1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
|
/* Copyright (C) 2010-2016 The RetroArch team
*
* ---------------------------------------------------------------------------------------
* The following license statement only applies to this file (rjpeg.c).
* ---------------------------------------------------------------------------------------
*
* Permission is hereby granted, free of charge,
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Modified version of stb_image's JPEG sources. */
#include <stdint.h>
#include <stdarg.h>
#include <stddef.h> /* ptrdiff_t on osx */
#include <stdlib.h>
#include <string.h>
#include <retro_assert.h>
#include <retro_inline.h>
#include <boolean.h>
#include <formats/image.h>
#include <formats/rjpeg.h>
#include <features/features_cpu.h>
enum
{
RJPEG_DEFAULT = 0, /* only used for req_comp */
RJPEG_GREY,
RJPEG_GREY_ALPHA,
RJPEG_RGB,
RJPEG_RGB_ALPHA
};
typedef struct
{
int (*read) (void *user,char *data,int size); /* fill 'data' with 'size' bytes. return number of bytes actually read */
void (*skip) (void *user,int n); /* skip the next 'n' bytes, or 'unget' the last -n bytes if negative */
int (*eof) (void *user); /* returns nonzero if we are at end of file/data */
} rjpeg_io_callbacks;
typedef uint8_t *(*rjpeg_resample_row_func)(uint8_t *out, uint8_t *in0, uint8_t *in1,
int w, int hs);
typedef struct
{
rjpeg_resample_row_func resample;
uint8_t *line0,*line1;
int hs,vs; /* expansion factor in each axis */
int w_lores; /* horizontal pixels pre-expansion */
int ystep; /* how far through vertical expansion we are */
int ypos; /* which pre-expansion row we're on */
} rjpeg__resample;
struct rjpeg
{
uint8_t *buff_data;
void *empty;
};
#ifdef _MSC_VER
#define RJPEG_HAS_LROTL
#endif
#ifdef RJPEG_HAS_LROTL
#define rjpeg_lrot(x,y) _lrotl(x,y)
#else
#define rjpeg_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y))))
#endif
/* x86/x64 detection */
#if defined(__x86_64__) || defined(_M_X64)
#define RJPEG__X64_TARGET
#elif defined(__i386) || defined(_M_IX86)
#define RJPEG__X86_TARGET
#endif
#if defined(__GNUC__) && (defined(RJPEG__X86_TARGET) || defined(RJPEG__X64_TARGET)) && !defined(__SSE2__) && !defined(RJPEG_NO_SIMD)
/* NOTE: not clear do we actually need this for the 64-bit path?
* gcc doesn't support sse2 intrinsics unless you compile with -msse2,
* (but compiling with -msse2 allows the compiler to use SSE2 everywhere;
* this is just broken and gcc are jerks for not fixing it properly
* http://www.virtualdub.org/blog/pivot/entry.php?id=363 )
*/
#define RJPEG_NO_SIMD
#endif
#if defined(__MINGW32__) && defined(RJPEG__X86_TARGET) && !defined(RJPEG_MINGW_ENABLE_SSE2) && !defined(RJPEG_NO_SIMD)
/* Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid RJPEG__X64_TARGET
*
* 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the
* Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant.
* As a result, enabling SSE2 on 32-bit MinGW is dangerous when not
* simultaneously enabling "-mstackrealign".
*
* See https://github.com/nothings/stb/issues/81 for more information.
*
* So default to no SSE2 on 32-bit MinGW. If you've read this far and added
* -mstackrealign to your build settings, feel free to #define RJPEG_MINGW_ENABLE_SSE2.
*/
#define RJPEG_NO_SIMD
#endif
#if defined(__SSE2__)
#include <emmintrin.h>
#ifdef _MSC_VER
#define RJPEG_SIMD_ALIGN(type, name) __declspec(align(16)) type name
#else
#define RJPEG_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
#endif
#endif
/* ARM NEON */
#if defined(RJPEG_NO_SIMD) && defined(RJPEG_NEON)
#undef RJPEG_NEON
#endif
#ifdef RJPEG_NEON
#include <arm_neon.h>
/* assume GCC or Clang on ARM targets */
#define RJPEG_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
#endif
#ifndef RJPEG_SIMD_ALIGN
#define RJPEG_SIMD_ALIGN(type, name) type name
#endif
typedef struct
{
uint32_t img_x, img_y;
int img_n, img_out_n;
rjpeg_io_callbacks io;
void *io_user_data;
int read_from_callbacks;
int buflen;
uint8_t buffer_start[128];
uint8_t *img_buffer, *img_buffer_end;
uint8_t *img_buffer_original;
} rjpeg__context;
static uint8_t *rjpeg__jpeg_load(rjpeg__context *s, unsigned *x, unsigned *y, int *comp, int req_comp);
#define rjpeg__err(x,y) 0
#define rjpeg__errpf(x,y) ((float *) (rjpeg__err(x,y)?NULL:NULL))
#define rjpeg__errpuc(x,y) ((unsigned char *) (rjpeg__err(x,y)?NULL:NULL))
static int rjpeg__vertically_flip_on_load = 0;
static unsigned char *rjpeg__load_flip(rjpeg__context *s, unsigned *x, unsigned *y, int *comp, int req_comp)
{
unsigned char *result = rjpeg__jpeg_load(s,x,y,comp,req_comp);
if (rjpeg__vertically_flip_on_load && result != NULL)
{
int row,col,z;
int w = *x, h = *y;
int depth = req_comp ? req_comp : *comp;
for (row = 0; row < (h>>1); row++)
{
for (col = 0; col < w; col++)
{
for (z = 0; z < depth; z++)
{
uint8_t temp = result[(row * w + col) * depth + z];
result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z];
result[((h - row - 1) * w + col) * depth + z] = temp;
}
}
}
}
return result;
}
static uint8_t *rjpeg_load_from_memory(const uint8_t *buffer, int len, unsigned *x, unsigned *y, int *comp, int req_comp)
{
rjpeg__context s;
s.io.read = NULL;
s.read_from_callbacks = 0;
s.img_buffer = s.img_buffer_original = (uint8_t *) buffer;
s.img_buffer_end = (uint8_t *) buffer+len;
return rjpeg__load_flip(&s,x,y,comp,req_comp);
}
enum
{
RJPEG_SCAN_LOAD = 0,
RJPEG_SCAN_TYPE,
RJPEG_SCAN_HEADER
};
static void rjpeg__refill_buffer(rjpeg__context *s)
{
int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen);
if (n == 0)
{
/* at end of file, treat same as if from memory, but need to handle case
* where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file */
s->read_from_callbacks = 0;
s->img_buffer = s->buffer_start;
s->img_buffer_end = s->buffer_start+1;
*s->img_buffer = 0;
}
else
{
s->img_buffer = s->buffer_start;
s->img_buffer_end = s->buffer_start + n;
}
}
static INLINE uint8_t rjpeg__get8(rjpeg__context *s)
{
if (s->img_buffer < s->img_buffer_end)
return *s->img_buffer++;
if (s->read_from_callbacks)
{
rjpeg__refill_buffer(s);
return *s->img_buffer++;
}
return 0;
}
static INLINE int rjpeg__at_eof(rjpeg__context *s)
{
if (s->io.read)
{
if (!(s->io.eof)(s->io_user_data))
return 0;
/* if feof() is true, check if buffer = end
* special case: we've only got the special
* 0 character at the end */
if (s->read_from_callbacks == 0)
return 1;
}
return s->img_buffer >= s->img_buffer_end;
}
static void rjpeg__skip(rjpeg__context *s, int n)
{
if (n < 0)
{
s->img_buffer = s->img_buffer_end;
return;
}
if (s->io.read)
{
int blen = (int) (s->img_buffer_end - s->img_buffer);
if (blen < n)
{
s->img_buffer = s->img_buffer_end;
(s->io.skip)(s->io_user_data, n - blen);
return;
}
}
s->img_buffer += n;
}
static int rjpeg__get16be(rjpeg__context *s)
{
int z = rjpeg__get8(s);
return (z << 8) + rjpeg__get8(s);
}
#define RJPEG__BYTECAST(x) ((uint8_t) ((x) & 255)) /* truncate int to byte without warnings */
/* huffman decoding acceleration */
#define FAST_BITS 9 /* larger handles more cases; smaller stomps less cache */
typedef struct
{
uint8_t fast[1 << FAST_BITS];
/* weirdly, repacking this into AoS is a 10% speed loss, instead of a win */
uint16_t code[256];
uint8_t values[256];
uint8_t size[257];
unsigned int maxcode[18];
int delta[17]; /* old 'firstsymbol' - old 'firstcode' */
} rjpeg__huffman;
typedef struct
{
rjpeg__context *s;
rjpeg__huffman huff_dc[4];
rjpeg__huffman huff_ac[4];
uint8_t dequant[4][64];
int16_t fast_ac[4][1 << FAST_BITS];
/* sizes for components, interleaved MCUs */
