1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/* from https://github.com/smealum/ctrulib
* modified to allow reducing __linear_heap_size at runtime */
#include <3ds.h>
#include <stdlib.h>
#include <3ds/util/rbtree.h>
#include "ctr_debug.h"
struct MemChunk
{
u8* addr;
u32 size;
};
struct MemBlock
{
MemBlock *prev, *next;
u8* base;
u32 size;
static MemBlock* Create(u8* base, u32 size)
{
auto b = (MemBlock*)malloc(sizeof(MemBlock));
if (!b)
return nullptr;
b->prev = nullptr;
b->next = nullptr;
b->base = base;
b->size = size;
return b;
}
};
struct MemPool
{
MemBlock *first, *last;
bool Ready() { return first != nullptr; }
void AddBlock(MemBlock* blk)
{
blk->prev = last;
if (last) last->next = blk;
if (!first) first = blk;
last = blk;
}
void DelBlock(MemBlock* b)
{
auto prev = b->prev, &pNext = prev ? prev->next : first;
auto next = b->next, &nPrev = next ? next->prev : last;
pNext = next;
nPrev = prev;
free(b);
}
void InsertBefore(MemBlock* b, MemBlock* p)
{
auto prev = b->prev, &pNext = prev ? prev->next : first;
b->prev = p;
p->next = b;
p->prev = prev;
pNext = p;
}
void InsertAfter(MemBlock* b, MemBlock* n)
{
auto next = b->next, &nPrev = next ? next->prev : last;
b->next = n;
n->prev = b;
n->next = next;
nPrev = n;
}
void CoalesceRight(MemBlock* b);
bool Allocate(MemChunk& chunk, u32 size, int align);
void Deallocate(const MemChunk& chunk);
void Destroy()
{
MemBlock* next = nullptr;
for (auto b = first; b; b = next)
{
next = b->next;
free(b);
}
first = nullptr;
last = nullptr;
}
#if 0
void Dump(const char* title);
#endif
u32 GetFreeSpace();
};
static rbtree_t sAddrMap;
struct addrMapNode
{
rbtree_node node;
MemChunk chunk;
};
#define getAddrMapNode(x) rbtree_item((x), addrMapNode, node)
static int addrMapNodeComparator(const rbtree_node_t* _lhs, const rbtree_node_t* _rhs)
{
auto lhs = getAddrMapNode(_lhs)->chunk.addr;
auto rhs = getAddrMapNode(_rhs)->chunk.addr;
if (lhs < rhs)
return -1;
if (lhs > rhs)
return 1;
return 0;
}
static void addrMapNodeDestructor(rbtree_node_t* a)
{
free(getAddrMapNode(a));
}
static addrMapNode* getNode(void* addr)
{
addrMapNode n;
n.chunk.addr = (u8*)addr;
auto p = rbtree_find(&sAddrMap, &n.node);
return p ? getAddrMapNode(p) : nullptr;
}
static addrMapNode* newNode(const MemChunk& chunk)
{
auto p = (addrMapNode*)malloc(sizeof(addrMapNode));
if (!p) return nullptr;
p->chunk = chunk;
return p;
}
static void delNode(addrMapNode* node)
{
rbtree_remove(&sAddrMap, &node->node, addrMapNodeDestructor);
}
extern u32 __linear_heap, __linear_heap_size;
static MemPool sLinearPool;
static u32 sLinearPool_maxaddr;
static bool linearInit(void)
{
auto blk = MemBlock::Create((u8*)__linear_heap, __linear_heap_size);
if (blk)
{
sLinearPool.AddBlock(blk);
sLinearPool_maxaddr = __linear_heap;
rbtree_init(&sAddrMap, addrMapNodeComparator);
return true;
}
return false;
}
void* linearMemAlign(size_t len, size_t alignment)
{
int shift;
/* Enforce minimum alignment */
if (alignment < 16)
alignment = 16;
/* Convert alignment to shift amount */
for (shift = 4; shift < 32; shift ++)
{
if ((1U<<shift) == alignment)
break;
}
if (shift == 32) /* Invalid alignment */
return nullptr;
/* Initialize the pool if it is not ready */
if (!sLinearPool.Ready() && !linearInit())
return nullptr;
/* Allocate the chunk */
MemChunk chunk;
if (!sLinearPool.Allocate(chunk, len, shift))
return nullptr;
auto node = newNode(chunk);
if (!node)
{
sLinearPool.Deallocate(chunk);
return nullptr;
}
if (!rbtree_insert(&sAddrMap, &node->node)) {
sLinearPool.Deallocate(chunk);
return nullptr;
}
if (sLinearPool_maxaddr < (u32)sLinearPool.last->base)
sLinearPool_maxaddr = (u32)sLinearPool.last->base;
return chunk.addr;
}
void* linearAlloc(size_t len)
{
#if 0
if (ctrConsole && ctrConsole->consoleInitialised)
{
printf("linearAlloc : 0x%08X\n", len);
DEBUG_HOLD();
}
#endif
return linearMemAlign(len, 0x80);
}
void* linearRealloc(void* mem, size_t len) { return NULL; }
void linearFree(void* mem)
{
auto node = getNode(mem);
if (!node)
return;
/* Free the chunk */
sLinearPool.Deallocate(node->chunk);
/* Free the node */
delNode(node);
}
u32 linearSpaceFree(void)
{
return sLinearPool.GetFreeSpace();
}
extern "C" u32 ctr_get_linear_free(void)
{
if (sLinearPool.last->base + sLinearPool.last->size != (u8*)__linear_heap + __linear_heap_size)
return 0;
return sLinearPool.last->size;
}
extern "C" u32 ctr_get_linear_unused(void)
{
return __linear_heap + __linear_heap_size - sLinearPool_maxaddr;
}
extern "C" void ctr_linear_free_pages(u32 pages)
{
u32 tmp, size;
if (sLinearPool.last->base + sLinearPool.last->size != (u8*)__linear_heap + __linear_heap_size)
return;
size = pages << 12;
if (size > sLinearPool.last->size)
return;
sLinearPool.last->size -= size;
__linear_heap_size -= size;
svcControlMemory(&tmp, __linear_heap + __linear_heap_size, 0x0, size,
MEMOP_FREE, (MemPerm)(MEMPERM_READ | MEMPERM_WRITE));
#if 0
printf("l:0x%08X-->0x%08X(-0x%08X) \n", sLinearPool.last->size + size, sLinearPool.last->size, size);
DEBUG_HOLD();
#endif
}
extern "C" void ctr_linear_get_stats(void)
{
printf("last:\n");
printf("0x%08X --> 0x%08X (0x%08X) \n", sLinearPool.last->base,
sLinearPool.last->base + sLinearPool.last->size, sLinearPool.last->size);
printf("free: 0x%08X unused: 0x%08X \n", ctr_get_linear_unused(), ctr_get_linear_free());
}
|