File: rjpeg.c

package info (click to toggle)
retroarch 1.3.6%2Bdfsg1-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 26,496 kB
  • ctags: 41,865
  • sloc: ansic: 250,395; cpp: 12,996; makefile: 3,500; objc: 3,266; xml: 2,141; python: 1,670; sh: 1,522; java: 798; asm: 542; perl: 393
file content (2570 lines) | stat: -rw-r--r-- 82,220 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
/* Copyright  (C) 2010-2016 The RetroArch team
 *
 * ---------------------------------------------------------------------------------------
 * The following license statement only applies to this file (rjpeg.c).
 * ---------------------------------------------------------------------------------------
 *
 * Permission is hereby granted, free of charge,
 * to any person obtaining a copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/* Modified version of stb_image's JPEG sources. */

#include <stdint.h>
#include <stdarg.h>
#include <stddef.h> /* ptrdiff_t on osx */
#include <stdlib.h>
#include <string.h>

#include <retro_assert.h>
#include <retro_inline.h>
#include <boolean.h>
#include <formats/image.h>
#include <formats/rjpeg.h>
#include <features/features_cpu.h>

enum
{
   RJPEG_DEFAULT = 0, /* only used for req_comp */
   RJPEG_GREY,
   RJPEG_GREY_ALPHA,
   RJPEG_RGB,
   RJPEG_RGB_ALPHA
};

typedef struct
{
   int      (*read)  (void *user,char *data,int size);   /* fill 'data' with 'size' bytes.  return number of bytes actually read */
   void     (*skip)  (void *user,int n);                 /* skip the next 'n' bytes, or 'unget' the last -n bytes if negative */
   int      (*eof)   (void *user);                       /* returns nonzero if we are at end of file/data */
} rjpeg_io_callbacks;

typedef uint8_t *(*rjpeg_resample_row_func)(uint8_t *out, uint8_t *in0, uint8_t *in1,
                                    int w, int hs);

typedef struct
{
   rjpeg_resample_row_func resample;
   uint8_t *line0,*line1;
   int hs,vs;   /* expansion factor in each axis */
   int w_lores; /* horizontal pixels pre-expansion */
   int ystep;   /* how far through vertical expansion we are */
   int ypos;    /* which pre-expansion row we're on */
} rjpeg__resample;

struct rjpeg
{
   uint8_t *buff_data;
   void *empty;
};

#ifdef _MSC_VER
#define RJPEG_HAS_LROTL
#endif

#ifdef RJPEG_HAS_LROTL
   #define rjpeg_lrot(x,y)  _lrotl(x,y)
#else
   #define rjpeg_lrot(x,y)  (((x) << (y)) | ((x) >> (32 - (y))))
#endif

/* x86/x64 detection */
#if defined(__x86_64__) || defined(_M_X64)
#define RJPEG__X64_TARGET
#elif defined(__i386) || defined(_M_IX86)
#define RJPEG__X86_TARGET
#endif

#if defined(__GNUC__) && (defined(RJPEG__X86_TARGET) || defined(RJPEG__X64_TARGET)) && !defined(__SSE2__) && !defined(RJPEG_NO_SIMD)
/* NOTE: not clear do we actually need this for the 64-bit path?
 * gcc doesn't support sse2 intrinsics unless you compile with -msse2,
 * (but compiling with -msse2 allows the compiler to use SSE2 everywhere;
 * this is just broken and gcc are jerks for not fixing it properly
 * http://www.virtualdub.org/blog/pivot/entry.php?id=363 )
 */
#define RJPEG_NO_SIMD
#endif

#if defined(__MINGW32__) && defined(RJPEG__X86_TARGET) && !defined(RJPEG_MINGW_ENABLE_SSE2) && !defined(RJPEG_NO_SIMD)
/* Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid RJPEG__X64_TARGET
 *
 * 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the
 * Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant.
 * As a result, enabling SSE2 on 32-bit MinGW is dangerous when not
 * simultaneously enabling "-mstackrealign".
 *
 * See https://github.com/nothings/stb/issues/81 for more information.
 *
 * So default to no SSE2 on 32-bit MinGW. If you've read this far and added
 * -mstackrealign to your build settings, feel free to #define RJPEG_MINGW_ENABLE_SSE2.
 */
#define RJPEG_NO_SIMD
#endif

#if defined(__SSE2__)
#include <emmintrin.h>

#ifdef _MSC_VER
#define RJPEG_SIMD_ALIGN(type, name) __declspec(align(16)) type name
#else
#define RJPEG_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
#endif

#endif

/* ARM NEON */
#if defined(RJPEG_NO_SIMD) && defined(RJPEG_NEON)
#undef RJPEG_NEON
#endif

#ifdef RJPEG_NEON
#include <arm_neon.h>
/* assume GCC or Clang on ARM targets */
#define RJPEG_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
#endif

#ifndef RJPEG_SIMD_ALIGN
#define RJPEG_SIMD_ALIGN(type, name) type name
#endif

typedef struct
{
   uint32_t img_x, img_y;
   int img_n, img_out_n;

   rjpeg_io_callbacks io;
   void *io_user_data;

   int read_from_callbacks;
   int buflen;
   uint8_t buffer_start[128];

   uint8_t *img_buffer, *img_buffer_end;
   uint8_t *img_buffer_original;
} rjpeg__context;

static uint8_t *rjpeg__jpeg_load(rjpeg__context *s, unsigned *x, unsigned *y, int *comp, int req_comp);

#define rjpeg__err(x,y)  0

#define rjpeg__errpf(x,y)   ((float *) (rjpeg__err(x,y)?NULL:NULL))
#define rjpeg__errpuc(x,y)  ((unsigned char *) (rjpeg__err(x,y)?NULL:NULL))

static int rjpeg__vertically_flip_on_load = 0;

static unsigned char *rjpeg__load_flip(rjpeg__context *s, unsigned *x, unsigned *y, int *comp, int req_comp)
{
   unsigned char *result = rjpeg__jpeg_load(s,x,y,comp,req_comp);

   if (rjpeg__vertically_flip_on_load && result != NULL)
   {
      int row,col,z;
      int w     = *x, h = *y;
      int depth = req_comp ? req_comp : *comp;

      for (row = 0; row < (h>>1); row++)
      {
         for (col = 0; col < w; col++)
         {
            for (z = 0; z < depth; z++)
            {
               uint8_t temp = result[(row * w + col) * depth + z];
               result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z];
               result[((h - row - 1) * w + col) * depth + z] = temp;
            }
         }
      }
   }

   return result;
}

static uint8_t *rjpeg_load_from_memory(const uint8_t *buffer, int len, unsigned *x, unsigned *y, int *comp, int req_comp)
{
   rjpeg__context s;
   s.io.read             = NULL;
   s.read_from_callbacks = 0;
   s.img_buffer          = s.img_buffer_original = (uint8_t *) buffer;
   s.img_buffer_end      = (uint8_t *) buffer+len;
   return rjpeg__load_flip(&s,x,y,comp,req_comp);
}

enum
{
   RJPEG_SCAN_LOAD = 0,
   RJPEG_SCAN_TYPE,
   RJPEG_SCAN_HEADER
};

static void rjpeg__refill_buffer(rjpeg__context *s)
{
   int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen);

   if (n == 0)
   {
      /* at end of file, treat same as if from memory, but need to handle case
       * where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file */
      s->read_from_callbacks = 0;
      s->img_buffer = s->buffer_start;
      s->img_buffer_end = s->buffer_start+1;
      *s->img_buffer = 0;
   }
   else
   {
      s->img_buffer = s->buffer_start;
      s->img_buffer_end = s->buffer_start + n;
   }
}

static INLINE uint8_t rjpeg__get8(rjpeg__context *s)
{
   if (s->img_buffer < s->img_buffer_end)
      return *s->img_buffer++;

   if (s->read_from_callbacks)
   {
      rjpeg__refill_buffer(s);
      return *s->img_buffer++;
   }

   return 0;
}

static INLINE int rjpeg__at_eof(rjpeg__context *s)
{
   if (s->io.read)
   {
      if (!(s->io.eof)(s->io_user_data))
         return 0;

      /* if feof() is true, check if buffer = end
       * special case: we've only got the special 
       * 0 character at the end */

      if (s->read_from_callbacks == 0)
         return 1;
   }

   return s->img_buffer >= s->img_buffer_end;
}

static void rjpeg__skip(rjpeg__context *s, int n)
{
   if (n < 0)
   {
      s->img_buffer = s->img_buffer_end;
      return;
   }

   if (s->io.read)
   {
      int blen = (int) (s->img_buffer_end - s->img_buffer);

      if (blen < n)
      {
         s->img_buffer = s->img_buffer_end;
         (s->io.skip)(s->io_user_data, n - blen);
         return;
      }
   }
   s->img_buffer += n;
}

static int rjpeg__get16be(rjpeg__context *s)
{
   int z = rjpeg__get8(s);
   return (z << 8) + rjpeg__get8(s);
}

#define RJPEG__BYTECAST(x)  ((uint8_t) ((x) & 255))  /* truncate int to byte without warnings */

/* huffman decoding acceleration */
#define FAST_BITS   9  /* larger handles more cases; smaller stomps less cache */

typedef struct
{
   uint8_t  fast[1 << FAST_BITS];
   /* weirdly, repacking this into AoS is a 10% speed loss, instead of a win */
   uint16_t code[256];
   uint8_t  values[256];
   uint8_t  size[257];
   unsigned int maxcode[18];
   int    delta[17];   /* old 'firstsymbol' - old 'firstcode' */
} rjpeg__huffman;

typedef struct
{
   rjpeg__context *s;
   rjpeg__huffman huff_dc[4];
   rjpeg__huffman huff_ac[4];
   uint8_t dequant[4][64];
   int16_t fast_ac[4][1 << FAST_BITS];