int img_h_max, img_v_max;
int img_mcu_x, img_mcu_y;
int img_mcu_w, img_mcu_h;
/* definition of jpeg image component */
struct
{
int id;
int h,v;
int tq;
int hd,ha;
int dc_pred;
int x,y,w2,h2;
uint8_t *data;
void *raw_data, *raw_coeff;
uint8_t *linebuf;
short *coeff; /* progressive only */
int coeff_w, coeff_h; /* number of 8x8 coefficient blocks */
} img_comp[4];
uint32_t code_buffer; /* jpeg entropy-coded buffer */
int code_bits; /* number of valid bits */
unsigned char marker; /* marker seen while filling entropy buffer */
int nomore; /* flag if we saw a marker so must stop */
int progressive;
int spec_start;
int spec_end;
int succ_high;
int succ_low;
int eob_run;
int scan_n, order[4];
int restart_interval, todo;
/* kernels */
void (*idct_block_kernel)(uint8_t *out, int out_stride, short data[64]);
void (*YCbCr_to_RGB_kernel)(uint8_t *out, const uint8_t *y, const uint8_t *pcb, const uint8_t *pcr, int count, int step);
uint8_t *(*resample_row_hv_2_kernel)(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs);
} rjpeg__jpeg;
#define rjpeg__f2f(x) ((int) (((x) * 4096 + 0.5)))
#define rjpeg__fsh(x) ((x) << 12)
#define RJPEG__MARKER_none 0xff
/* if there's a pending marker from the entropy stream, return that
* otherwise, fetch from the stream and get a marker. if there's no
* marker, return 0xff, which is never a valid marker value
*/
/* in each scan, we'll have scan_n components, and the order
* of the components is specified by order[]
*/
#define RJPEG__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7)
/* use comparisons since in some cases we handle more than one case (e.g. SOF) */
#define rjpeg__SOI(x) ((x) == 0xd8)
#define rjpeg__EOI(x) ((x) == 0xd9)
#define rjpeg__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2)
#define rjpeg__SOS(x) ((x) == 0xda)
#define rjpeg__SOF_progressive(x) ((x) == 0xc2)
#define rjpeg__div4(x) ((uint8_t) ((x) >> 2))
#define rjpeg__div16(x) ((uint8_t) ((x) >> 4))
static int rjpeg__build_huffman(rjpeg__huffman *h, int *count)
{
int i,j,k=0,code;
/* build size list for each symbol (from JPEG spec) */
for (i=0; i < 16; ++i)
for (j=0; j < count[i]; ++j)
h->size[k++] = (uint8_t) (i+1);
h->size[k] = 0;
/* compute actual symbols (from jpeg spec) */
code = 0;
k = 0;
for(j=1; j <= 16; ++j)
{
/* compute delta to add to code to compute symbol id */
h->delta[j] = k - code;
if (h->size[k] == j)
{
while (h->size[k] == j)
h->code[k++] = (uint16_t) (code++);
if (code-1 >= (1 << j))
return rjpeg__err("bad code lengths","Corrupt JPEG");
}
/* compute largest code + 1 for this size, preshifted as needed later */
h->maxcode[j] = code << (16-j);
code <<= 1;
}
h->maxcode[j] = 0xffffffff;
/* build non-spec acceleration table; 255 is flag for not-accelerated */
memset(h->fast, 255, 1 << FAST_BITS);
for (i=0; i < k; ++i)
{
int s = h->size[i];
if (s <= FAST_BITS)
{
int c = h->code[i] << (FAST_BITS-s);
int m = 1 << (FAST_BITS-s);
for (j=0; j < m; ++j)
h->fast[c+j] = (uint8_t) i;
}
}
return 1;
}
/* build a table that decodes both magnitude and value of small ACs in
* one go. */
static void rjpeg__build_fast_ac(int16_t *fast_ac, rjpeg__huffman *h)
{
int i;
for (i=0; i < (1 << FAST_BITS); ++i)
{
uint8_t fast = h->fast[i];
fast_ac[i] = 0;
if (fast < 255)
{
int rs = h->values[fast];
int run = (rs >> 4) & 15;
int magbits = rs & 15;
int len = h->size[fast];
if (magbits && len + magbits <= FAST_BITS)
{
/* magnitude code followed by receive_extend code */
int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits);
int m = 1 << (magbits - 1);
if (k < m)
k += (-1 << magbits) + 1;
/* if the result is small enough, we can fit it in fast_ac table */
if (k >= -128 && k <= 127)
fast_ac[i] = (int16_t) ((k << 8) + (run << 4) + (len + magbits));
}
}
}
}
static void rjpeg__grow_buffer_unsafe(rjpeg__jpeg *j)
{
do
{
int b = j->nomore ? 0 : rjpeg__get8(j->s);
if (b == 0xff)
{
int c = rjpeg__get8(j->s);
if (c != 0)
{
j->marker = (unsigned char) c;
j->nomore = 1;
return;
}
}
j->code_buffer |= b << (24 - j->code_bits);
j->code_bits += 8;
} while (j->code_bits <= 24);
}
/* (1 << n) - 1 */
static uint32_t rjpeg__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};
/* decode a JPEG huffman value from the bitstream */
static INLINE int rjpeg__jpeg_huff_decode(rjpeg__jpeg *j, rjpeg__huffman *h)
{
unsigned int temp;
int c,k;
if (j->code_bits < 16)
rjpeg__grow_buffer_unsafe(j);
/* look at the top FAST_BITS and determine what symbol ID it is,
* if the code is <= FAST_BITS */
c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
k = h->fast[c];
if (k < 255)
{
int s = h->size[k];
if (s > j->code_bits)
return -1;
j->code_buffer <<= s;
j->code_bits -= s;
return h->values[k];
}
/* naive test is to shift the code_buffer down so k bits are
* valid, then test against maxcode. To speed this up, we've
* preshifted maxcode left so that it has (16-k) 0s at the
* end; in other words, regardless of the number of bits, it
* wants to be compared against something shifted to have 16;
* that way we don't need to shift inside the loop. */
temp = j->code_buffer >> 16;
for (k=FAST_BITS+1 ; ; ++k)
if (temp < h->maxcode[k])
break;
if (k == 17)
{
/* error! code not found */
j->code_bits -= 16;
return -1;
}
if (k > j->code_bits)
return -1;
/* convert the huffman code to the symbol id */
c = ((j->code_buffer >> (32 - k)) & rjpeg__bmask[k]) + h->delta[k];
assert((((j->code_buffer) >> (32 - h->size[c])) & rjpeg__bmask[h->size[c]]) == h->code[c]);
/* convert the id to a symbol */
j->code_bits -= k;
j->code_buffer <<= k;
return h->values[c];
}
/* bias[n] = (-1<<n) + 1 */
static int const rjpeg__jbias[16] = {0,-1,-3,-7,-15,-31,-63,-127,-255,-511,-1023,-2047,-4095,-8191,-16383,-32767};
/* combined JPEG 'receive' and JPEG 'extend', since baseline
* always extends everything it receives. */
static INLINE int rjpeg__extend_receive(rjpeg__jpeg *j, int n)
{
unsigned int k;
int sgn;
if (j->code_bits < n)
rjpeg__grow_buffer_unsafe(j);
sgn = (int32_t)j->code_buffer >> 31; /* sign bit is always in MSB */
k = rjpeg_lrot(j->code_buffer, n);
assert(n >= 0 && n < (int) (sizeof(rjpeg__bmask)/sizeof(*rjpeg__bmask)));
j->code_buffer = k & ~rjpeg__bmask[n];
k &= rjpeg__bmask[n];
j->code_bits -= n;
return k + (rjpeg__jbias[n] & ~sgn);
}
/* get some unsigned bits */
static INLINE int rjpeg__jpeg_get_bits(rjpeg__jpeg *j, int n)
{
unsigned int k;
if (j->code_bits < n) rjpeg__grow_buffer_unsafe(j);
k = rjpeg_lrot(j->code_buffer, n);
j->code_buffer = k & ~rjpeg__bmask[n];
k &= rjpeg__bmask[n];
j->code_bits -= n;
return k;
}
static INLINE int rjpeg__jpeg_get_bit(rjpeg__jpeg *j)
{
unsigned int k;
if (j->code_bits < 1) rjpeg__grow_buffer_unsafe(j);
k = j->code_buffer;
j->code_buffer <<= 1;
--j->code_bits;
return k & 0x80000000;
}
/* given a value that's at position X in the zigzag stream,
* where does it appear in the 8x8 matrix coded as row-major? */
static uint8_t rjpeg__jpeg_dezigzag[64+15] =
{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
/* let corrupt input sample past end */
63, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63
};
/* decode one 64-entry block-- */
static int rjpeg__jpeg_decode_block(
rjpeg__jpeg *j, short data[64],
rjpeg__huffman *hdc,
rjpeg__huffman *hac,
int16_t *fac,
int b,
uint8_t *dequant)
{
int diff,dc,k;
int t;
if (j->code_bits < 16)
rjpeg__grow_buffer_unsafe(j);
t = rjpeg__jpeg_huff_decode(j, hdc);
if (t < 0)
return rjpeg__err("bad huffman code","Corrupt JPEG");
/* 0 all the ac values now so we can do it 32-bits at a time */
memset(data,0,64*sizeof(data[0]));
