File: s16_to_float.c

package info (click to toggle)
retroarch 1.3.6%2Bdfsg1-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 26,496 kB
  • ctags: 41,865
  • sloc: ansic: 250,395; cpp: 12,996; makefile: 3,500; objc: 3,266; xml: 2,141; python: 1,670; sh: 1,522; java: 798; asm: 542; perl: 393
file content (242 lines) | stat: -rw-r--r-- 7,689 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*  RetroArch - A frontend for libretro.
 *  Copyright (C) 2010-2014 - Hans-Kristian Arntzen
 *  Copyright (C) 2014-2016 - Ali Bouhlel ( aliaspider@gmail.com )
 *
 *  RetroArch is free software: you can redistribute it and/or modify it under the terms
 *  of the GNU General Public License as published by the Free Software Found-
 *  ation, either version 3 of the License, or (at your option) any later version.
 *
 *  RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
 *  without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 *  PURPOSE.  See the GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along with RetroArch.
 *  If not, see <http://www.gnu.org/licenses/>.
 */
#if defined(__SSE2__)
#include <emmintrin.h>
#elif defined(__ALTIVEC__)
#include <altivec.h>
#endif

#include <boolean.h>
#include <features/features_cpu.h>
#include <conversion/s16_to_float.h>

/**
 * convert_s16_to_float_C:
 * @out               : output buffer
 * @in                : input buffer
 * @samples           : size of samples to be converted
 * @gain              : gain applied (.e.g. audio volume)
 *
 * Converts from signed integer 16-bit
 * to floating point.
 *
 * C implementation callback function.
 **/
void convert_s16_to_float_C(float *out,
      const int16_t *in, size_t samples, float gain)
{
   size_t i;
   gain = gain / 0x8000;
   for (i = 0; i < samples; i++)
      out[i] = (float)in[i] * gain; 
}

#if defined(__SSE2__)
/**
 * convert_s16_to_float_SSE2:
 * @out               : output buffer
 * @in                : input buffer
 * @samples           : size of samples to be converted
 * @gain              : gain applied (e.g. audio volume)
 *
 * Converts from signed integer 16-bit
 * to floating point.
 *
 * SSE2 implementation callback function.
 **/
void convert_s16_to_float_SSE2(float *out,
      const int16_t *in, size_t samples, float gain)
{
   size_t i;
   float fgain   = gain / UINT32_C(0x80000000);
   __m128 factor = _mm_set1_ps(fgain);

   for (i = 0; i + 8 <= samples; i += 8, in += 8, out += 8)
   {
      __m128i input    = _mm_loadu_si128((const __m128i *)in);
      __m128i regs_l   = _mm_unpacklo_epi16(_mm_setzero_si128(), input);
      __m128i regs_r   = _mm_unpackhi_epi16(_mm_setzero_si128(), input);
      __m128 output_l  = _mm_mul_ps(_mm_cvtepi32_ps(regs_l), factor);
      __m128 output_r  = _mm_mul_ps(_mm_cvtepi32_ps(regs_r), factor);

      _mm_storeu_ps(out + 0, output_l);
      _mm_storeu_ps(out + 4, output_r);
   }

   convert_s16_to_float_C(out, in, samples - i, gain);
}

#elif defined(__ALTIVEC__)
/**
 * convert_s16_to_float_altivec:
 * @out               : output buffer
 * @in                : input buffer
 * @samples           : size of samples to be converted
 * @gain              : gain applied (e.g. audio volume)
 *
 * Converts from signed integer 16-bit
 * to floating point.
 *
 * AltiVec implementation callback function.
 **/
void convert_s16_to_float_altivec(float *out,
      const int16_t *in, size_t samples, float gain)
{
   size_t samples_in = samples;

   /* Unaligned loads/store is a bit expensive, so we 
    * optimize for the good path (very likely). */
   if (((uintptr_t)out & 15) + ((uintptr_t)in & 15) == 0)
   {
      size_t i;
      const vector float gain_vec = { gain, gain , gain, gain };
      const vector float zero_vec = { 0.0f, 0.0f, 0.0f, 0.0f};

      for (i = 0; i + 8 <= samples; i += 8, in += 8, out += 8)
      {
         vector signed short input = vec_ld(0, in);
         vector signed int hi      = vec_unpackh(input);
         vector signed int lo      = vec_unpackl(input);
         vector float out_hi       = vec_madd(vec_ctf(hi, 15), gain_vec, zero_vec);
         vector float out_lo       = vec_madd(vec_ctf(lo, 15), gain_vec, zero_vec);

         vec_st(out_hi,  0, out);
         vec_st(out_lo, 16, out);
      }

      samples_in -= i;
   }
   convert_s16_to_float_C(out, in, samples_in, gain);
}

#elif defined(__ARM_NEON__) && !defined(VITA)
/* Avoid potential hard-float/soft-float ABI issues. */
void convert_s16_float_asm(float *out, const int16_t *in,
      size_t samples, const float *gain);