   /* sizes for components, interleaved MCUs */
   int img_h_max, img_v_max;
   int img_mcu_x, img_mcu_y;
   int img_mcu_w, img_mcu_h;

   /* definition of jpeg image component */
   struct
   {
      int id;
      int h,v;
      int tq;
      int hd,ha;
      int dc_pred;

      int x,y,w2,h2;
      uint8_t *data;
      void *raw_data, *raw_coeff;
      uint8_t *linebuf;
      short   *coeff;            /* progressive only */
      int      coeff_w, coeff_h; /* number of 8x8 coefficient blocks */
   } img_comp[4];

   uint32_t       code_buffer; /* jpeg entropy-coded buffer */
   int            code_bits;   /* number of valid bits */
   unsigned char  marker;      /* marker seen while filling entropy buffer */
   int            nomore;      /* flag if we saw a marker so must stop */

   int            progressive;
   int            spec_start;
   int            spec_end;
   int            succ_high;
   int            succ_low;
   int            eob_run;

   int scan_n, order[4];
   int restart_interval, todo;

   /* kernels */
   void (*idct_block_kernel)(uint8_t *out, int out_stride, short data[64]);
   void (*YCbCr_to_RGB_kernel)(uint8_t *out, const uint8_t *y, const uint8_t *pcb, const uint8_t *pcr, int count, int step);
   uint8_t *(*resample_row_hv_2_kernel)(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs);
} rjpeg__jpeg;

#define rjpeg__f2f(x)  ((int) (((x) * 4096 + 0.5)))
#define rjpeg__fsh(x)  ((x) << 12)

#define RJPEG__MARKER_none  0xff
/* if there's a pending marker from the entropy stream, return that
 * otherwise, fetch from the stream and get a marker. if there's no
 * marker, return 0xff, which is never a valid marker value
 */

/* in each scan, we'll have scan_n components, and the order
 * of the components is specified by order[]
 */
#define RJPEG__RESTART(x)     ((x) >= 0xd0 && (x) <= 0xd7)

/* use comparisons since in some cases we handle more than one case (e.g. SOF) */
#define rjpeg__SOI(x)         ((x) == 0xd8)
#define rjpeg__EOI(x)         ((x) == 0xd9)
#define rjpeg__SOF(x)         ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2)
#define rjpeg__SOS(x)         ((x) == 0xda)

#define rjpeg__SOF_progressive(x)   ((x) == 0xc2)
#define rjpeg__div4(x)              ((uint8_t) ((x) >> 2))
#define rjpeg__div16(x)             ((uint8_t) ((x) >> 4))

static int rjpeg__build_huffman(rjpeg__huffman *h, int *count)
{
   int i,j,k=0,code;

   /* build size list for each symbol (from JPEG spec) */
   for (i=0; i < 16; ++i)
      for (j=0; j < count[i]; ++j)
         h->size[k++] = (uint8_t) (i+1);

   h->size[k] = 0;
   /* compute actual symbols (from jpeg spec) */
   code       = 0;
   k          = 0;

   for(j=1; j <= 16; ++j)
   {
      /* compute delta to add to code to compute symbol id */
      h->delta[j] = k - code;
      if (h->size[k] == j)
      {
         while (h->size[k] == j)
            h->code[k++] = (uint16_t) (code++);
         if (code-1 >= (1 << j))
            return rjpeg__err("bad code lengths","Corrupt JPEG");
      }
      /* compute largest code + 1 for this size, preshifted as needed later */
      h->maxcode[j] = code << (16-j);
      code <<= 1;
   }
   h->maxcode[j] = 0xffffffff;

   /* build non-spec acceleration table; 255 is flag for not-accelerated */
   memset(h->fast, 255, 1 << FAST_BITS);
   for (i=0; i < k; ++i)
   {
      int s = h->size[i];
      if (s <= FAST_BITS)
      {
         int c = h->code[i] << (FAST_BITS-s);
         int m = 1 << (FAST_BITS-s);
         for (j=0; j < m; ++j)
            h->fast[c+j] = (uint8_t) i;
      }
   }
   return 1;
}

/* build a table that decodes both magnitude and value of small ACs in
 * one go. */
static void rjpeg__build_fast_ac(int16_t *fast_ac, rjpeg__huffman *h)
{
   int i;

   for (i=0; i < (1 << FAST_BITS); ++i)
   {
      uint8_t fast = h->fast[i];

      fast_ac[i] = 0;

      if (fast < 255)
      {
         int rs      = h->values[fast];
         int run     = (rs >> 4) & 15;
         int magbits = rs & 15;
         int len     = h->size[fast];

         if (magbits && len + magbits <= FAST_BITS)
         {
            /* magnitude code followed by receive_extend code */
            int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits);
            int m = 1 << (magbits - 1);
            if (k < m)
               k += (-1 << magbits) + 1;

            /* if the result is small enough, we can fit it in fast_ac table */
            if (k >= -128 && k <= 127)
               fast_ac[i] = (int16_t) ((k << 8) + (run << 4) + (len + magbits));
         }
      }
   }
}

static void rjpeg__grow_buffer_unsafe(rjpeg__jpeg *j)
{
   do
   {
      int b = j->nomore ? 0 : rjpeg__get8(j->s);
      if (b == 0xff)
      {
         int c = rjpeg__get8(j->s);

         if (c != 0)
         {
            j->marker = (unsigned char) c;
            j->nomore = 1;
            return;
         }
      }
      j->code_buffer |= b << (24 - j->code_bits);
      j->code_bits += 8;
   } while (j->code_bits <= 24);
}

/* (1 << n) - 1 */
static uint32_t rjpeg__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};

/* decode a JPEG huffman value from the bitstream */
static INLINE int rjpeg__jpeg_huff_decode(rjpeg__jpeg *j, rjpeg__huffman *h)
{
   unsigned int temp;
   int c,k;

   if (j->code_bits < 16)
      rjpeg__grow_buffer_unsafe(j);

   /* look at the top FAST_BITS and determine what symbol ID it is,
    * if the code is <= FAST_BITS */
   c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
   k = h->fast[c];

   if (k < 255)
   {
      int s = h->size[k];
      if (s > j->code_bits)
         return -1;
      j->code_buffer <<= s;
      j->code_bits -= s;
      return h->values[k];
   }

   /* naive test is to shift the code_buffer down so k bits are
    * valid, then test against maxcode. To speed this up, we've
    * preshifted maxcode left so that it has (16-k) 0s at the
    * end; in other words, regardless of the number of bits, it
    * wants to be compared against something shifted to have 16;
    * that way we don't need to shift inside the loop. */
   temp = j->code_buffer >> 16;
   for (k=FAST_BITS+1 ; ; ++k)
      if (temp < h->maxcode[k])
         break;

   if (k == 17)
   {
      /* error! code not found */
      j->code_bits -= 16;
      return -1;
   }

   if (k > j->code_bits)
      return -1;

   /* convert the huffman code to the symbol id */
   c = ((j->code_buffer >> (32 - k)) & rjpeg__bmask[k]) + h->delta[k];
   assert((((j->code_buffer) >> (32 - h->size[c])) & rjpeg__bmask[h->size[c]]) == h->code[c]);

   /* convert the id to a symbol */
   j->code_bits -= k;
   j->code_buffer <<= k;
   return h->values[c];
}

/* bias[n] = (-1<<n) + 1 */
static int const rjpeg__jbias[16] = {0,-1,-3,-7,-15,-31,-63,-127,-255,-511,-1023,-2047,-4095,-8191,-16383,-32767};

/* combined JPEG 'receive' and JPEG 'extend', since baseline
 * always extends everything it receives. */
static INLINE int rjpeg__extend_receive(rjpeg__jpeg *j, int n)
{
   unsigned int k;
   int sgn;
   if (j->code_bits < n)
      rjpeg__grow_buffer_unsafe(j);

   sgn = (int32_t)j->code_buffer >> 31; /* sign bit is always in MSB */
   k = rjpeg_lrot(j->code_buffer, n);
   assert(n >= 0 && n < (int) (sizeof(rjpeg__bmask)/sizeof(*rjpeg__bmask)));
   j->code_buffer = k & ~rjpeg__bmask[n];
   k &= rjpeg__bmask[n];
   j->code_bits -= n;
   return k + (rjpeg__jbias[n] & ~sgn);
}

/* get some unsigned bits */
static INLINE int rjpeg__jpeg_get_bits(rjpeg__jpeg *j, int n)
{
   unsigned int k;
   if (j->code_bits < n) rjpeg__grow_buffer_unsafe(j);
   k = rjpeg_lrot(j->code_buffer, n);
   j->code_buffer = k & ~rjpeg__bmask[n];
   k &= rjpeg__bmask[n];
   j->code_bits -= n;
   return k;
}

static INLINE int rjpeg__jpeg_get_bit(rjpeg__jpeg *j)
{
   unsigned int k;
   if (j->code_bits < 1) rjpeg__grow_buffer_unsafe(j);
   k = j->code_buffer;
   j->code_buffer <<= 1;
   --j->code_bits;
   return k & 0x80000000;
}