diff = t ? rjpeg__extend_receive(j, t) : 0;
dc = j->img_comp[b].dc_pred + diff;
j->img_comp[b].dc_pred = dc;
data[0] = (short) (dc * dequant[0]);
/* decode AC components, see JPEG spec */
k = 1;
do
{
unsigned int zig;
int c,r,s;
if (j->code_bits < 16)
rjpeg__grow_buffer_unsafe(j);
c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
r = fac[c];
if (r)
{
/* fast-AC path */
k += (r >> 4) & 15; /* run */
s = r & 15; /* combined length */
j->code_buffer <<= s;
j->code_bits -= s;
/* decode into unzigzag'd location */
zig = rjpeg__jpeg_dezigzag[k++];
data[zig] = (short) ((r >> 8) * dequant[zig]);
}
else
{
int rs = rjpeg__jpeg_huff_decode(j, hac);
if (rs < 0)
return rjpeg__err("bad huffman code","Corrupt JPEG");
s = rs & 15;
r = rs >> 4;
if (s == 0)
{
if (rs != 0xf0)
break; /* end block */
k += 16;
}
else
{
k += r;
/* decode into unzigzag'd location */
zig = rjpeg__jpeg_dezigzag[k++];
data[zig] = (short) (rjpeg__extend_receive(j,s) * dequant[zig]);
}
}
} while (k < 64);
return 1;
}
static int rjpeg__jpeg_decode_block_prog_dc(
rjpeg__jpeg *j,
short data[64],
rjpeg__huffman *hdc,
int b)
{
if (j->spec_end != 0)
return rjpeg__err("can't merge dc and ac", "Corrupt JPEG");
if (j->code_bits < 16)
rjpeg__grow_buffer_unsafe(j);
if (j->succ_high == 0)
{
int t;
int diff,dc;
/* first scan for DC coefficient, must be first */
memset(data,0,64*sizeof(data[0])); /* 0 all the ac values now */
t = rjpeg__jpeg_huff_decode(j, hdc);
diff = t ? rjpeg__extend_receive(j, t) : 0;
dc = j->img_comp[b].dc_pred + diff;
j->img_comp[b].dc_pred = dc;
data[0] = (short) (dc << j->succ_low);
}
else
{
/* refinement scan for DC coefficient */
if (rjpeg__jpeg_get_bit(j))
data[0] += (short) (1 << j->succ_low);
}
return 1;
}
static int rjpeg__jpeg_decode_block_prog_ac(
rjpeg__jpeg *j,
short data[64],
rjpeg__huffman *hac,
int16_t *fac)
{
int k;
if (j->spec_start == 0)
return rjpeg__err("can't merge dc and ac", "Corrupt JPEG");
if (j->succ_high == 0)
{
int shift = j->succ_low;
if (j->eob_run)
{
--j->eob_run;
return 1;
}
k = j->spec_start;
do {
unsigned int zig;
int c,r,s;
if (j->code_bits < 16) rjpeg__grow_buffer_unsafe(j);
c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
r = fac[c];
if (r)
{ /* fast-AC path */
k += (r >> 4) & 15; /* run */
s = r & 15; /* combined length */
j->code_buffer <<= s;
j->code_bits -= s;
zig = rjpeg__jpeg_dezigzag[k++];
data[zig] = (short) ((r >> 8) << shift);
}
else
{
int rs = rjpeg__jpeg_huff_decode(j, hac);
if (rs < 0) return rjpeg__err("bad huffman code","Corrupt JPEG");
s = rs & 15;
r = rs >> 4;
if (s == 0)
{
if (r < 15)
{
j->eob_run = (1 << r);
if (r)
j->eob_run += rjpeg__jpeg_get_bits(j, r);
--j->eob_run;
break;
}
k += 16;
} else {
k += r;
zig = rjpeg__jpeg_dezigzag[k++];
data[zig] = (short) (rjpeg__extend_receive(j,s) << shift);
}
}
} while (k <= j->spec_end);
} else {
/* refinement scan for these AC coefficients */
short bit = (short) (1 << j->succ_low);
if (j->eob_run)
{
--j->eob_run;
for (k = j->spec_start; k <= j->spec_end; ++k)
{
short *p = &data[rjpeg__jpeg_dezigzag[k]];
if (*p != 0)
if (rjpeg__jpeg_get_bit(j))
if ((*p & bit)==0)
{
if (*p > 0)
*p += bit;
else
*p -= bit;
}
}
} else {
k = j->spec_start;
do {
int r,s;
int rs = rjpeg__jpeg_huff_decode(j, hac);
if (rs < 0) return rjpeg__err("bad huffman code","Corrupt JPEG");
s = rs & 15;
r = rs >> 4;
if (s == 0)
{
if (r < 15)
{
j->eob_run = (1 << r) - 1;
if (r)
j->eob_run += rjpeg__jpeg_get_bits(j, r);
r = 64; /* force end of block */
} else {
/* r=15 s=0 should write 16 0s, so we just do
* a run of 15 0s and then write s (which is 0),
* so we don't have to do anything special here */
}
} else {
if (s != 1) return rjpeg__err("bad huffman code", "Corrupt JPEG");
/* sign bit */
if (rjpeg__jpeg_get_bit(j))
s = bit;
else
s = -bit;
}
/* advance by r */
while (k <= j->spec_end)
{
short *p = &data[rjpeg__jpeg_dezigzag[k++]];
if (*p != 0)
{
if (rjpeg__jpeg_get_bit(j))
if ((*p & bit)==0)
{
if (*p > 0)
*p += bit;
else
*p -= bit;
}
}
else
{
if (r == 0)
{
*p = (short) s;
break;
}
--r;
}
}
} while (k <= j->spec_end);
}
}
return 1;
}
/* take a -128..127 value and rjpeg__clamp it and convert to 0..255 */
static INLINE uint8_t rjpeg__clamp(int x)
{
/* trick to use a single test to catch both cases */
if ((unsigned int) x > 255)
return 255;
return (uint8_t) x;
}
/* derived from jidctint -- DCT_ISLOW */
#define RJPEG__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \
int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \
p2 = s2; \
p3 = s6; \
p1 = (p2+p3) * rjpeg__f2f(0.5411961f); \
t2 = p1 + p3*rjpeg__f2f(-1.847759065f); \
t3 = p1 + p2*rjpeg__f2f( 0.765366865f); \
p2 = s0; \
p3 = s4; \
t0 = rjpeg__fsh(p2+p3); \
t1 = rjpeg__fsh(p2-p3); \
x0 = t0+t3; \
x3 = t0-t3; \
x1 = t1+t2; \
x2 = t1-t2; \
t0 = s7; \
t1 = s5; \
t2 = s3; \
t3 = s1; \
p3 = t0+t2; \
p4 = t1+t3; \
p1 = t0+t3; \
p2 = t1+t2; \
p5 = (p3+p4)*rjpeg__f2f( 1.175875602f); \
t0 = t0*rjpeg__f2f( 0.298631336f); \
t1 = t1*rjpeg__f2f( 2.053119869f); \
t2 = t2*rjpeg__f2f( 3.072711026f); \
t3 = t3*rjpeg__f2f( 1.501321110f); \
p1 = p5 + p1*rjpeg__f2f(-0.899976223f); \
p2 = p5 + p2*rjpeg__f2f(-2.562915447f); \
p3 = p3*rjpeg__f2f(-1.961570560f); \
p4 = p4*rjpeg__f2f(-0.390180644f); \
t3 += p1+p4; \
t2 += p2+p3; \
t1 += p2+p4; \
t0 += p1+p3;
static void rjpeg__idct_block(uint8_t *out, int out_stride, short data[64])
{
int i,val[64],*v=val;
uint8_t *o = NULL;
int16_t *d = data;
/* columns */
for (i=0; i < 8; ++i,++d, ++v)
{
/* if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing */
if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0
&& d[40]==0 && d[48]==0 && d[56]==0)
{
/* no shortcut 0 seconds
* (1|2|3|4|5|6|7)==0 0 seconds
* all separate -0.047 seconds
* 1 && 2|3 && 4|5 && 6|7: -0.047 seconds */
int dcterm = d[0] << 2;
v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;
}
else
{
RJPEG__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56])
/* constants scaled things up by 1<<12; let's bring them back
* down, but keep 2 extra bits of precision */
x0 += 512; x1 += 512; x2 += 512; x3 += 512;
v[ 0] = (x0+t3) >> 10;
v[56] = (x0-t3) >> 10;
v[ 8] = (x1+t2) >> 10;
v[48] = (x1-t2) >> 10;
v[16] = (x2+t1) >> 10;
v[40] = (x2-t1) >> 10;
v[24] = (x3+t0) >> 10;
v[32] = (x3-t0) >> 10;
}
}
for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride)
{
/* no fast case since the first 1D IDCT spread components out */
RJPEG__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])
/* constants scaled things up by 1<<12, plus we had 1<<2 from first
* loop, plus horizontal and vertical each scale by sqrt(8) so together
* we've got an extra 1<<3, so 1<<17 total we need to remove.
* so we want to round that, which means adding 0.5 * 1<<17,
* aka 65536. Also, we'll end up with -128 to 127 that we want
* to encode as 0..255 by adding 128, so we'll add that before the shift */
x0 += 65536 + (128<<17);
x1 += 65536 + (128<<17);
x2 += 65536 + (128<<17);
x3 += 65536 + (128<<17);
/* tried computing the shifts into temps, or'ing the temps to see
* if any were out of range, but that was slower */
o[0] = rjpeg__clamp((x0+t3) >> 17);
o[7] = rjpeg__clamp((x0-t3) >> 17);
o[1] = rjpeg__clamp((x1+t2) >> 17);
o[6] = rjpeg__clamp((x1-t2) >> 17);
o[2] = rjpeg__clamp((x2+t1) >> 17);
o[5] = rjpeg__clamp((x2-t1) >> 17);
o[3] = rjpeg__clamp((x3+t0) >> 17);
o[4] = rjpeg__clamp((x3-t0) >> 17);
}
}
#if defined(__SSE2__)
/* sse2 integer IDCT. not the fastest possible implementation but it
* produces bit-identical results to the generic C version so it's
* fully "transparent".
