i]->m_weight, list[i]->m_bits);
}
#endif
/* sort the list by weight, largest weight first */
qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare);
#if 0
fprintf(stderr, "Post-sort:\n");
for (int i = 0; i < listitems; i++)
fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
fprintf(stderr, "===================\n");
#endif
/* now build the tree */
nextalloc = decoder->numcodes;
while (listitems > 1)
{
int curitem;
/* remove lowest two items */
struct node_t* node1 = &(*list[--listitems]);
struct node_t* node0 = &(*list[--listitems]);
/* create new node */
struct node_t* newnode = &decoder->huffnode[nextalloc++];
newnode->parent = NULL;
node0->parent =
node1->parent = newnode;
newnode->weight =
node0->weight + node1->weight;
/* insert into list at appropriate location */
for (curitem = 0; curitem < listitems; curitem++)
if (newnode->weight > list[curitem]->weight)
{
memmove(&list[curitem+1],
&list[curitem],
(listitems - curitem) * sizeof(list[0]));
break;
}
list[curitem] = newnode;
listitems++;
}
/* compute the number of bits in each code,
* and fill in another histogram */
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
{
struct node_t *curnode;
struct node_t* node = &decoder->huffnode[curcode];
node->numbits = 0;
node->bits = 0;
/* if we have a non-zero weight, compute the number of bits */
if (node->weight > 0)
{
/* determine the number of bits for this node */
for (curnode = node;
curnode->parent != NULL; curnode = curnode->parent)
node->numbits++;
if (node->numbits == 0)
node->numbits = 1;
/* keep track of the max */
maxbits = MAX(maxbits, ((int)node->numbits));
}
}
free(list);
return maxbits;
}
/*-------------------------------------------------
* assign_canonical_codes - assign canonical codes
* to all the nodes based on the number of bits
* in each
*-------------------------------------------------
*/
enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
{
uint32_t curstart = 0;
/* build up a histogram of bit lengths */
int curcode, codelen;
uint32_t bithisto[33] = { 0 };
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
{
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > decoder->maxbits)
return HUFFERR_INTERNAL_INCONSISTENCY;
if (node->numbits <= 32)
bithisto[node->numbits]++;
}
/* for each code length, determine the starting code number */
for (codelen = 32; codelen > 0; codelen--)
{
uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
return HUFFERR_INTERNAL_INCONSISTENCY;
bithisto[codelen] = curstart;
curstart = nextstart;
}
/* now assign canonical codes */
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
{
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > 0)
node->bits = bithisto[node->numbits]++;
}
return HUFFERR_NONE;
}
/*-------------------------------------------------
* build_lookup_table - build a lookup table for
* fast decoding
*-------------------------------------------------
*/
void huffman_build_lookup_table(struct huffman_decoder* decoder)
{
/* iterate over all codes */
int curcode;
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
{
/* process all nodes which have non-zero bits */
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > 0)
{
/* set up the entry */
lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
/* fill all matching entries */
int shift = decoder->maxbits - node->numbits;
lookup_value *dest = &decoder->lookup[node->bits << shift];
lookup_value *destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
while (dest <= destend)
*dest++ = value;
}
}
}
|