/* given a value that's at position X in the zigzag stream,
 * where does it appear in the 8x8 matrix coded as row-major? */
static uint8_t rjpeg__jpeg_dezigzag[64+15] =
{
    0,  1,  8, 16,  9,  2,  3, 10,
   17, 24, 32, 25, 18, 11,  4,  5,
   12, 19, 26, 33, 40, 48, 41, 34,
   27, 20, 13,  6,  7, 14, 21, 28,
   35, 42, 49, 56, 57, 50, 43, 36,
   29, 22, 15, 23, 30, 37, 44, 51,
   58, 59, 52, 45, 38, 31, 39, 46,
   53, 60, 61, 54, 47, 55, 62, 63,
   /* let corrupt input sample past end */
   63, 63, 63, 63, 63, 63, 63, 63,
   63, 63, 63, 63, 63, 63, 63
};

/* decode one 64-entry block-- */
static int rjpeg__jpeg_decode_block(
      rjpeg__jpeg *j, short data[64],
      rjpeg__huffman *hdc,
      rjpeg__huffman *hac,
      int16_t *fac,
      int b,
      uint8_t *dequant)
{
   int diff,dc,k;
   int t;

   if (j->code_bits < 16)
      rjpeg__grow_buffer_unsafe(j);
   t = rjpeg__jpeg_huff_decode(j, hdc);
   if (t < 0)
      return rjpeg__err("bad huffman code","Corrupt JPEG");

   /* 0 all the ac values now so we can do it 32-bits at a time */
   memset(data,0,64*sizeof(data[0]));

   diff = t ? rjpeg__extend_receive(j, t) : 0;
   dc = j->img_comp[b].dc_pred + diff;
   j->img_comp[b].dc_pred = dc;
   data[0] = (short) (dc * dequant[0]);

   /* decode AC components, see JPEG spec */
   k = 1;
   do
   {
      unsigned int zig;
      int c,r,s;
      if (j->code_bits < 16)
         rjpeg__grow_buffer_unsafe(j);
      c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
      r = fac[c];
      if (r)
      {
         /* fast-AC path */
         k += (r >> 4) & 15; /* run */
         s = r & 15;         /* combined length */
         j->code_buffer <<= s;
         j->code_bits -= s;
         /* decode into unzigzag'd location */
         zig = rjpeg__jpeg_dezigzag[k++];
         data[zig] = (short) ((r >> 8) * dequant[zig]);
      }
      else
      {
         int rs = rjpeg__jpeg_huff_decode(j, hac);
         if (rs < 0)
            return rjpeg__err("bad huffman code","Corrupt JPEG");
         s = rs & 15;
         r = rs >> 4;
         if (s == 0)
         {
            if (rs != 0xf0)
               break; /* end block */
            k += 16;
         }
         else
         {
            k += r;
            /* decode into unzigzag'd location */
            zig = rjpeg__jpeg_dezigzag[k++];
            data[zig] = (short) (rjpeg__extend_receive(j,s) * dequant[zig]);
         }
      }
   } while (k < 64);
   return 1;
}

static int rjpeg__jpeg_decode_block_prog_dc(
      rjpeg__jpeg *j,
      short data[64],
      rjpeg__huffman *hdc,
      int b)
{
   if (j->spec_end != 0)
      return rjpeg__err("can't merge dc and ac", "Corrupt JPEG");

   if (j->code_bits < 16)
      rjpeg__grow_buffer_unsafe(j);

   if (j->succ_high == 0)
   {
      int t;
      int diff,dc;

      /* first scan for DC coefficient, must be first */
      memset(data,0,64*sizeof(data[0])); /* 0 all the ac values now */
      t = rjpeg__jpeg_huff_decode(j, hdc);
      diff = t ? rjpeg__extend_receive(j, t) : 0;

      dc = j->img_comp[b].dc_pred + diff;
      j->img_comp[b].dc_pred = dc;
      data[0] = (short) (dc << j->succ_low);
   }
   else
   {
      /* refinement scan for DC coefficient */
      if (rjpeg__jpeg_get_bit(j))
         data[0] += (short) (1 << j->succ_low);
   }
   return 1;
}

static int rjpeg__jpeg_decode_block_prog_ac(
      rjpeg__jpeg *j,
      short data[64],
      rjpeg__huffman *hac,
      int16_t *fac)
{
   int k;
   if (j->spec_start == 0)
      return rjpeg__err("can't merge dc and ac", "Corrupt JPEG");

   if (j->succ_high == 0)
   {
      int shift = j->succ_low;

      if (j->eob_run)
      {
         --j->eob_run;
         return 1;
      }

      k = j->spec_start;
      do {
         unsigned int zig;
         int c,r,s;
         if (j->code_bits < 16) rjpeg__grow_buffer_unsafe(j);
         c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
         r = fac[c];
         if (r)
         { /* fast-AC path */
            k += (r >> 4) & 15; /* run */
            s = r & 15;         /* combined length */
            j->code_buffer <<= s;
            j->code_bits -= s;
            zig = rjpeg__jpeg_dezigzag[k++];
            data[zig] = (short) ((r >> 8) << shift);
         }
         else
         {
            int rs = rjpeg__jpeg_huff_decode(j, hac);
            if (rs < 0) return rjpeg__err("bad huffman code","Corrupt JPEG");
            s = rs & 15;
            r = rs >> 4;
            if (s == 0)
            {
               if (r < 15)
               {
                  j->eob_run = (1 << r);
                  if (r)
                     j->eob_run += rjpeg__jpeg_get_bits(j, r);
                  --j->eob_run;
                  break;
               }
               k += 16;
            } else {
               k += r;
               zig = rjpeg__jpeg_dezigzag[k++];
               data[zig] = (short) (rjpeg__extend_receive(j,s) << shift);
            }
         }
      } while (k <= j->spec_end);
   } else {
      /* refinement scan for these AC coefficients */

      short bit = (short) (1 << j->succ_low);

      if (j->eob_run)
      {
         --j->eob_run;
         for (k = j->spec_start; k <= j->spec_end; ++k)
         {
            short *p = &data[rjpeg__jpeg_dezigzag[k]];
            if (*p != 0)
               if (rjpeg__jpeg_get_bit(j))
                  if ((*p & bit)==0)
                  {
                     if (*p > 0)
                        *p += bit;
                     else
                        *p -= bit;
                  }
         }
      } else {
         k = j->spec_start;
         do {
            int r,s;
            int rs = rjpeg__jpeg_huff_decode(j, hac);
            if (rs < 0) return rjpeg__err("bad huffman code","Corrupt JPEG");
            s = rs & 15;
            r = rs >> 4;
            if (s == 0)
            {
               if (r < 15)
               {
                  j->eob_run = (1 << r) - 1;
                  if (r)
                     j->eob_run += rjpeg__jpeg_get_bits(j, r);
                  r = 64; /* force end of block */
               } else {
                  /* r=15 s=0 should write 16 0s, so we just do
                   * a run of 15 0s and then write s (which is 0),
                   * so we don't have to do anything special here */
               }
            } else {
               if (s != 1) return rjpeg__err("bad huffman code", "Corrupt JPEG");
               /* sign bit */
               if (rjpeg__jpeg_get_bit(j))
                  s = bit;
               else
                  s = -bit;
            }

            /* advance by r */
            while (k <= j->spec_end)
            {
               short *p = &data[rjpeg__jpeg_dezigzag[k++]];
               if (*p != 0)
               {
                  if (rjpeg__jpeg_get_bit(j))
                     if ((*p & bit)==0)
                     {
                        if (*p > 0)
                           *p += bit;
                        else
                           *p -= bit;
                     }
               }
               else
               {
                  if (r == 0)
                  {
                     *p = (short) s;
                     break;
                  }
                  --r;
               }
            }
         } while (k <= j->spec_end);
      }
   }
   return 1;
}

/* take a -128..127 value and rjpeg__clamp it and convert to 0..255 */
static INLINE uint8_t rjpeg__clamp(int x)
{
   /* trick to use a single test to catch both cases */
   if ((unsigned int) x > 255)
      return 255;
   return (uint8_t) x;
}


/* derived from jidctint -- DCT_ISLOW */
#define RJPEG__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \
   int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \
   p2 = s2;                                    \
   p3 = s6;                                    \
   p1 = (p2+p3) * rjpeg__f2f(0.5411961f);       \
   t2 = p1 + p3*rjpeg__f2f(-1.847759065f);      \
   t3 = p1 + p2*rjpeg__f2f( 0.765366865f);      \
   p2 = s0;                                    \
   p3 = s4;                                    \
   t0 = rjpeg__fsh(p2+p3);                      \
   t1 = rjpeg__fsh(p2-p3);                      \
   x0 = t0+t3;                                 \
   x3 = t0-t3;                                 \
   x1 = t1+t2;                                 \
   x2 = t1-t2;                                 \
   t0 = s7;                                    \
   t1 = s5;                                    \
   t2 = s3;                                    \
   t3 = s1;                                    \
   p3 = t0+t2;                                 \
   p4 = t1+t3;                                 \
   p1 = t0+t3;                                 \
   p2 = t1+t2;                                 \
   p5 = (p3+p4)*rjpeg__f2f( 1.175875602f);      \
   t0 = t0*rjpeg__f2f( 0.298631336f);           \
   t1 = t1*rjpeg__f2f( 2.053119869f);           \
   t2 = t2*rjpeg__f2f( 3.072711026f);           \
   t3 = t3*rjpeg__f2f( 1.501321110f);           \
   p1 = p5 + p1*rjpeg__f2f(-0.899976223f);      \
   p2 = p5 + p2*rjpeg__f2f(-2.562915447f);      \
   p3 = p3*rjpeg__f2f(-1.961570560f);           \
   p4 = p4*rjpeg__f2f(-0.390180644f);           \
   t3 += p1+p4;                                \
   t2 += p2+p3;                                \
   t1 += p2+p4;                                \
   t0 += p1+p3;

static void rjpeg__idct_block(uint8_t *out, int out_stride, short data[64])
{
   int i,val[64],*v=val;
   uint8_t   *o = NULL;
   int16_t   *d = data;