*/
static void rjpeg__idct_simd(uint8_t *out, int out_stride, short data[64])
{
/* This is constructed to match our regular (generic) integer IDCT exactly. */
__m128i row0, row1, row2, row3, row4, row5, row6, row7;
__m128i tmp;
/* dot product constant: even elems=x, odd elems=y */
#define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y))
/* out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit)
* out(1) = c1[even]*x + c1[odd]*y
*/
#define dct_rot(out0,out1, x,y,c0,c1) \
__m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \
__m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \
__m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \
__m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \
__m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \
__m128i out1##_h = _mm_madd_epi16(c0##hi, c1)
/* out = in << 12 (in 16-bit, out 32-bit) */
#define dct_widen(out, in) \
__m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \
__m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4)
/* wide add */
#define dct_wadd(out, a, b) \
__m128i out##_l = _mm_add_epi32(a##_l, b##_l); \
__m128i out##_h = _mm_add_epi32(a##_h, b##_h)
/* wide sub */
#define dct_wsub(out, a, b) \
__m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \
__m128i out##_h = _mm_sub_epi32(a##_h, b##_h)
/* butterfly a/b, add bias, then shift by "s" and pack */
#define dct_bfly32o(out0, out1, a,b,bias,s) \
{ \
__m128i abiased_l = _mm_add_epi32(a##_l, bias); \
__m128i abiased_h = _mm_add_epi32(a##_h, bias); \
dct_wadd(sum, abiased, b); \
dct_wsub(dif, abiased, b); \
out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \
out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \
}
/* 8-bit interleave step (for transposes) */
#define dct_interleave8(a, b) \
tmp = a; \
a = _mm_unpacklo_epi8(a, b); \
b = _mm_unpackhi_epi8(tmp, b)
/* 16-bit interleave step (for transposes) */
#define dct_interleave16(a, b) \
tmp = a; \
a = _mm_unpacklo_epi16(a, b); \
b = _mm_unpackhi_epi16(tmp, b)
#define dct_pass(bias,shift) \
{ \
/* even part */ \
dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \
__m128i sum04 = _mm_add_epi16(row0, row4); \
__m128i dif04 = _mm_sub_epi16(row0, row4); \
dct_widen(t0e, sum04); \
dct_widen(t1e, dif04); \
dct_wadd(x0, t0e, t3e); \
dct_wsub(x3, t0e, t3e); \
dct_wadd(x1, t1e, t2e); \
dct_wsub(x2, t1e, t2e); \
/* odd part */ \
dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \
dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \
__m128i sum17 = _mm_add_epi16(row1, row7); \
__m128i sum35 = _mm_add_epi16(row3, row5); \
dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \
dct_wadd(x4, y0o, y4o); \
dct_wadd(x5, y1o, y5o); \
dct_wadd(x6, y2o, y5o); \
dct_wadd(x7, y3o, y4o); \
dct_bfly32o(row0,row7, x0,x7,bias,shift); \
dct_bfly32o(row1,row6, x1,x6,bias,shift); \
dct_bfly32o(row2,row5, x2,x5,bias,shift); \
dct_bfly32o(row3,row4, x3,x4,bias,shift); \
}
__m128i rot0_0 = dct_const(rjpeg__f2f(0.5411961f), rjpeg__f2f(0.5411961f) + rjpeg__f2f(-1.847759065f));
__m128i rot0_1 = dct_const(rjpeg__f2f(0.5411961f) + rjpeg__f2f( 0.765366865f), rjpeg__f2f(0.5411961f));
__m128i rot1_0 = dct_const(rjpeg__f2f(1.175875602f) + rjpeg__f2f(-0.899976223f), rjpeg__f2f(1.175875602f));
__m128i rot1_1 = dct_const(rjpeg__f2f(1.175875602f), rjpeg__f2f(1.175875602f) + rjpeg__f2f(-2.562915447f));
__m128i rot2_0 = dct_const(rjpeg__f2f(-1.961570560f) + rjpeg__f2f( 0.298631336f), rjpeg__f2f(-1.961570560f));
__m128i rot2_1 = dct_const(rjpeg__f2f(-1.961570560f), rjpeg__f2f(-1.961570560f) + rjpeg__f2f( 3.072711026f));
__m128i rot3_0 = dct_const(rjpeg__f2f(-0.390180644f) + rjpeg__f2f( 2.053119869f), rjpeg__f2f(-0.390180644f));
__m128i rot3_1 = dct_const(rjpeg__f2f(-0.390180644f), rjpeg__f2f(-0.390180644f) + rjpeg__f2f( 1.501321110f));
/* rounding biases in column/row passes, see rjpeg__idct_block for explanation. */
__m128i bias_0 = _mm_set1_epi32(512);
__m128i bias_1 = _mm_set1_epi32(65536 + (128<<17));
/* load */
row0 = _mm_load_si128((const __m128i *) (data + 0*8));
row1 = _mm_load_si128((const __m128i *) (data + 1*8));
row2 = _mm_load_si128((const __m128i *) (data + 2*8));
row3 = _mm_load_si128((const __m128i *) (data + 3*8));
row4 = _mm_load_si128((const __m128i *) (data + 4*8));
row5 = _mm_load_si128((const __m128i *) (data + 5*8));
row6 = _mm_load_si128((const __m128i *) (data + 6*8));
row7 = _mm_load_si128((const __m128i *) (data + 7*8));
/* column pass */
dct_pass(bias_0, 10);
{
/* 16bit 8x8 transpose pass 1 */
dct_interleave16(row0, row4);
dct_interleave16(row1, row5);
dct_interleave16(row2, row6);
dct_interleave16(row3, row7);
/* transpose pass 2 */
dct_interleave16(row0, row2);
dct_interleave16(row1, row3);
dct_interleave16(row4, row6);
dct_interleave16(row5, row7);
/* transpose pass 3 */
dct_interleave16(row0, row1);
dct_interleave16(row2, row3);
dct_interleave16(row4, row5);
dct_interleave16(row6, row7);
}
/* row pass */
dct_pass(bias_1, 17);
{
/* pack */
__m128i p0 = _mm_packus_epi16(row0, row1); /* a0a1a2a3...a7b0b1b2b3...b7 */
__m128i p1 = _mm_packus_epi16(row2, row3);
__m128i p2 = _mm_packus_epi16(row4, row5);
__m128i p3 = _mm_packus_epi16(row6, row7);
/* 8bit 8x8 transpose pass 1 */
dct_interleave8(p0, p2); /* a0e0a1e1... */
dct_interleave8(p1, p3); /* c0g0c1g1... */
/* transpose pass 2 */
dct_interleave8(p0, p1); /* a0c0e0g0... */
dct_interleave8(p2, p3); /* b0d0f0h0... */
/* transpose pass 3 */
dct_interleave8(p0, p2); /* a0b0c0d0... */
dct_interleave8(p1, p3); /* a4b4c4d4... */
/* store */
_mm_storel_epi64((__m128i *) out, p0); out += out_stride;
_mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride;
_mm_storel_epi64((__m128i *) out, p2); out += out_stride;
_mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride;
_mm_storel_epi64((__m128i *) out, p1); out += out_stride;
_mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride;
_mm_storel_epi64((__m128i *) out, p3); out += out_stride;
_mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e));
}
#undef dct_const
#undef dct_rot
#undef dct_widen
#undef dct_wadd
#undef dct_wsub
#undef dct_bfly32o
#undef dct_interleave8
#undef dct_interleave16
#undef dct_pass
}
#endif
#ifdef RJPEG_NEON
/* NEON integer IDCT. should produce bit-identical
* results to the generic C version. */
static void rjpeg__idct_simd(uint8_t *out, int out_stride, short data[64])
{
int16x8_t row0, row1, row2, row3, row4, row5, row6, row7;
int16x4_t rot0_0 = vdup_n_s16(rjpeg__f2f(0.5411961f));
int16x4_t rot0_1 = vdup_n_s16(rjpeg__f2f(-1.847759065f));
int16x4_t rot0_2 = vdup_n_s16(rjpeg__f2f( 0.765366865f));
int16x4_t rot1_0 = vdup_n_s16(rjpeg__f2f( 1.175875602f));
int16x4_t rot1_1 = vdup_n_s16(rjpeg__f2f(-0.899976223f));
int16x4_t rot1_2 = vdup_n_s16(rjpeg__f2f(-2.562915447f));
int16x4_t rot2_0 = vdup_n_s16(rjpeg__f2f(-1.961570560f));
int16x4_t rot2_1 = vdup_n_s16(rjpeg__f2f(-0.390180644f));
int16x4_t rot3_0 = vdup_n_s16(rjpeg__f2f( 0.298631336f));
int16x4_t rot3_1 = vdup_n_s16(rjpeg__f2f( 2.053119869f));
int16x4_t rot3_2 = vdup_n_s16(rjpeg__f2f( 3.072711026f));
int16x4_t rot3_3 = vdup_n_s16(rjpeg__f2f( 1.501321110f));
#define dct_long_mul(out, inq, coeff) \
int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \
int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff)
#define dct_long_mac(out, acc, inq, coeff) \
int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \
int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff)
#define dct_widen(out, inq) \
int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \
int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12)
/* wide add */
#define dct_wadd(out, a, b) \
int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \
int32x4_t out##_h = vaddq_s32(a##_h, b##_h)
/* wide sub */
#define dct_wsub(out, a, b) \
int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \
int32x4_t out##_h = vsubq_s32(a##_h, b##_h)
/* butterfly a/b, then shift using "shiftop" by "s" and pack */
#define dct_bfly32o(out0,out1, a,b,shiftop,s) \
{ \
dct_wadd(sum, a, b); \
dct_wsub(dif, a, b); \
out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \
out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \
}
#define dct_pass(shiftop, shift) \
{ \
/* even part */ \
int16x8_t sum26 = vaddq_s16(row2, row6); \
dct_long_mul(p1e, sum26, rot0_0); \
dct_long_mac(t2e, p1e, row6, rot0_1); \
dct_long_mac(t3e, p1e, row2, rot0_2); \
int16x8_t sum04 = vaddq_s16(row0, row4); \
int16x8_t dif04 = vsubq_s16(row0, row4); \
dct_widen(t0e, sum04); \
dct_widen(t1e, dif04); \
dct_wadd(x0, t0e, t3e); \
dct_wsub(x3, t0e, t3e); \
dct_wadd(x1, t1e, t2e); \
dct_wsub(x2, t1e, t2e); \
/* odd part */ \
int16x8_t sum15 = vaddq_s16(row1, row5); \
int16x8_t sum17 = vaddq_s16(row1, row7); \
int16x8_t sum35 = vaddq_s16(row3, row5); \
int16x8_t sum37 = vaddq_s16(row3, row7); \
int16x8_t sumodd = vaddq_s16(sum17, sum35); \
dct_long_mul(p5o, sumodd, rot1_0); \
dct_long_mac(p1o, p5o, sum17, rot1_1); \
dct_long_mac(p2o, p5o, sum35, rot1_2); \
dct_long_mul(p3o, sum37, rot2_0); \
dct_long_mul(p4o, sum15, rot2_1); \
dct_wadd(sump13o, p1o, p3o); \
dct_wadd(sump24o, p2o, p4o); \
dct_wadd(sump23o, p2o, p3o); \
dct_wadd(sump14o, p1o, p4o); \
dct_long_mac(x4, sump13o, row7, rot3_0); \
dct_long_mac(x5, sump24o, row5, rot3_1); \
dct_long_mac(x6, sump23o, row3, rot3_2); \
dct_long_mac(x7, sump14o, row1, rot3_3); \
dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \
dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \
dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \
dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \
}
/* load */
row0 = vld1q_s16(data + 0*8);
row1 = vld1q_s16(data + 1*8);
row2 = vld1q_s16(data + 2*8);
row3 = vld1q_s16(data + 3*8);
row4 = vld1q_s16(data + 4*8);
row5 = vld1q_s16(data + 5*8);
row6 = vld1q_s16(data + 6*8);
row7 = vld1q_s16(data + 7*8);
/* add DC bias */
row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0));
/* column pass */
dct_pass(vrshrn_n_s32, 10);
/* 16bit 8x8 transpose */
{
/* these three map to a single VTRN.16, VTRN.32, and VSWP, respectively.