/**
 * convert_s16_to_float_neon:
 * @out               : output buffer
 * @in                : input buffer
 * @samples           : size of samples to be converted
 * @gain              : gain applied (.e.g audio volume)
 *
 * Converts from signed integer 16-bit
 * to floating point.
 *
 * ARM NEON implementation callback function.
 **/
static void convert_s16_to_float_neon(float *out,
      const int16_t *in, size_t samples, float gain)
{
   size_t aligned_samples = samples & ~7;
   if (aligned_samples)
      convert_s16_float_asm(out, in, aligned_samples, &gain);

   /* Could do all conversion in ASM, but keep it simple for now. */
   convert_s16_to_float_C(out + aligned_samples, in + aligned_samples,
         samples - aligned_samples, gain);
}
#elif defined(_MIPS_ARCH_ALLEGREX)

/**
 * convert_s16_to_float_ALLEGREX:
 * @out               : output buffer
 * @in                : input buffer
 * @samples           : size of samples to be converted
 * @gain              : gain applied (.e.g audio volume)
 *
 * Converts from signed integer 16-bit
 * to floating point.
 *
 * MIPS ALLEGREX implementation callback function.
 **/
void convert_s16_to_float_ALLEGREX(float *out,
      const int16_t *in, size_t samples, float gain)
{
#ifdef DEBUG
   /* Make sure the buffer is 16 byte aligned, this should be the 
    * default behaviour of malloc in the PSPSDK.
    * Only the output buffer can be assumed to be 16-byte aligned. */
   retro_assert(((uintptr_t)out & 0xf) == 0);
#endif

   size_t i;
   gain = gain / 0x8000;
   __asm__ (
         ".set    push                    \n"
         ".set    noreorder               \n"
         "mtv     %0, s200                \n"
         ".set    pop                     \n"
         ::"r"(gain));

   for (i = 0; i + 16 <= samples; i += 16)
   {
      __asm__ (
            ".set    push                 \n"
            ".set    noreorder            \n"

            "lv.s    s100,  0(%0)         \n"
            "lv.s    s101,  4(%0)         \n"
            "lv.s    s110,  8(%0)         \n"
            "lv.s    s111, 12(%0)         \n"
            "lv.s    s120, 16(%0)         \n"
            "lv.s    s121, 20(%0)         \n"
            "lv.s    s130, 24(%0)         \n"
            "lv.s    s131, 28(%0)         \n"

            "vs2i.p  c100, c100           \n"
            "vs2i.p  c110, c110           \n"
            "vs2i.p  c120, c120           \n"
            "vs2i.p  c130, c130           \n"

            "vi2f.q  c100, c100, 16       \n"
            "vi2f.q  c110, c110, 16       \n"
            "vi2f.q  c120, c120, 16       \n"
            "vi2f.q  c130, c130, 16       \n"

            "vmscl.q e100, e100, s200     \n"

            "sv.q    c100,  0(%1)         \n"
            "sv.q    c110, 16(%1)         \n"
            "sv.q    c120, 32(%1)         \n"
            "sv.q    c130, 48(%1)         \n"

            ".set    pop                  \n"
            :: "r"(in + i), "r"(out + i));
   }

   for (; i < samples; i++)
      out[i] = (float)in[i] * gain;
}
#endif

/**
 * convert_s16_to_float_init_simd:
 *
 * Sets up function pointers for conversion
 * functions based on CPU features.
 **/
void convert_s16_to_float_init_simd(void)
{
   unsigned cpu = cpu_features_get();

   (void)cpu;
#if defined(__ARM_NEON__) && !defined(VITA)
   convert_s16_to_float_arm = (cpu & RETRO_SIMD_NEON) ?
      convert_s16_to_float_neon : convert_s16_to_float_C;
#endif
}