   /* columns */
   for (i=0; i < 8; ++i,++d, ++v)
   {
      /* if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing */
      if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0
           && d[40]==0 && d[48]==0 && d[56]==0)
      {
         /*    no shortcut                 0     seconds
          *    (1|2|3|4|5|6|7)==0          0     seconds
          *    all separate               -0.047 seconds
          *    1 && 2|3 && 4|5 && 6|7:    -0.047 seconds */
         int dcterm = d[0] << 2;
         v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;
      }
      else
      {
         RJPEG__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56])
         /* constants scaled things up by 1<<12; let's bring them back
          * down, but keep 2 extra bits of precision */
         x0 += 512; x1 += 512; x2 += 512; x3 += 512;
         v[ 0] = (x0+t3) >> 10;
         v[56] = (x0-t3) >> 10;
         v[ 8] = (x1+t2) >> 10;
         v[48] = (x1-t2) >> 10;
         v[16] = (x2+t1) >> 10;
         v[40] = (x2-t1) >> 10;
         v[24] = (x3+t0) >> 10;
         v[32] = (x3-t0) >> 10;
      }
   }

   for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride)
   {
      /* no fast case since the first 1D IDCT spread components out */
      RJPEG__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])
         /* constants scaled things up by 1<<12, plus we had 1<<2 from first
          * loop, plus horizontal and vertical each scale by sqrt(8) so together
          * we've got an extra 1<<3, so 1<<17 total we need to remove.
          * so we want to round that, which means adding 0.5 * 1<<17,
          * aka 65536. Also, we'll end up with -128 to 127 that we want
          * to encode as 0..255 by adding 128, so we'll add that before the shift */
         x0 += 65536 + (128<<17);
      x1 += 65536 + (128<<17);
      x2 += 65536 + (128<<17);
      x3 += 65536 + (128<<17);
      /* tried computing the shifts into temps, or'ing the temps to see
       * if any were out of range, but that was slower */
      o[0] = rjpeg__clamp((x0+t3) >> 17);
      o[7] = rjpeg__clamp((x0-t3) >> 17);
      o[1] = rjpeg__clamp((x1+t2) >> 17);
      o[6] = rjpeg__clamp((x1-t2) >> 17);
      o[2] = rjpeg__clamp((x2+t1) >> 17);
      o[5] = rjpeg__clamp((x2-t1) >> 17);
      o[3] = rjpeg__clamp((x3+t0) >> 17);
      o[4] = rjpeg__clamp((x3-t0) >> 17);
   }
}

#if defined(__SSE2__)
/* sse2 integer IDCT. not the fastest possible implementation but it
 * produces bit-identical results to the generic C version so it's
 * fully "transparent".
 */
static void rjpeg__idct_simd(uint8_t *out, int out_stride, short data[64])
{
   /* This is constructed to match our regular (generic) integer IDCT exactly. */
   __m128i row0, row1, row2, row3, row4, row5, row6, row7;
   __m128i tmp;

   /* dot product constant: even elems=x, odd elems=y */
   #define dct_const(x,y)  _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y))

   /* out(0) = c0[even]*x + c0[odd]*y   (c0, x, y 16-bit, out 32-bit)
    * out(1) = c1[even]*x + c1[odd]*y
    */
   #define dct_rot(out0,out1, x,y,c0,c1) \
      __m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \
      __m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \
      __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \
      __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \
      __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \
      __m128i out1##_h = _mm_madd_epi16(c0##hi, c1)

   /* out = in << 12  (in 16-bit, out 32-bit) */
   #define dct_widen(out, in) \
      __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \
      __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4)

   /* wide add */
   #define dct_wadd(out, a, b) \
      __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \
      __m128i out##_h = _mm_add_epi32(a##_h, b##_h)

   /* wide sub */
   #define dct_wsub(out, a, b) \
      __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \
      __m128i out##_h = _mm_sub_epi32(a##_h, b##_h)

   /* butterfly a/b, add bias, then shift by "s" and pack */
   #define dct_bfly32o(out0, out1, a,b,bias,s) \
      { \
         __m128i abiased_l = _mm_add_epi32(a##_l, bias); \
         __m128i abiased_h = _mm_add_epi32(a##_h, bias); \
         dct_wadd(sum, abiased, b); \
         dct_wsub(dif, abiased, b); \
         out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \
         out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \
      }

   /* 8-bit interleave step (for transposes) */
   #define dct_interleave8(a, b) \
      tmp = a; \
      a = _mm_unpacklo_epi8(a, b); \
      b = _mm_unpackhi_epi8(tmp, b)

   /* 16-bit interleave step (for transposes) */
   #define dct_interleave16(a, b) \
      tmp = a; \
      a = _mm_unpacklo_epi16(a, b); \
      b = _mm_unpackhi_epi16(tmp, b)

   #define dct_pass(bias,shift) \
      { \
         /* even part */ \
         dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \
         __m128i sum04 = _mm_add_epi16(row0, row4); \
         __m128i dif04 = _mm_sub_epi16(row0, row4); \
         dct_widen(t0e, sum04); \
         dct_widen(t1e, dif04); \
         dct_wadd(x0, t0e, t3e); \
         dct_wsub(x3, t0e, t3e); \
         dct_wadd(x1, t1e, t2e); \
         dct_wsub(x2, t1e, t2e); \
         /* odd part */ \
         dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \
         dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \
         __m128i sum17 = _mm_add_epi16(row1, row7); \
         __m128i sum35 = _mm_add_epi16(row3, row5); \
         dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \
         dct_wadd(x4, y0o, y4o); \
         dct_wadd(x5, y1o, y5o); \
         dct_wadd(x6, y2o, y5o); \
         dct_wadd(x7, y3o, y4o); \
         dct_bfly32o(row0,row7, x0,x7,bias,shift); \
         dct_bfly32o(row1,row6, x1,x6,bias,shift); \
         dct_bfly32o(row2,row5, x2,x5,bias,shift); \
         dct_bfly32o(row3,row4, x3,x4,bias,shift); \
      }

   __m128i rot0_0 = dct_const(rjpeg__f2f(0.5411961f), rjpeg__f2f(0.5411961f) + rjpeg__f2f(-1.847759065f));
   __m128i rot0_1 = dct_const(rjpeg__f2f(0.5411961f) + rjpeg__f2f( 0.765366865f), rjpeg__f2f(0.5411961f));
   __m128i rot1_0 = dct_const(rjpeg__f2f(1.175875602f) + rjpeg__f2f(-0.899976223f), rjpeg__f2f(1.175875602f));
   __m128i rot1_1 = dct_const(rjpeg__f2f(1.175875602f), rjpeg__f2f(1.175875602f) + rjpeg__f2f(-2.562915447f));
   __m128i rot2_0 = dct_const(rjpeg__f2f(-1.961570560f) + rjpeg__f2f( 0.298631336f), rjpeg__f2f(-1.961570560f));
   __m128i rot2_1 = dct_const(rjpeg__f2f(-1.961570560f), rjpeg__f2f(-1.961570560f) + rjpeg__f2f( 3.072711026f));
   __m128i rot3_0 = dct_const(rjpeg__f2f(-0.390180644f) + rjpeg__f2f( 2.053119869f), rjpeg__f2f(-0.390180644f));
   __m128i rot3_1 = dct_const(rjpeg__f2f(-0.390180644f), rjpeg__f2f(-0.390180644f) + rjpeg__f2f( 1.501321110f));

   /* rounding biases in column/row passes, see rjpeg__idct_block for explanation. */
   __m128i bias_0 = _mm_set1_epi32(512);
   __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17));

   /* load */
   row0 = _mm_load_si128((const __m128i *) (data + 0*8));
   row1 = _mm_load_si128((const __m128i *) (data + 1*8));
   row2 = _mm_load_si128((const __m128i *) (data + 2*8));
   row3 = _mm_load_si128((const __m128i *) (data + 3*8));
   row4 = _mm_load_si128((const __m128i *) (data + 4*8));
   row5 = _mm_load_si128((const __m128i *) (data + 5*8));
   row6 = _mm_load_si128((const __m128i *) (data + 6*8));
   row7 = _mm_load_si128((const __m128i *) (data + 7*8));

   /* column pass */
   dct_pass(bias_0, 10);

   {
      /* 16bit 8x8 transpose pass 1 */
      dct_interleave16(row0, row4);
      dct_interleave16(row1, row5);
      dct_interleave16(row2, row6);
      dct_interleave16(row3, row7);

      /* transpose pass 2 */
      dct_interleave16(row0, row2);
      dct_interleave16(row1, row3);
      dct_interleave16(row4, row6);
      dct_interleave16(row5, row7);

      /* transpose pass 3 */
      dct_interleave16(row0, row1);
      dct_interleave16(row2, row3);
      dct_interleave16(row4, row5);
      dct_interleave16(row6, row7);
   }

   /* row pass */
   dct_pass(bias_1, 17);

   {
      /* pack */
      __m128i p0 = _mm_packus_epi16(row0, row1); /* a0a1a2a3...a7b0b1b2b3...b7 */
      __m128i p1 = _mm_packus_epi16(row2, row3);
      __m128i p2 = _mm_packus_epi16(row4, row5);
      __m128i p3 = _mm_packus_epi16(row6, row7);