* whether compilers actually get this is another story, sadly. */
#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; }
#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); }
#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); }
/* pass 1 */
dct_trn16(row0, row1); /* a0b0a2b2a4b4a6b6 */
dct_trn16(row2, row3);
dct_trn16(row4, row5);
dct_trn16(row6, row7);
/* pass 2 */
dct_trn32(row0, row2); /* a0b0c0d0a4b4c4d4 */
dct_trn32(row1, row3);
dct_trn32(row4, row6);
dct_trn32(row5, row7);
/* pass 3 */
dct_trn64(row0, row4); /* a0b0c0d0e0f0g0h0 */
dct_trn64(row1, row5);
dct_trn64(row2, row6);
dct_trn64(row3, row7);
#undef dct_trn16
#undef dct_trn32
#undef dct_trn64
}
/* row pass
* vrshrn_n_s32 only supports shifts up to 16, we need
* 17. so do a non-rounding shift of 16 first then follow
* up with a rounding shift by 1. */
dct_pass(vshrn_n_s32, 16);
{
/* pack and round */
uint8x8_t p0 = vqrshrun_n_s16(row0, 1);
uint8x8_t p1 = vqrshrun_n_s16(row1, 1);
uint8x8_t p2 = vqrshrun_n_s16(row2, 1);
uint8x8_t p3 = vqrshrun_n_s16(row3, 1);
uint8x8_t p4 = vqrshrun_n_s16(row4, 1);
uint8x8_t p5 = vqrshrun_n_s16(row5, 1);
uint8x8_t p6 = vqrshrun_n_s16(row6, 1);
uint8x8_t p7 = vqrshrun_n_s16(row7, 1);
/* again, these can translate into one instruction, but often don't. */
#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; }
#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); }
#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); }
/* sadly can't use interleaved stores here since we only write
* 8 bytes to each scan line! */
/* 8x8 8-bit transpose pass 1 */
dct_trn8_8(p0, p1);
dct_trn8_8(p2, p3);
dct_trn8_8(p4, p5);
dct_trn8_8(p6, p7);
/* pass 2 */
dct_trn8_16(p0, p2);
dct_trn8_16(p1, p3);
dct_trn8_16(p4, p6);
dct_trn8_16(p5, p7);
/* pass 3 */
dct_trn8_32(p0, p4);
dct_trn8_32(p1, p5);
dct_trn8_32(p2, p6);
dct_trn8_32(p3, p7);
/* store */
vst1_u8(out, p0); out += out_stride;
vst1_u8(out, p1); out += out_stride;
vst1_u8(out, p2); out += out_stride;
vst1_u8(out, p3); out += out_stride;
vst1_u8(out, p4); out += out_stride;
vst1_u8(out, p5); out += out_stride;
vst1_u8(out, p6); out += out_stride;
vst1_u8(out, p7);
#undef dct_trn8_8
#undef dct_trn8_16
#undef dct_trn8_32
}
#undef dct_long_mul
#undef dct_long_mac
#undef dct_widen
#undef dct_wadd
#undef dct_wsub
#undef dct_bfly32o
#undef dct_pass
}
#endif /* RJPEG_NEON */
static uint8_t rjpeg__get_marker(rjpeg__jpeg *j)
{
uint8_t x;
if (j->marker != RJPEG__MARKER_none)
{
x = j->marker;
j->marker = RJPEG__MARKER_none;
return x;
}
x = rjpeg__get8(j->s);
if (x != 0xff)
return RJPEG__MARKER_none;
while (x == 0xff)
x = rjpeg__get8(j->s);
return x;
}
/* after a restart interval, rjpeg__jpeg_reset the entropy decoder and
* the dc prediction
*/
static void rjpeg__jpeg_reset(rjpeg__jpeg *j)
{
j->code_bits = 0;
j->code_buffer = 0;
j->nomore = 0;
j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0;
j->marker = RJPEG__MARKER_none;
j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff;
j->eob_run = 0;
/* no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
* since we don't even allow 1<<30 pixels */
}
static int rjpeg__parse_entropy_coded_data(rjpeg__jpeg *z)
{
rjpeg__jpeg_reset(z);
if (!z->progressive)
{
if (z->scan_n == 1)
{
int i,j;
RJPEG_SIMD_ALIGN(short, data[64]);
int n = z->order[0];
/* non-interleaved data, we just need to process one block at a time,
* in trivial scanline order
* number of blocks to do just depends on how many actual "pixels" this
* component has, independent of interleaved MCU blocking and such */
int w = (z->img_comp[n].x+7) >> 3;
int h = (z->img_comp[n].y+7) >> 3;
for (j=0; j < h; ++j)
{
for (i=0; i < w; ++i)
{
int ha = z->img_comp[n].ha;
if (!rjpeg__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
/* every data block is an MCU, so countdown the restart interval */
if (--z->todo <= 0)
{
if (z->code_bits < 24) rjpeg__grow_buffer_unsafe(z);
/* if it's NOT a restart, then just bail,
* so we get corrupt data rather than no data */
if (!RJPEG__RESTART(z->marker)) return 1;
rjpeg__jpeg_reset(z);
}
}
}
}
else
{
/* interleaved */
int i,j,k,x,y;
RJPEG_SIMD_ALIGN(short, data[64]);
for (j=0; j < z->img_mcu_y; ++j)
{
for (i=0; i < z->img_mcu_x; ++i)
{
/* scan an interleaved mcu...
* process scan_n components in order */
for (k=0; k < z->scan_n; ++k)
{
int n = z->order[k];
/* scan out an mcu's worth of this component;
* that's just determined by the basic H
* and V specified for the component */
for (y=0; y < z->img_comp[n].v; ++y)
{
for (x=0; x < z->img_comp[n].h; ++x)
{
int x2 = (i*z->img_comp[n].h + x)*8;
int y2 = (j*z->img_comp[n].v + y)*8;
int ha = z->img_comp[n].ha;
if (!rjpeg__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq]))
return 0;
z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data);
}
}
}
/* after all interleaved components, that's an interleaved MCU,
* so now count down the restart interval */
if (--z->todo <= 0)
{
if (z->code_bits < 24) rjpeg__grow_buffer_unsafe(z);
if (!RJPEG__RESTART(z->marker)) return 1;
rjpeg__jpeg_reset(z);
}
}
}
}
return 1;
}
else
{
if (z->scan_n == 1)
{
int i,j;
int n = z->order[0];
int w = (z->img_comp[n].x+7) >> 3;
int h = (z->img_comp[n].y+7) >> 3;
/* non-interleaved data, we just need to process one block at a time,
* in trivial scanline order
* number of blocks to do just depends on how many actual "pixels" this
* component has, independent of interleaved MCU blocking and such */
for (j=0; j < h; ++j)
{
for (i=0; i < w; ++i)
{
short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
if (z->spec_start == 0)
{
if (!rjpeg__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
return 0;
} else {
int ha = z->img_comp[n].ha;
if (!rjpeg__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha]))
return 0;
}
/* every data block is an MCU, so countdown the restart interval */
if (--z->todo <= 0)
{
if (z->code_bits < 24) rjpeg__grow_buffer_unsafe(z);
if (!RJPEG__RESTART(z->marker)) return 1;
rjpeg__jpeg_reset(z);
}
}
}
}
else
{
/* interleaved */
int i,j,k,x,y;
for (j=0; j < z->img_mcu_y; ++j)
{
for (i=0; i < z->img_mcu_x; ++i)
{
/* scan an interleaved MCU... process scan_n components in order */
for (k=0; k < z->scan_n; ++k)
{
int n = z->order[k];
/* scan out an MCU's worth of this component; that's just determined
* by the basic H and V specified for the component */
for (y=0; y < z->img_comp[n].v; ++y)
{
for (x=0; x < z->img_comp[n].h; ++x)
{
int x2 = (i*z->img_comp[n].h + x);
int y2 = (j*z->img_comp[n].v + y);
short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w);
if (!rjpeg__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
return 0;
}
}
}
/* after all interleaved components, that's an interleaved MCU,
* so now count down the restart interval */
if (--z->todo <= 0)
{
if (z->code_bits < 24) rjpeg__grow_buffer_unsafe(z);
if (!RJPEG__RESTART(z->marker)) return 1;
rjpeg__jpeg_reset(z);
}
}
}
}
return 1;
}
}
static void rjpeg__jpeg_dequantize(short *data, uint8_t *dequant)
{
int i;
for (i=0; i < 64; ++i)
data[i] *= dequant[i];
}
static void rjpeg__jpeg_finish(rjpeg__jpeg *z)
{
if (z->progressive)
{
/* dequantize and IDCT the data */
int i,j,n;
for (n=0; n < z->s->img_n; ++n)
{
int w = (z->img_comp[n].x+7) >> 3;
int h = (z->img_comp[n].y+7) >> 3;
for (j=0; j < h; ++j)
{
for (i=0; i < w; ++i)
{
short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
rjpeg__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]);
z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
}
}
}
}
}
static int rjpeg__process_marker(rjpeg__jpeg *z, int m)
{
int L;
switch (m)
{
case RJPEG__MARKER_none: /* no marker found */
return rjpeg__err("expected marker","Corrupt JPEG");
case 0xDD: /* DRI - specify restart interval */
if (rjpeg__get16be(z->s) != 4) return rjpeg__err("bad DRI len","Corrupt JPEG");
z->restart_interval = rjpeg__get16be(z->s);
return 1;
case 0xDB: /* DQT - define quantization table */
L = rjpeg__get16be(z->s)-2;
while (L > 0)
{
int q = rjpeg__get8(z->s);
int p = q >> 4;
int t = q & 15,i;
if (p != 0)
return rjpeg__err("bad DQT type","Corrupt JPEG");
if (t > 3)
return rjpeg__err("bad DQT table","Corrupt JPEG");
for (i=0; i < 64; ++i)
z->dequant[t][rjpeg__jpeg_dezigzag[i]] = rjpeg__get8(z->s);
L -= 65;
}
return L==0;
case 0xC4: /* DHT - define huffman table */
L = rjpeg__get16be(z->s)-2;
while (L > 0)
{
int sizes[16],i,n=0;
uint8_t *v = NULL;
int q = rjpeg__get8(z->s);
int tc = q >> 4;
int th = q & 15;
if (tc > 1 || th > 3)
return rjpeg__err("bad DHT header","Corrupt JPEG");
for (i=0; i < 16; ++i)
{
sizes[i] = rjpeg__get8(z->s);
n += sizes[i];
}
L -= 17;
if (tc == 0)
{
if (!rjpeg__build_huffman(z->huff_dc+th, sizes))
return 0;
v = z->huff_dc[th].values;
}
else
{
if (!rjpeg__build_huffman(z->huff_ac+th, sizes))
return 0;
v = z->huff_ac[th].values;
}
for (i=0; i < n; ++i)
v[i] = rjpeg__get8(z->s);
if (tc != 0)