      /* 8bit 8x8 transpose pass 1 */
      dct_interleave8(p0, p2); /* a0e0a1e1... */
      dct_interleave8(p1, p3); /* c0g0c1g1... */

      /* transpose pass 2 */
      dct_interleave8(p0, p1); /* a0c0e0g0... */
      dct_interleave8(p2, p3); /* b0d0f0h0... */

      /* transpose pass 3 */
      dct_interleave8(p0, p2); /* a0b0c0d0... */
      dct_interleave8(p1, p3); /* a4b4c4d4... */

      /* store */
      _mm_storel_epi64((__m128i *) out, p0); out += out_stride;
      _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride;
      _mm_storel_epi64((__m128i *) out, p2); out += out_stride;
      _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride;
      _mm_storel_epi64((__m128i *) out, p1); out += out_stride;
      _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride;
      _mm_storel_epi64((__m128i *) out, p3); out += out_stride;
      _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e));
   }

#undef dct_const
#undef dct_rot
#undef dct_widen
#undef dct_wadd
#undef dct_wsub
#undef dct_bfly32o
#undef dct_interleave8
#undef dct_interleave16
#undef dct_pass
}

#endif

#ifdef RJPEG_NEON

/* NEON integer IDCT. should produce bit-identical
 * results to the generic C version. */
static void rjpeg__idct_simd(uint8_t *out, int out_stride, short data[64])
{
   int16x8_t row0, row1, row2, row3, row4, row5, row6, row7;

   int16x4_t rot0_0 = vdup_n_s16(rjpeg__f2f(0.5411961f));
   int16x4_t rot0_1 = vdup_n_s16(rjpeg__f2f(-1.847759065f));
   int16x4_t rot0_2 = vdup_n_s16(rjpeg__f2f( 0.765366865f));
   int16x4_t rot1_0 = vdup_n_s16(rjpeg__f2f( 1.175875602f));
   int16x4_t rot1_1 = vdup_n_s16(rjpeg__f2f(-0.899976223f));
   int16x4_t rot1_2 = vdup_n_s16(rjpeg__f2f(-2.562915447f));
   int16x4_t rot2_0 = vdup_n_s16(rjpeg__f2f(-1.961570560f));
   int16x4_t rot2_1 = vdup_n_s16(rjpeg__f2f(-0.390180644f));
   int16x4_t rot3_0 = vdup_n_s16(rjpeg__f2f( 0.298631336f));
   int16x4_t rot3_1 = vdup_n_s16(rjpeg__f2f( 2.053119869f));
   int16x4_t rot3_2 = vdup_n_s16(rjpeg__f2f( 3.072711026f));
   int16x4_t rot3_3 = vdup_n_s16(rjpeg__f2f( 1.501321110f));

#define dct_long_mul(out, inq, coeff) \
   int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \
   int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff)

#define dct_long_mac(out, acc, inq, coeff) \
   int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \
   int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff)

#define dct_widen(out, inq) \
   int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \
   int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12)

/* wide add */
#define dct_wadd(out, a, b) \
   int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \
   int32x4_t out##_h = vaddq_s32(a##_h, b##_h)

/* wide sub */
#define dct_wsub(out, a, b) \
   int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \
   int32x4_t out##_h = vsubq_s32(a##_h, b##_h)

/* butterfly a/b, then shift using "shiftop" by "s" and pack */
#define dct_bfly32o(out0,out1, a,b,shiftop,s) \
   { \
      dct_wadd(sum, a, b); \
      dct_wsub(dif, a, b); \
      out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \
      out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \
   }

#define dct_pass(shiftop, shift) \
   { \
      /* even part */ \
      int16x8_t sum26 = vaddq_s16(row2, row6); \
      dct_long_mul(p1e, sum26, rot0_0); \
      dct_long_mac(t2e, p1e, row6, rot0_1); \
      dct_long_mac(t3e, p1e, row2, rot0_2); \
      int16x8_t sum04 = vaddq_s16(row0, row4); \
      int16x8_t dif04 = vsubq_s16(row0, row4); \
      dct_widen(t0e, sum04); \
      dct_widen(t1e, dif04); \
      dct_wadd(x0, t0e, t3e); \
      dct_wsub(x3, t0e, t3e); \
      dct_wadd(x1, t1e, t2e); \
      dct_wsub(x2, t1e, t2e); \
      /* odd part */ \
      int16x8_t sum15 = vaddq_s16(row1, row5); \
      int16x8_t sum17 = vaddq_s16(row1, row7); \
      int16x8_t sum35 = vaddq_s16(row3, row5); \
      int16x8_t sum37 = vaddq_s16(row3, row7); \
      int16x8_t sumodd = vaddq_s16(sum17, sum35); \
      dct_long_mul(p5o, sumodd, rot1_0); \
      dct_long_mac(p1o, p5o, sum17, rot1_1); \
      dct_long_mac(p2o, p5o, sum35, rot1_2); \
      dct_long_mul(p3o, sum37, rot2_0); \
      dct_long_mul(p4o, sum15, rot2_1); \
      dct_wadd(sump13o, p1o, p3o); \
      dct_wadd(sump24o, p2o, p4o); \
      dct_wadd(sump23o, p2o, p3o); \
      dct_wadd(sump14o, p1o, p4o); \
      dct_long_mac(x4, sump13o, row7, rot3_0); \
      dct_long_mac(x5, sump24o, row5, rot3_1); \
      dct_long_mac(x6, sump23o, row3, rot3_2); \
      dct_long_mac(x7, sump14o, row1, rot3_3); \
      dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \
      dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \
      dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \
      dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \
   }

   /* load */
   row0 = vld1q_s16(data + 0*8);
   row1 = vld1q_s16(data + 1*8);
   row2 = vld1q_s16(data + 2*8);
   row3 = vld1q_s16(data + 3*8);
   row4 = vld1q_s16(data + 4*8);
   row5 = vld1q_s16(data + 5*8);
   row6 = vld1q_s16(data + 6*8);
   row7 = vld1q_s16(data + 7*8);

   /* add DC bias */
   row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0));

   /* column pass */
   dct_pass(vrshrn_n_s32, 10);

   /* 16bit 8x8 transpose */
   {
/* these three map to a single VTRN.16, VTRN.32, and VSWP, respectively.
 * whether compilers actually get this is another story, sadly. */
#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; }
#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); }
#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); }

      /* pass 1 */
      dct_trn16(row0, row1); /* a0b0a2b2a4b4a6b6 */
      dct_trn16(row2, row3);
      dct_trn16(row4, row5);
      dct_trn16(row6, row7);

      /* pass 2 */
      dct_trn32(row0, row2); /* a0b0c0d0a4b4c4d4 */
      dct_trn32(row1, row3);
      dct_trn32(row4, row6);
      dct_trn32(row5, row7);

      /* pass 3 */
      dct_trn64(row0, row4); /* a0b0c0d0e0f0g0h0 */
      dct_trn64(row1, row5);
      dct_trn64(row2, row6);
      dct_trn64(row3, row7);

#undef dct_trn16
#undef dct_trn32
#undef dct_trn64
   }

   /* row pass
    * vrshrn_n_s32 only supports shifts up to 16, we need
    * 17. so do a non-rounding shift of 16 first then follow
    * up with a rounding shift by 1. */
   dct_pass(vshrn_n_s32, 16);

   {
      /* pack and round */
      uint8x8_t p0 = vqrshrun_n_s16(row0, 1);
      uint8x8_t p1 = vqrshrun_n_s16(row1, 1);
      uint8x8_t p2 = vqrshrun_n_s16(row2, 1);
      uint8x8_t p3 = vqrshrun_n_s16(row3, 1);
      uint8x8_t p4 = vqrshrun_n_s16(row4, 1);
      uint8x8_t p5 = vqrshrun_n_s16(row5, 1);
      uint8x8_t p6 = vqrshrun_n_s16(row6, 1);
      uint8x8_t p7 = vqrshrun_n_s16(row7, 1);

      /* again, these can translate into one instruction, but often don't. */
#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; }
#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); }
#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); }

      /* sadly can't use interleaved stores here since we only write
       * 8 bytes to each scan line! */

      /* 8x8 8-bit transpose pass 1 */
      dct_trn8_8(p0, p1);
      dct_trn8_8(p2, p3);
      dct_trn8_8(p4, p5);
      dct_trn8_8(p6, p7);

      /* pass 2 */
      dct_trn8_16(p0, p2);
      dct_trn8_16(p1, p3);
      dct_trn8_16(p4, p6);
      dct_trn8_16(p5, p7);

      /* pass 3 */
      dct_trn8_32(p0, p4);
      dct_trn8_32(p1, p5);
      dct_trn8_32(p2, p6);
      dct_trn8_32(p3, p7);

      /* store */
      vst1_u8(out, p0); out += out_stride;
      vst1_u8(out, p1); out += out_stride;
      vst1_u8(out, p2); out += out_stride;
      vst1_u8(out, p3); out += out_stride;
      vst1_u8(out, p4); out += out_stride;
      vst1_u8(out, p5); out += out_stride;
      vst1_u8(out, p6); out += out_stride;
      vst1_u8(out, p7);

#undef dct_trn8_8
#undef dct_trn8_16
#undef dct_trn8_32
   }

#undef dct_long_mul
#undef dct_long_mac
#undef dct_widen
#undef dct_wadd
#undef dct_wsub
#undef dct_bfly32o
#undef dct_pass
}