rjpeg__build_fast_ac(z->fast_ac[th], z->huff_ac + th);
L -= n;
}
return L==0;
}
/* check for comment block or APP blocks */
if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE)
{
rjpeg__skip(z->s, rjpeg__get16be(z->s)-2);
return 1;
}
return 0;
}
/* after we see SOS */
static int rjpeg__process_scan_header(rjpeg__jpeg *z)
{
int i;
int Ls = rjpeg__get16be(z->s);
z->scan_n = rjpeg__get8(z->s);
if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n)
return rjpeg__err("bad SOS component count","Corrupt JPEG");
if (Ls != 6+2*z->scan_n)
return rjpeg__err("bad SOS len","Corrupt JPEG");
for (i=0; i < z->scan_n; ++i)
{
int id = rjpeg__get8(z->s), which;
int q = rjpeg__get8(z->s);
for (which = 0; which < z->s->img_n; ++which)
if (z->img_comp[which].id == id)
break;
if (which == z->s->img_n)
return 0; /* no match */
z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3)
return rjpeg__err("bad DC huff","Corrupt JPEG");
z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3)
return rjpeg__err("bad AC huff","Corrupt JPEG");
z->order[i] = which;
}
{
int aa;
z->spec_start = rjpeg__get8(z->s);
z->spec_end = rjpeg__get8(z->s); /* should be 63, but might be 0 */
aa = rjpeg__get8(z->s);
z->succ_high = (aa >> 4);
z->succ_low = (aa & 15);
if (z->progressive)
{
if ( z->spec_start > 63 ||
z->spec_end > 63 ||
z->spec_start > z->spec_end ||
z->succ_high > 13 ||
z->succ_low > 13)
return rjpeg__err("bad SOS", "Corrupt JPEG");
}
else
{
if (z->spec_start != 0)
return rjpeg__err("bad SOS","Corrupt JPEG");
if (z->succ_high != 0 || z->succ_low != 0)
return rjpeg__err("bad SOS","Corrupt JPEG");
z->spec_end = 63;
}
}
return 1;
}
static int rjpeg__process_frame_header(rjpeg__jpeg *z, int scan)
{
rjpeg__context *s = z->s;
int Lf,p,i,q, h_max=1,v_max=1,c;
Lf = rjpeg__get16be(s);
/* JPEG */
if (Lf < 11)
return rjpeg__err("bad SOF len","Corrupt JPEG");
p = rjpeg__get8(s);
/* JPEG baseline */
if (p != 8)
return rjpeg__err("only 8-bit","JPEG format not supported: 8-bit only");
s->img_y = rjpeg__get16be(s);
/* Legal, but we don't handle it--but neither does IJG */
if (s->img_y == 0)
return rjpeg__err("no header height", "JPEG format not supported: delayed height");
s->img_x = rjpeg__get16be(s);
if (s->img_x == 0)
return rjpeg__err("0 width","Corrupt JPEG"); /* JPEG requires */
c = rjpeg__get8(s);
/* JFIF requires */
if (c != 3 && c != 1)
return rjpeg__err("bad component count","Corrupt JPEG");
s->img_n = c;
for (i=0; i < c; ++i)
{
z->img_comp[i].data = NULL;
z->img_comp[i].linebuf = NULL;
}
if (Lf != 8+3*s->img_n)
return rjpeg__err("bad SOF len","Corrupt JPEG");
for (i=0; i < s->img_n; ++i)
{
z->img_comp[i].id = rjpeg__get8(s);
if (z->img_comp[i].id != i+1) /* JFIF requires */
if (z->img_comp[i].id != i) /* some version of jpegtran outputs non-JFIF-compliant files! */
return rjpeg__err("bad component ID","Corrupt JPEG");
q = rjpeg__get8(s);
z->img_comp[i].h = (q >> 4);
if (!z->img_comp[i].h || z->img_comp[i].h > 4)
return rjpeg__err("bad H","Corrupt JPEG");
z->img_comp[i].v = q & 15;
if (!z->img_comp[i].v || z->img_comp[i].v > 4)
return rjpeg__err("bad V","Corrupt JPEG");
z->img_comp[i].tq = rjpeg__get8(s);
if (z->img_comp[i].tq > 3)
return rjpeg__err("bad TQ","Corrupt JPEG");
}
if (scan != RJPEG_SCAN_LOAD) return 1;
if ((1 << 30) / s->img_x / s->img_n < s->img_y) return rjpeg__err("too large", "Image too large to decode");
for (i=0; i < s->img_n; ++i)
{
if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h;
if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v;
}
/* compute interleaved MCU info */
z->img_h_max = h_max;
z->img_v_max = v_max;
z->img_mcu_w = h_max * 8;
z->img_mcu_h = v_max * 8;
z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w;
z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h;
for (i=0; i < s->img_n; ++i)
{
/* number of effective pixels (e.g. for non-interleaved MCU) */
z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max;
z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max;
/* to simplify generation, we'll allocate enough memory to decode
* the bogus oversized data from using interleaved MCUs and their
* big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
* discard the extra data until colorspace conversion */
z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8;
z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8;
z->img_comp[i].raw_data = malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15);
if (z->img_comp[i].raw_data == NULL)
{
for(--i; i >= 0; --i)
{
free(z->img_comp[i].raw_data);
z->img_comp[i].data = NULL;
}
return rjpeg__err("outofmem", "Out of memory");
}
/* align blocks for IDCT using MMX/SSE */
z->img_comp[i].data = (uint8_t*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
z->img_comp[i].linebuf = NULL;
if (z->progressive)
{
z->img_comp[i].coeff_w = (z->img_comp[i].w2 + 7) >> 3;
z->img_comp[i].coeff_h = (z->img_comp[i].h2 + 7) >> 3;
z->img_comp[i].raw_coeff = malloc(z->img_comp[i].coeff_w * z->img_comp[i].coeff_h * 64 * sizeof(short) + 15);
z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15);
} else {
z->img_comp[i].coeff = 0;
z->img_comp[i].raw_coeff = 0;
}
}
return 1;
}
static int rjpeg__decode_jpeg_header(rjpeg__jpeg *z, int scan)
{
int m;
z->marker = RJPEG__MARKER_none; /* initialize cached marker to empty */
m = rjpeg__get_marker(z);
if (!rjpeg__SOI(m))
return rjpeg__err("no SOI","Corrupt JPEG");
if (scan == RJPEG_SCAN_TYPE)
return 1;
m = rjpeg__get_marker(z);
while (!rjpeg__SOF(m))
{
if (!rjpeg__process_marker(z,m))
return 0;
m = rjpeg__get_marker(z);
while (m == RJPEG__MARKER_none)
{
/* some files have extra padding after their blocks, so ok, we'll scan */
if (rjpeg__at_eof(z->s))
return rjpeg__err("no SOF", "Corrupt JPEG");
m = rjpeg__get_marker(z);
}
}
z->progressive = rjpeg__SOF_progressive(m);
if (!rjpeg__process_frame_header(z, scan)) return 0;
return 1;
}
/* decode image to YCbCr format */
static int rjpeg__decode_jpeg_image(rjpeg__jpeg *j)
{
int m;
for (m = 0; m < 4; m++)
{
j->img_comp[m].raw_data = NULL;
j->img_comp[m].raw_coeff = NULL;
}
j->restart_interval = 0;
if (!rjpeg__decode_jpeg_header(j, RJPEG_SCAN_LOAD))
return 0;
m = rjpeg__get_marker(j);
while (!rjpeg__EOI(m))
{
if (rjpeg__SOS(m))
{
if (!rjpeg__process_scan_header(j))
return 0;
if (!rjpeg__parse_entropy_coded_data(j))
return 0;
if (j->marker == RJPEG__MARKER_none )
{
/* handle 0s at the end of image data from IP Kamera 9060 */
while (!rjpeg__at_eof(j->s))
{
int x = rjpeg__get8(j->s);
if (x == 255)
{
j->marker = rjpeg__get8(j->s);
break;
}
else if (x != 0)
return rjpeg__err("junk before marker", "Corrupt JPEG");
}
/* if we reach eof without hitting a marker, rjpeg__get_marker() below will fail and we'll eventually return 0 */
}
}
else
{
if (!rjpeg__process_marker(j, m))
return 0;
}
m = rjpeg__get_marker(j);
}
if (j->progressive)
rjpeg__jpeg_finish(j);
return 1;
}
/* static jfif-centered resampling (across block boundaries) */
static uint8_t *rjpeg_resample_row_1(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
(void)out;
(void)in_far;
(void)w;
(void)hs;
return in_near;
}
static uint8_t* rjpeg__resample_row_v_2(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
/* need to generate two samples vertically for every one in input */
int i;
(void)hs;
for (i=0; i < w; ++i)
out[i] = rjpeg__div4(3*in_near[i] + in_far[i] + 2);
return out;
}
static uint8_t* rjpeg__resample_row_h_2(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
/* need to generate two samples horizontally for every one in input */
int i;
uint8_t *input = in_near;
if (w == 1)
{
/* if only one sample, can't do any interpolation */
out[0] = out[1] = input[0];
return out;
}
out[0] = input[0];
out[1] = rjpeg__div4(input[0]*3 + input[1] + 2);
for (i=1; i < w-1; ++i)
{
int n = 3*input[i]+2;
out[i*2+0] = rjpeg__div4(n+input[i-1]);
out[i*2+1] = rjpeg__div4(n+input[i+1]);
}
out[i*2+0] = rjpeg__div4(input[w-2]*3 + input[w-1] + 2);
out[i*2+1] = input[w-1];
(void)in_far;
(void)hs;
return out;
}
static uint8_t *rjpeg__resample_row_hv_2(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
/* need to generate 2x2 samples for every one in input */
int i,t0,t1;
if (w == 1)
{
out[0] = out[1] = rjpeg__div4(3*in_near[0] + in_far[0] + 2);
return out;
}
t1 = 3*in_near[0] + in_far[0];
out[0] = rjpeg__div4(t1+2);
for (i=1; i < w; ++i)
{
t0 = t1;
t1 = 3*in_near[i]+in_far[i];
out[i*2-1] = rjpeg__div16(3*t0 + t1 + 8);
out[i*2 ] = rjpeg__div16(3*t1 + t0 + 8);
}
out[w*2-1] = rjpeg__div4(t1+2);
(void)hs;
return out;
}
#if defined(__SSE2__) || defined(RJPEG_NEON)
static uint8_t *rjpeg__resample_row_hv_2_simd(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
/* need to generate 2x2 samples for every one in input */
int i=0,t0,t1;
if (w == 1)
{
out[0] = out[1] = rjpeg__div4(3*in_near[0] + in_far[0] + 2);
return out;
}
t1 = 3*in_near[0] + in_far[0];
/* process groups of 8 pixels for as long as we can.
* note we can't handle the last pixel in a row in this loop
* because we need to handle the filter boundary conditions.
*/
for (; i < ((w-1) & ~7); i += 8)
{
#if defined(__SSE2__)
/* load and perform the vertical filtering pass
* this uses 3*x + y = 4*x + (y - x) */
__m128i zero = _mm_setzero_si128();
__m128i farb = _mm_loadl_epi64((__m128i *) (in_far + i));
__m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i));
__m128i farw = _mm_unpacklo_epi8(farb, zero);
__m128i nearw = _mm_unpacklo_epi8(nearb, zero);
__m128i diff = _mm_sub_epi16(farw, nearw);
__m128i nears = _mm_slli_epi16(nearw, 2);
__m128i curr = _mm_add_epi16(nears, diff); /* current row */
/* horizontal filter works the same based on shifted vers of current
* row. "prev" is current row shifted right by 1 pixel; we need to
* insert the previous pixel value (from t1).
* "next" is current row shifted left by 1 pixel, with first pixel
* of next block of 8 pixels added in.
*/
__m128i prv0 = _mm_slli_si128(curr, 2);
__m128i nxt0 = _mm_srli_si128(curr, 2);
__m128i prev = _mm_insert_epi16(prv0, t1, 0);
__m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7);
/* horizontal filter, polyphase implementation since it's convenient:
* even pixels = 3*cur + prev = cur*4 + (prev - cur)
* odd pixels = 3*cur + next = cur*4 + (next - cur)
* note the shared term. */
__m128i bias = _mm_set1_epi16(8);
__m128i curs = _mm_slli_epi16(curr, 2);
__m128i prvd = _mm_sub_epi16(prev, curr);
__m128i nxtd = _mm_sub_epi16(next, curr);
__m128i curb = _mm_add_epi16(curs, bias);
__m128i even = _mm_add_epi16(prvd, curb);
__m128i odd = _mm_add_epi16(nxtd, curb);
/* interleave even and odd pixels, then undo scaling. */
__m128i int0 = _mm_unpacklo_epi16(even, odd);
__m128i int1 = _mm_unpackhi_epi16(even, odd);
__m128i de0 = _mm_srli_epi16(int0, 4);
__m128i de1 = _mm_srli_epi16(int1, 4);
/* pack and write output */
__m128i outv = _mm_packus_epi16(de0, de1);
_mm_storeu_si128((__m128i *) (out + i*2), outv);
#elif defined(RJPEG_NEON)
/* load and perform the vertical filtering pass
* this uses 3*x + y = 4*x + (y - x) */
uint8x8_t farb = vld1_u8(in_far + i);
uint8x8_t nearb = vld1_u8(in_near + i);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb));
int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2));
int16x8_t curr = vaddq_s16(nears, diff); /* current row */
/* horizontal filter works the same based on shifted vers of current
* row. "prev" is current row shifted right by 1 pixel; we need to
* insert the previous pixel value (from t1).
* "next" is current row shifted left by 1 pixel, with first pixel
* of next block of 8 pixels added in. */
int16x8_t prv0 = vextq_s16(curr, curr, 7);
int16x8_t nxt0 = vextq_s16(curr, curr, 1);
int16x8_t prev = vsetq_lane_s16(t1, prv0, 0);
int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7);
/* horizontal filter, polyphase implementation since it's convenient:
* even pixels = 3*cur + prev = cur*4 + (prev - cur)
* odd pixels = 3*cur + next = cur*4 + (next - cur)
* note the shared term.
*/
int16x8_t curs = vshlq_n_s16(curr, 2);
int16x8_t prvd = vsubq_s16(prev, curr);
int16x8_t nxtd = vsubq_s16(next, curr);
int16x8_t even = vaddq_s16(curs, prvd);
int16x8_t odd = vaddq_s16(curs, nxtd);
/* undo scaling and round, then store with even/odd phases interleaved */
uint8x8x2_t o;
o.val[0] = vqrshrun_n_s16(even, 4);
o.val[1] = vqrshrun_n_s16(odd, 4);
vst2_u8(out + i*2, o);
#endif
/* "previous" value for next iteration */
t1 = 3*in_near[i+7] + in_far[i+7];
}
t0 = t1;
t1 = 3*in_near[i] + in_far[i];
out[i*2] = rjpeg__div16(3*t1 + t0 + 8);
for (++i; i < w; ++i)
{
t0 = t1;
t1 = 3*in_near[i]+in_far[i];
out[i*2-1] = rjpeg__div16(3*t0 + t1 + 8);
out[i*2 ] = rjpeg__div16(3*t1 + t0 + 8);
}
out[w*2-1] = rjpeg__div4(t1+2);
(void)hs;
return out;
}
#endif
static uint8_t *rjpeg__resample_row_generic(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
/* resample with nearest-neighbor */
int i,j;
(void)in_far;
for (i=0; i < w; ++i)
for (j=0; j < hs; ++j)
out[i*hs+j] = in_near[i];
return out;
}
/* this is a reduced-precision calculation of YCbCr-to-RGB introduced
* to make sure the code produces the same results in both SIMD and scalar */
#ifndef float2fixed
#define float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8)
#endif
static void rjpeg__YCbCr_to_RGB_row(uint8_t *out, const uint8_t *y, const uint8_t *pcb, const uint8_t *pcr, int count, int step)
{
int i;
for (i=0; i < count; ++i)
{
int y_fixed = (y[i] << 20) + (1<<19); /* rounding */
int cr = pcr[i] - 128;
int cb = pcb[i] - 128;
int r = y_fixed + cr* float2fixed(1.40200f);
int g = y_fixed + (cr*-float2fixed(0.71414f)) + ((cb*-float2fixed(0.34414f)) & 0xffff0000);
int b = y_fixed + cb* float2fixed(1.77200f);
r >>= 20;
g >>= 20;
b >>= 20;
if ((unsigned) r > 255)
r = 255;
if ((unsigned) g > 255)
g = 255;
if ((unsigned) b > 255)
b = 255;
out[0] = (uint8_t)r;
out[1] = (uint8_t)g;
out[2] = (uint8_t)b;
out[3] = 255;
out += step;
}
}
#if defined(__SSE2__) || defined(RJPEG_NEON)
static void rjpeg__YCbCr_to_RGB_simd(uint8_t *out, const uint8_t *y, const uint8_t *pcb, const uint8_t *pcr, int count, int step)
{
int i = 0;
#if defined(__SSE2__)
/* step == 3 is pretty ugly on the final interleave, and i'm not convinced
* it's useful in practice (you wouldn't use it for textures, for example).
* so just accelerate step == 4 case.