#endif /* RJPEG_NEON */

static uint8_t rjpeg__get_marker(rjpeg__jpeg *j)
{
   uint8_t x;
   if (j->marker != RJPEG__MARKER_none)
   {
      x = j->marker;
      j->marker = RJPEG__MARKER_none;
      return x;
   }

   x = rjpeg__get8(j->s);
   if (x != 0xff)
      return RJPEG__MARKER_none;
   while (x == 0xff)
      x = rjpeg__get8(j->s);
   return x;
}


/* after a restart interval, rjpeg__jpeg_reset the entropy decoder and
 * the dc prediction
 */
static void rjpeg__jpeg_reset(rjpeg__jpeg *j)
{
   j->code_bits = 0;
   j->code_buffer = 0;
   j->nomore = 0;
   j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0;
   j->marker = RJPEG__MARKER_none;
   j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff;
   j->eob_run = 0;
   /* no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
    * since we don't even allow 1<<30 pixels */
}

static int rjpeg__parse_entropy_coded_data(rjpeg__jpeg *z)
{
   rjpeg__jpeg_reset(z);
   if (!z->progressive)
   {
      if (z->scan_n == 1)
      {
         int i,j;
         RJPEG_SIMD_ALIGN(short, data[64]);
         int n = z->order[0];
         /* non-interleaved data, we just need to process one block at a time,
          * in trivial scanline order
          * number of blocks to do just depends on how many actual "pixels" this
          * component has, independent of interleaved MCU blocking and such */
         int w = (z->img_comp[n].x+7) >> 3;
         int h = (z->img_comp[n].y+7) >> 3;

         for (j=0; j < h; ++j)
         {
            for (i=0; i < w; ++i)
            {
               int ha = z->img_comp[n].ha;
               if (!rjpeg__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
               z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
               /* every data block is an MCU, so countdown the restart interval */
               if (--z->todo <= 0)
               {
                  if (z->code_bits < 24) rjpeg__grow_buffer_unsafe(z);
                  /* if it's NOT a restart, then just bail, 
                   * so we get corrupt data rather than no data */
                  if (!RJPEG__RESTART(z->marker)) return 1;
                  rjpeg__jpeg_reset(z);
               }
            }
         }
      }
      else
      {
         /* interleaved */
         int i,j,k,x,y;
         RJPEG_SIMD_ALIGN(short, data[64]);
         for (j=0; j < z->img_mcu_y; ++j)
         {
            for (i=0; i < z->img_mcu_x; ++i)
            {
               /* scan an interleaved mcu... 
                * process scan_n components in order */
               for (k=0; k < z->scan_n; ++k)
               {
                  int n = z->order[k];
                  /* scan out an mcu's worth of this component; 
                   * that's just determined by the basic H 
                   * and V specified for the component */
                  for (y=0; y < z->img_comp[n].v; ++y)
                  {
                     for (x=0; x < z->img_comp[n].h; ++x)
                     {
                        int x2 = (i*z->img_comp[n].h + x)*8;
                        int y2 = (j*z->img_comp[n].v + y)*8;
                        int ha = z->img_comp[n].ha;
                        if (!rjpeg__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq]))
                           return 0;
                        z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data);
                     }
                  }
               }
               /* after all interleaved components, that's an interleaved MCU,
                * so now count down the restart interval */
               if (--z->todo <= 0)
               {
                  if (z->code_bits < 24) rjpeg__grow_buffer_unsafe(z);
                  if (!RJPEG__RESTART(z->marker)) return 1;
                  rjpeg__jpeg_reset(z);
               }
            }
         }
      }
      return 1;
   }
   else
   {
      if (z->scan_n == 1)
      {
         int i,j;
         int n = z->order[0];
         int w = (z->img_comp[n].x+7) >> 3;
         int h = (z->img_comp[n].y+7) >> 3;

         /* non-interleaved data, we just need to process one block at a time,
          * in trivial scanline order
          * number of blocks to do just depends on how many actual "pixels" this
          * component has, independent of interleaved MCU blocking and such */

         for (j=0; j < h; ++j)
         {
            for (i=0; i < w; ++i)
            {
               short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
               if (z->spec_start == 0)
               {
                  if (!rjpeg__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
                     return 0;
               } else {
                  int ha = z->img_comp[n].ha;
                  if (!rjpeg__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha]))
                     return 0;
               }

               /* every data block is an MCU, so countdown the restart interval */
               if (--z->todo <= 0)
               {
                  if (z->code_bits < 24) rjpeg__grow_buffer_unsafe(z);
                  if (!RJPEG__RESTART(z->marker)) return 1;
                  rjpeg__jpeg_reset(z);
               }
            }
         }
      }
      else
      {
         /* interleaved */
         int i,j,k,x,y;

         for (j=0; j < z->img_mcu_y; ++j)
         {
            for (i=0; i < z->img_mcu_x; ++i)
            {
               /* scan an interleaved MCU... process scan_n components in order */
               for (k=0; k < z->scan_n; ++k)
               {
                  int n = z->order[k];
                  /* scan out an MCU's worth of this component; that's just determined
                   * by the basic H and V specified for the component */
                  for (y=0; y < z->img_comp[n].v; ++y)
                  {
                     for (x=0; x < z->img_comp[n].h; ++x)
                     {
                        int x2 = (i*z->img_comp[n].h + x);
                        int y2 = (j*z->img_comp[n].v + y);
                        short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w);
                        if (!rjpeg__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
                           return 0;
                     }
                  }
               }
               /* after all interleaved components, that's an interleaved MCU,
                * so now count down the restart interval */
               if (--z->todo <= 0)
               {
                  if (z->code_bits < 24) rjpeg__grow_buffer_unsafe(z);
                  if (!RJPEG__RESTART(z->marker)) return 1;
                  rjpeg__jpeg_reset(z);
               }
            }
         }
      }
      return 1;
   }
}

static void rjpeg__jpeg_dequantize(short *data, uint8_t *dequant)
{
   int i;
   for (i=0; i < 64; ++i)
      data[i] *= dequant[i];
}

static void rjpeg__jpeg_finish(rjpeg__jpeg *z)
{
   if (z->progressive)
   {
      /* dequantize and IDCT the data */
      int i,j,n;
      for (n=0; n < z->s->img_n; ++n)
      {
         int w = (z->img_comp[n].x+7) >> 3;
         int h = (z->img_comp[n].y+7) >> 3;
         for (j=0; j < h; ++j)
         {
            for (i=0; i < w; ++i)
            {
               short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
               rjpeg__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]);
               z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
            }
         }
      }
   }
}

static int rjpeg__process_marker(rjpeg__jpeg *z, int m)
{
   int L;
   switch (m)
   {
      case RJPEG__MARKER_none: /* no marker found */
         return rjpeg__err("expected marker","Corrupt JPEG");

      case 0xDD: /* DRI - specify restart interval */
         if (rjpeg__get16be(z->s) != 4) return rjpeg__err("bad DRI len","Corrupt JPEG");
         z->restart_interval = rjpeg__get16be(z->s);
         return 1;

      case 0xDB: /* DQT - define quantization table */
         L = rjpeg__get16be(z->s)-2;
         while (L > 0)
         {
            int q = rjpeg__get8(z->s);
            int p = q >> 4;
            int t = q & 15,i;
            if (p != 0)
               return rjpeg__err("bad DQT type","Corrupt JPEG");
            if (t > 3)
               return rjpeg__err("bad DQT table","Corrupt JPEG");
            for (i=0; i < 64; ++i)
               z->dequant[t][rjpeg__jpeg_dezigzag[i]] = rjpeg__get8(z->s);
            L -= 65;
         }
         return L==0;

      case 0xC4: /* DHT - define huffman table */
         L = rjpeg__get16be(z->s)-2;
         while (L > 0)
         {
            int sizes[16],i,n=0;
            uint8_t *v = NULL;
            int q      = rjpeg__get8(z->s);
            int tc     = q >> 4;
            int th     = q & 15;
            if (tc > 1 || th > 3)
               return rjpeg__err("bad DHT header","Corrupt JPEG");

            for (i=0; i < 16; ++i)
            {
               sizes[i] = rjpeg__get8(z->s);
               n += sizes[i];
            }
            L -= 17;

            if (tc == 0)
            {
               if (!rjpeg__build_huffman(z->huff_dc+th, sizes))
                  return 0;
               v = z->huff_dc[th].values;
            }
            else
            {
               if (!rjpeg__build_huffman(z->huff_ac+th, sizes))
                  return 0;
               v = z->huff_ac[th].values;
            }
            for (i=0; i < n; ++i)
               v[i] = rjpeg__get8(z->s);
            if (tc != 0)
               rjpeg__build_fast_ac(z->fast_ac[th], z->huff_ac + th);
            L -= n;
         }
         return L==0;
   }

   /* check for comment block or APP blocks */
   if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE)
   {
      rjpeg__skip(z->s, rjpeg__get16be(z->s)-2);
      return 1;
   }
   return 0;
}

/* after we see SOS */
static int rjpeg__process_scan_header(rjpeg__jpeg *z)
{
   int i;
   int Ls    = rjpeg__get16be(z->s);

   z->scan_n = rjpeg__get8(z->s);

   if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n)
      return rjpeg__err("bad SOS component count","Corrupt JPEG");
   if (Ls != 6+2*z->scan_n)
      return rjpeg__err("bad SOS len","Corrupt JPEG");

   for (i=0; i < z->scan_n; ++i)
   {
      int id = rjpeg__get8(z->s), which;
      int q  = rjpeg__get8(z->s);

      for (which = 0; which < z->s->img_n; ++which)
         if (z->img_comp[which].id == id)
            break;
      if (which == z->s->img_n)
         return 0; /* no match */

      z->img_comp[which].hd = q >> 4;   if (z->img_comp[which].hd > 3)
         return rjpeg__err("bad DC huff","Corrupt JPEG");
      z->img_comp[which].ha = q & 15;   if (z->img_comp[which].ha > 3)
         return rjpeg__err("bad AC huff","Corrupt JPEG");
      z->order[i] = which;
   }