*/
if (step == 4)
{
/* this is a fairly straightforward implementation and not super-optimized. */
__m128i signflip = _mm_set1_epi8(-0x80);
__m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f));
__m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f));
__m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f));
__m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f));
__m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128);
__m128i xw = _mm_set1_epi16(255); /* alpha channel */
for (; i+7 < count; i += 8)
{
/* load */
__m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i));
__m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i));
__m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i));
__m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); /* -128 */
__m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); /* -128 */
/* unpack to short (and left-shift cr, cb by 8) */
__m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes);
__m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased);
__m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased);
/* color transform */
__m128i yws = _mm_srli_epi16(yw, 4);
__m128i cr0 = _mm_mulhi_epi16(cr_const0, crw);
__m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw);
__m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1);
__m128i cr1 = _mm_mulhi_epi16(crw, cr_const1);
__m128i rws = _mm_add_epi16(cr0, yws);
__m128i gwt = _mm_add_epi16(cb0, yws);
__m128i bws = _mm_add_epi16(yws, cb1);
__m128i gws = _mm_add_epi16(gwt, cr1);
/* descale */
__m128i rw = _mm_srai_epi16(rws, 4);
__m128i bw = _mm_srai_epi16(bws, 4);
__m128i gw = _mm_srai_epi16(gws, 4);
/* back to byte, set up for transpose */
__m128i brb = _mm_packus_epi16(rw, bw);
__m128i gxb = _mm_packus_epi16(gw, xw);
/* transpose to interleave channels */
__m128i t0 = _mm_unpacklo_epi8(brb, gxb);
__m128i t1 = _mm_unpackhi_epi8(brb, gxb);
__m128i o0 = _mm_unpacklo_epi16(t0, t1);
__m128i o1 = _mm_unpackhi_epi16(t0, t1);
/* store */
_mm_storeu_si128((__m128i *) (out + 0), o0);
_mm_storeu_si128((__m128i *) (out + 16), o1);
out += 32;
}
}
#endif
#ifdef RJPEG_NEON
/* in this version, step=3 support would be easy to add. but is there demand? */
if (step == 4)
{
/* this is a fairly straightforward implementation and not super-optimized. */
uint8x8_t signflip = vdup_n_u8(0x80);
int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f));
int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f));
int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f));
int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f));
for (; i+7 < count; i += 8)
{
uint8x8x4_t o;
/* load */
uint8x8_t y_bytes = vld1_u8(y + i);
uint8x8_t cr_bytes = vld1_u8(pcr + i);
uint8x8_t cb_bytes = vld1_u8(pcb + i);
int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip));
int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip));
/* expand to s16 */
int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4));
int16x8_t crw = vshll_n_s8(cr_biased, 7);
int16x8_t cbw = vshll_n_s8(cb_biased, 7);
/* color transform */
int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0);
int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0);
int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1);
int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1);
int16x8_t rws = vaddq_s16(yws, cr0);
int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1);
int16x8_t bws = vaddq_s16(yws, cb1);
/* undo scaling, round, convert to byte */
o.val[0] = vqrshrun_n_s16(rws, 4);
o.val[1] = vqrshrun_n_s16(gws, 4);
o.val[2] = vqrshrun_n_s16(bws, 4);
o.val[3] = vdup_n_u8(255);
/* store, interleaving r/g/b/a */
vst4_u8(out, o);
out += 8*4;
}
}
#endif
for (; i < count; ++i)
{
int y_fixed = (y[i] << 20) + (1<<19); /* rounding */
int cr = pcr[i] - 128;
int cb = pcb[i] - 128;
int r = y_fixed + cr* float2fixed(1.40200f);
int g = y_fixed + cr*-float2fixed(0.71414f) + ((cb*-float2fixed(0.34414f)) & 0xffff0000);
int b = y_fixed + cb* float2fixed(1.77200f);
r >>= 20;
g >>= 20;
b >>= 20;
if ((unsigned) r > 255)
r = 255;
if ((unsigned) g > 255)
g = 255;
if ((unsigned) b > 255)
b = 255;
out[0] = (uint8_t)r;
out[1] = (uint8_t)g;
out[2] = (uint8_t)b;
out[3] = 255;
out += step;
}
}
#endif
/* set up the kernels */
static void rjpeg__setup_jpeg(rjpeg__jpeg *j)
{
uint64_t mask = cpu_features_get();
(void)mask;
j->idct_block_kernel = rjpeg__idct_block;
j->YCbCr_to_RGB_kernel = rjpeg__YCbCr_to_RGB_row;
j->resample_row_hv_2_kernel = rjpeg__resample_row_hv_2;
#if defined(__SSE2__)
if (mask & RETRO_SIMD_SSE2)
{
j->idct_block_kernel = rjpeg__idct_simd;
j->YCbCr_to_RGB_kernel = rjpeg__YCbCr_to_RGB_simd;
j->resample_row_hv_2_kernel = rjpeg__resample_row_hv_2_simd;
}
#endif
#ifdef RJPEG_NEON
j->idct_block_kernel = rjpeg__idct_simd;
j->YCbCr_to_RGB_kernel = rjpeg__YCbCr_to_RGB_simd;
j->resample_row_hv_2_kernel = rjpeg__resample_row_hv_2_simd;
#endif
}
/* clean up the temporary component buffers */
static void rjpeg__cleanup_jpeg(rjpeg__jpeg *j)
{
int i;
for (i=0; i < j->s->img_n; ++i)
{
if (j->img_comp[i].raw_data)
{
free(j->img_comp[i].raw_data);
j->img_comp[i].raw_data = NULL;
j->img_comp[i].data = NULL;
}
if (j->img_comp[i].raw_coeff)
{
free(j->img_comp[i].raw_coeff);
j->img_comp[i].raw_coeff = 0;
j->img_comp[i].coeff = 0;
}
if (j->img_comp[i].linebuf)
{
free(j->img_comp[i].linebuf);
j->img_comp[i].linebuf = NULL;
}
}
}
static uint8_t *rjpeg_load_jpeg_image(rjpeg__jpeg *z, unsigned *out_x, unsigned *out_y, int *comp, int req_comp)
{
int n, decode_n;
int k;
unsigned int i,j;
rjpeg__resample res_comp[4];
uint8_t *coutput[4] = {0};
uint8_t *output = NULL;
z->s->img_n = 0; /* make rjpeg__cleanup_jpeg safe */
/* validate req_comp */
if (req_comp < 0 || req_comp > 4)
return rjpeg__errpuc("bad req_comp", "Internal error");
/* load a jpeg image from whichever source, but leave in YCbCr format */
if (!rjpeg__decode_jpeg_image(z))
goto error;
/* determine actual number of components to generate */
n = req_comp ? req_comp : z->s->img_n;
if (z->s->img_n == 3 && n < 3)
decode_n = 1;
else
decode_n = z->s->img_n;
/* resample and color-convert */
for (k=0; k < decode_n; ++k)
{
rjpeg__resample *r = &res_comp[k];
/* allocate line buffer big enough for upsampling off the edges
* with upsample factor of 4 */
z->img_comp[k].linebuf = (uint8_t *) malloc(z->s->img_x + 3);
if (!z->img_comp[k].linebuf)
goto error;
r->hs = z->img_h_max / z->img_comp[k].h;
r->vs = z->img_v_max / z->img_comp[k].v;
r->ystep = r->vs >> 1;
r->w_lores = (z->s->img_x + r->hs-1) / r->hs;
r->ypos = 0;
r->line0 = r->line1 = z->img_comp[k].data;
r->resample = rjpeg__resample_row_generic;
if (r->hs == 1 && r->vs == 1)
r->resample = rjpeg_resample_row_1;
else if (r->hs == 1 && r->vs == 2)
r->resample = rjpeg__resample_row_v_2;
else if (r->hs == 2 && r->vs == 1)
r->resample = rjpeg__resample_row_h_2;
else if (r->hs == 2 && r->vs == 2)
r->resample = z->resample_row_hv_2_kernel;
}
/* can't error after this so, this is safe */
output = (uint8_t *) malloc(n * z->s->img_x * z->s->img_y + 1);
if (!output)
goto error;
/* now go ahead and resample */
for (j=0; j < z->s->img_y; ++j)
{
uint8_t *out = output + n * z->s->img_x * j;
for (k=0; k < decode_n; ++k)
{
rjpeg__resample *r = &res_comp[k];
int y_bot = r->ystep >= (r->vs >> 1);
coutput[k] = r->resample(z->img_comp[k].linebuf,
y_bot ? r->line1 : r->line0,
y_bot ? r->line0 : r->line1,
r->w_lores, r->hs);
if (++r->ystep >= r->vs)
{
r->ystep = 0;
r->line0 = r->line1;
if (++r->ypos < z->img_comp[k].y)
r->line1 += z->img_comp[k].w2;
}
}
if (n >= 3)
{
uint8_t *y = coutput[0];
if (z->s->img_n == 3)
z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
else
for (i=0; i < z->s->img_x; ++i)
{
out[0] = out[1] = out[2] = y[i];
out[3] = 255; /* not used if n==3 */
out += n;
}
}
else
{
uint8_t *y = coutput[0];
if (n == 1)
for (i=0; i < z->s->img_x; ++i)
out[i] = y[i];
else
for (i=0; i < z->s->img_x; ++i)
*out++ = y[i], *out++ = 255;
}
}
rjpeg__cleanup_jpeg(z);
*out_x = z->s->img_x;
*out_y = z->s->img_y;
if (comp)
*comp = z->s->img_n; /* report original components, not output */
return output;
error:
rjpeg__cleanup_jpeg(z);
return NULL;
}
static unsigned char *rjpeg__jpeg_load(rjpeg__context *s, unsigned *x, unsigned *y, int *comp, int req_comp)
{
rjpeg__jpeg j;
j.s = s;
rjpeg__setup_jpeg(&j);
return rjpeg_load_jpeg_image(&j, x,y,comp,req_comp);
}
int rjpeg_process_image(rjpeg_t *rjpeg, void **buf_data,
size_t size, unsigned *width, unsigned *height)
{
int comp;
uint32_t *img = NULL;
uint32_t *pixels = NULL;
unsigned size_tex = 0;
if (!rjpeg)
return IMAGE_PROCESS_ERROR;
img = (uint32_t*)rjpeg_load_from_memory(rjpeg->buff_data, size, width, height, &comp, 4);
if (!img)
return IMAGE_PROCESS_ERROR;
size_tex = (*width) * (*height);
pixels = (uint32_t*)malloc(size_tex * sizeof(uint32_t));
if (!pixels)
{
free(img);
return IMAGE_PROCESS_ERROR;
}
*buf_data = pixels;
/* Convert RGBA to ARGB */
while (size_tex--)
{
unsigned int texel = img[size_tex];
unsigned int A = texel & 0xFF000000;
unsigned int B = texel & 0x00FF0000;
unsigned int G = texel & 0x0000FF00;
unsigned int R = texel & 0x000000FF;
((unsigned int*)pixels)[size_tex] = A | (R << 16) | G | (B >> 16);
};
free(img);
return IMAGE_PROCESS_END;
}
bool rjpeg_set_buf_ptr(rjpeg_t *rjpeg, void *data)
{
if (!rjpeg)
return false;
rjpeg->buff_data = (uint8_t*)data;
return true;
}
void rjpeg_free(rjpeg_t *rjpeg)
{
if (!rjpeg)
return;
free(rjpeg);
}
rjpeg_t *rjpeg_alloc(void)
{
rjpeg_t *rjpeg = (rjpeg_t*)calloc(1, sizeof(*rjpeg));
if (!rjpeg)
return NULL;
return rjpeg;
}
|