   {
      int aa;
      z->spec_start = rjpeg__get8(z->s);
      z->spec_end   = rjpeg__get8(z->s); /* should be 63, but might be 0 */
      aa = rjpeg__get8(z->s);
      z->succ_high = (aa >> 4);
      z->succ_low  = (aa & 15);
      if (z->progressive)
      {
         if (  z->spec_start > 63 || 
               z->spec_end > 63   || 
               z->spec_start > z->spec_end || 
               z->succ_high > 13           || 
               z->succ_low > 13)
            return rjpeg__err("bad SOS", "Corrupt JPEG");
      }
      else
      {
         if (z->spec_start != 0)
            return rjpeg__err("bad SOS","Corrupt JPEG");
         if (z->succ_high != 0 || z->succ_low != 0)
            return rjpeg__err("bad SOS","Corrupt JPEG");
         z->spec_end = 63;
      }
   }

   return 1;
}

static int rjpeg__process_frame_header(rjpeg__jpeg *z, int scan)
{
   rjpeg__context *s = z->s;
   int Lf,p,i,q, h_max=1,v_max=1,c;
   Lf = rjpeg__get16be(s);
   
   /* JPEG */
   if (Lf < 11)
      return rjpeg__err("bad SOF len","Corrupt JPEG");

   p  = rjpeg__get8(s);

   /* JPEG baseline */
   if (p != 8)
      return rjpeg__err("only 8-bit","JPEG format not supported: 8-bit only");

   s->img_y = rjpeg__get16be(s);

   /* Legal, but we don't handle it--but neither does IJG */
   if (s->img_y == 0)
      return rjpeg__err("no header height", "JPEG format not supported: delayed height");

   s->img_x = rjpeg__get16be(s);
  
   if (s->img_x == 0)
      return rjpeg__err("0 width","Corrupt JPEG"); /* JPEG requires */

   c = rjpeg__get8(s);

   /* JFIF requires */
   if (c != 3 && c != 1)
      return rjpeg__err("bad component count","Corrupt JPEG");

   s->img_n = c;

   for (i=0; i < c; ++i)
   {
      z->img_comp[i].data = NULL;
      z->img_comp[i].linebuf = NULL;
   }

   if (Lf != 8+3*s->img_n)
      return rjpeg__err("bad SOF len","Corrupt JPEG");

   for (i=0; i < s->img_n; ++i)
   {
      z->img_comp[i].id = rjpeg__get8(s);
      if (z->img_comp[i].id != i+1)   /* JFIF requires */
         if (z->img_comp[i].id != i)  /* some version of jpegtran outputs non-JFIF-compliant files! */
            return rjpeg__err("bad component ID","Corrupt JPEG");
      q = rjpeg__get8(s);
      z->img_comp[i].h = (q >> 4);
      if (!z->img_comp[i].h || z->img_comp[i].h > 4)
         return rjpeg__err("bad H","Corrupt JPEG");
      z->img_comp[i].v = q & 15;
      if (!z->img_comp[i].v || z->img_comp[i].v > 4)
         return rjpeg__err("bad V","Corrupt JPEG");
      z->img_comp[i].tq = rjpeg__get8(s);
      if (z->img_comp[i].tq > 3)
         return rjpeg__err("bad TQ","Corrupt JPEG");
   }

   if (scan != RJPEG_SCAN_LOAD) return 1;

   if ((1 << 30) / s->img_x / s->img_n < s->img_y) return rjpeg__err("too large", "Image too large to decode");

   for (i=0; i < s->img_n; ++i)
   {
      if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h;
      if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v;
   }

   /* compute interleaved MCU info */
   z->img_h_max = h_max;
   z->img_v_max = v_max;
   z->img_mcu_w = h_max * 8;
   z->img_mcu_h = v_max * 8;
   z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w;
   z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h;

   for (i=0; i < s->img_n; ++i)
   {
      /* number of effective pixels (e.g. for non-interleaved MCU) */
      z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max;
      z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max;
      /* to simplify generation, we'll allocate enough memory to decode
       * the bogus oversized data from using interleaved MCUs and their
       * big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
       * discard the extra data until colorspace conversion */
      z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8;
      z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8;
      z->img_comp[i].raw_data = malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15);

      if (z->img_comp[i].raw_data == NULL)
      {
         for(--i; i >= 0; --i)
         {
            free(z->img_comp[i].raw_data);
            z->img_comp[i].data = NULL;
         }
         return rjpeg__err("outofmem", "Out of memory");
      }

      /* align blocks for IDCT using MMX/SSE */
      z->img_comp[i].data = (uint8_t*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
      z->img_comp[i].linebuf = NULL;
      if (z->progressive)
      {
         z->img_comp[i].coeff_w = (z->img_comp[i].w2 + 7) >> 3;
         z->img_comp[i].coeff_h = (z->img_comp[i].h2 + 7) >> 3;
         z->img_comp[i].raw_coeff = malloc(z->img_comp[i].coeff_w * z->img_comp[i].coeff_h * 64 * sizeof(short) + 15);
         z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15);
      } else {
         z->img_comp[i].coeff = 0;
         z->img_comp[i].raw_coeff = 0;
      }
   }

   return 1;
}


static int rjpeg__decode_jpeg_header(rjpeg__jpeg *z, int scan)
{
   int m;
   z->marker = RJPEG__MARKER_none; /* initialize cached marker to empty */
   m = rjpeg__get_marker(z);

   if (!rjpeg__SOI(m))
      return rjpeg__err("no SOI","Corrupt JPEG");

   if (scan == RJPEG_SCAN_TYPE)
      return 1;

   m = rjpeg__get_marker(z);
   while (!rjpeg__SOF(m))
   {
      if (!rjpeg__process_marker(z,m))
         return 0;
      m = rjpeg__get_marker(z);
      while (m == RJPEG__MARKER_none)
      {
         /* some files have extra padding after their blocks, so ok, we'll scan */
         if (rjpeg__at_eof(z->s))
            return rjpeg__err("no SOF", "Corrupt JPEG");
         m = rjpeg__get_marker(z);
      }
   }
   z->progressive = rjpeg__SOF_progressive(m);
   if (!rjpeg__process_frame_header(z, scan)) return 0;
   return 1;
}

/* decode image to YCbCr format */
static int rjpeg__decode_jpeg_image(rjpeg__jpeg *j)
{
   int m;
   for (m = 0; m < 4; m++)
   {
      j->img_comp[m].raw_data = NULL;
      j->img_comp[m].raw_coeff = NULL;
   }
   j->restart_interval = 0;
   if (!rjpeg__decode_jpeg_header(j, RJPEG_SCAN_LOAD))
      return 0;
   m = rjpeg__get_marker(j);

   while (!rjpeg__EOI(m))
   {
      if (rjpeg__SOS(m))
      {
         if (!rjpeg__process_scan_header(j))
            return 0;
         if (!rjpeg__parse_entropy_coded_data(j))
            return 0;

         if (j->marker == RJPEG__MARKER_none )
         {
            /* handle 0s at the end of image data from IP Kamera 9060 */
            while (!rjpeg__at_eof(j->s))
            {
               int x = rjpeg__get8(j->s);
               if (x == 255)
               {
                  j->marker = rjpeg__get8(j->s);
                  break;
               }
               else if (x != 0)
                  return rjpeg__err("junk before marker", "Corrupt JPEG");
            }
            /* if we reach eof without hitting a marker, rjpeg__get_marker() below will fail and we'll eventually return 0 */
         }
      }
      else
      {
         if (!rjpeg__process_marker(j, m))
            return 0;
      }
      m = rjpeg__get_marker(j);
   }

   if (j->progressive)
      rjpeg__jpeg_finish(j);
   return 1;
}

/* static jfif-centered resampling (across block boundaries) */

static uint8_t *rjpeg_resample_row_1(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
   (void)out;
   (void)in_far;
   (void)w;
   (void)hs;
   return in_near;
}

static uint8_t* rjpeg__resample_row_v_2(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
   /* need to generate two samples vertically for every one in input */
   int i;
   (void)hs;
   for (i=0; i < w; ++i)
      out[i] = rjpeg__div4(3*in_near[i] + in_far[i] + 2);
   return out;
}

static uint8_t*  rjpeg__resample_row_h_2(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
   /* need to generate two samples horizontally for every one in input */
   int i;
   uint8_t *input = in_near;

   if (w == 1)
   {
      /* if only one sample, can't do any interpolation */
      out[0] = out[1] = input[0];
      return out;
   }

   out[0] = input[0];
   out[1] = rjpeg__div4(input[0]*3 + input[1] + 2);

   for (i=1; i < w-1; ++i)
   {
      int n = 3*input[i]+2;
      out[i*2+0] = rjpeg__div4(n+input[i-1]);
      out[i*2+1] = rjpeg__div4(n+input[i+1]);
   }
   out[i*2+0] = rjpeg__div4(input[w-2]*3 + input[w-1] + 2);
   out[i*2+1] = input[w-1];

   (void)in_far;
   (void)hs;

   return out;
}


static uint8_t *rjpeg__resample_row_hv_2(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
   /* need to generate 2x2 samples for every one in input */
   int i,t0,t1;
   if (w == 1)
   {
      out[0] = out[1] = rjpeg__div4(3*in_near[0] + in_far[0] + 2);
      return out;
   }

   t1     = 3*in_near[0] + in_far[0];
   out[0] = rjpeg__div4(t1+2);
   for (i=1; i < w; ++i)
   {
      t0 = t1;
      t1 = 3*in_near[i]+in_far[i];
      out[i*2-1] = rjpeg__div16(3*t0 + t1 + 8);
      out[i*2  ] = rjpeg__div16(3*t1 + t0 + 8);
   }
   out[w*2-1] = rjpeg__div4(t1+2);

   (void)hs;

   return out;
}

#if defined(__SSE2__) || defined(RJPEG_NEON)
static uint8_t *rjpeg__resample_row_hv_2_simd(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
   /* need to generate 2x2 samples for every one in input */
   int i=0,t0,t1;

   if (w == 1)
   {
      out[0] = out[1] = rjpeg__div4(3*in_near[0] + in_far[0] + 2);
      return out;
   }

   t1 = 3*in_near[0] + in_far[0];
   /* process groups of 8 pixels for as long as we can.
    * note we can't handle the last pixel in a row in this loop
    * because we need to handle the filter boundary conditions.
    */
   for (; i < ((w-1) & ~7); i += 8)
   {
#if defined(__SSE2__)
      /* load and perform the vertical filtering pass
       * this uses 3*x + y = 4*x + (y - x) */
      __m128i zero  = _mm_setzero_si128();
      __m128i farb  = _mm_loadl_epi64((__m128i *) (in_far + i));
      __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i));
      __m128i farw  = _mm_unpacklo_epi8(farb, zero);
      __m128i nearw = _mm_unpacklo_epi8(nearb, zero);
      __m128i diff  = _mm_sub_epi16(farw, nearw);
      __m128i nears = _mm_slli_epi16(nearw, 2);
      __m128i curr  = _mm_add_epi16(nears, diff); /* current row */

      /* horizontal filter works the same based on shifted vers of current
       * row. "prev" is current row shifted right by 1 pixel; we need to
       * insert the previous pixel value (from t1).
       * "next" is current row shifted left by 1 pixel, with first pixel
       * of next block of 8 pixels added in.
       */
      __m128i prv0 = _mm_slli_si128(curr, 2);
      __m128i nxt0 = _mm_srli_si128(curr, 2);
      __m128i prev = _mm_insert_epi16(prv0, t1, 0);
      __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7);

      /* horizontal filter, polyphase implementation since it's convenient:
       * even pixels = 3*cur + prev = cur*4 + (prev - cur)
       * odd  pixels = 3*cur + next = cur*4 + (next - cur)
       * note the shared term. */
      __m128i bias = _mm_set1_epi16(8);
      __m128i curs = _mm_slli_epi16(curr, 2);
      __m128i prvd = _mm_sub_epi16(prev, curr);
      __m128i nxtd = _mm_sub_epi16(next, curr);
      __m128i curb = _mm_add_epi16(curs, bias);
      __m128i even = _mm_add_epi16(prvd, curb);
      __m128i odd  = _mm_add_epi16(nxtd, curb);

      /* interleave even and odd pixels, then undo scaling. */
      __m128i int0 = _mm_unpacklo_epi16(even, odd);
      __m128i int1 = _mm_unpackhi_epi16(even, odd);
      __m128i de0  = _mm_srli_epi16(int0, 4);
      __m128i de1  = _mm_srli_epi16(int1, 4);

      /* pack and write output */
      __m128i outv = _mm_packus_epi16(de0, de1);
      _mm_storeu_si128((__m128i *) (out + i*2), outv);
#elif defined(RJPEG_NEON)
      /* load and perform the vertical filtering pass
       * this uses 3*x + y = 4*x + (y - x) */
      uint8x8_t farb  = vld1_u8(in_far + i);
      uint8x8_t nearb = vld1_u8(in_near + i);
      int16x8_t diff  = vreinterpretq_s16_u16(vsubl_u8(farb, nearb));
      int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2));
      int16x8_t curr  = vaddq_s16(nears, diff); /* current row */

      /* horizontal filter works the same based on shifted vers of current
       * row. "prev" is current row shifted right by 1 pixel; we need to
       * insert the previous pixel value (from t1).
       * "next" is current row shifted left by 1 pixel, with first pixel
       * of next block of 8 pixels added in. */
      int16x8_t prv0 = vextq_s16(curr, curr, 7);
      int16x8_t nxt0 = vextq_s16(curr, curr, 1);
      int16x8_t prev = vsetq_lane_s16(t1, prv0, 0);
      int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7);

      /* horizontal filter, polyphase implementation since it's convenient:
       * even pixels = 3*cur + prev = cur*4 + (prev - cur)
       * odd  pixels = 3*cur + next = cur*4 + (next - cur)
       * note the shared term.
       */
      int16x8_t curs = vshlq_n_s16(curr, 2);
      int16x8_t prvd = vsubq_s16(prev, curr);
      int16x8_t nxtd = vsubq_s16(next, curr);
      int16x8_t even = vaddq_s16(curs, prvd);
      int16x8_t odd  = vaddq_s16(curs, nxtd);

      /* undo scaling and round, then store with even/odd phases interleaved */
      uint8x8x2_t o;
      o.val[0] = vqrshrun_n_s16(even, 4);
      o.val[1] = vqrshrun_n_s16(odd,  4);
      vst2_u8(out + i*2, o);
#endif

      /* "previous" value for next iteration */
      t1 = 3*in_near[i+7] + in_far[i+7];
   }

   t0       = t1;
   t1       = 3*in_near[i] + in_far[i];
   out[i*2] = rjpeg__div16(3*t1 + t0 + 8);

   for (++i; i < w; ++i)
   {
      t0         = t1;
      t1         = 3*in_near[i]+in_far[i];
      out[i*2-1] = rjpeg__div16(3*t0 + t1 + 8);
      out[i*2  ] = rjpeg__div16(3*t1 + t0 + 8);
   }
   out[w*2-1] = rjpeg__div4(t1+2);

   (void)hs;

   return out;
}
#endif

static uint8_t *rjpeg__resample_row_generic(uint8_t *out, uint8_t *in_near, uint8_t *in_far, int w, int hs)
{
   /* resample with nearest-neighbor */
   int i,j;
   (void)in_far;

   for (i=0; i < w; ++i)
      for (j=0; j < hs; ++j)
         out[i*hs+j] = in_near[i];
   return out;
}

/* this is a reduced-precision calculation of YCbCr-to-RGB introduced
 * to make sure the code produces the same results in both SIMD and scalar */
#ifndef float2fixed
#define float2fixed(x)  (((int) ((x) * 4096.0f + 0.5f)) << 8)
#endif

static void rjpeg__YCbCr_to_RGB_row(uint8_t *out, const uint8_t *y, const uint8_t *pcb, const uint8_t *pcr, int count, int step)
{
   int i;
   for (i=0; i < count; ++i)
   {
      int y_fixed = (y[i] << 20) + (1<<19); /* rounding */
      int cr = pcr[i] - 128;
      int cb = pcb[i] - 128;
      int r = y_fixed +  cr* float2fixed(1.40200f);
      int g = y_fixed + (cr*-float2fixed(0.71414f)) + ((cb*-float2fixed(0.34414f)) & 0xffff0000);
      int b = y_fixed                               +   cb* float2fixed(1.77200f);
      r >>= 20;
      g >>= 20;
      b >>= 20;
      if ((unsigned) r > 255)
         r = 255;
      if ((unsigned) g > 255)
         g = 255;
      if ((unsigned) b > 255)
         b = 255;
      out[0] = (uint8_t)r;
      out[1] = (uint8_t)g;
      out[2] = (uint8_t)b;
      out[3] = 255;
      out += step;
   }
}

#if defined(__SSE2__) || defined(RJPEG_NEON)
static void rjpeg__YCbCr_to_RGB_simd(uint8_t *out, const uint8_t *y, const uint8_t *pcb, const uint8_t *pcr, int count, int step)
{
   int i = 0;

#if defined(__SSE2__)
   /* step == 3 is pretty ugly on the final interleave, and i'm not convinced
    * it's useful in practice (you wouldn't use it for textures, for example).
    * so just accelerate step == 4 case.
    */
   if (step == 4)
   {
      /* this is a fairly straightforward implementation and not super-optimized. */
      __m128i signflip  = _mm_set1_epi8(-0x80);
      __m128i cr_const0 = _mm_set1_epi16(   (short) ( 1.40200f*4096.0f+0.5f));
      __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f));
      __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f));
      __m128i cb_const1 = _mm_set1_epi16(   (short) ( 1.77200f*4096.0f+0.5f));
      __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128);
      __m128i xw = _mm_set1_epi16(255); /* alpha channel */

      for (; i+7 < count; i += 8)
      {
         /* load */
         __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i));
         __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i));
         __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i));
         __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); /* -128 */
         __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); /* -128 */

         /* unpack to short (and left-shift cr, cb by 8) */
         __m128i yw  = _mm_unpacklo_epi8(y_bias, y_bytes);
         __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased);
         __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased);

         /* color transform */
         __m128i yws = _mm_srli_epi16(yw, 4);
         __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw);
         __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw);
         __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1);
         __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1);
         __m128i rws = _mm_add_epi16(cr0, yws);
         __m128i gwt = _mm_add_epi16(cb0, yws);
         __m128i bws = _mm_add_epi16(yws, cb1);
         __m128i gws = _mm_add_epi16(gwt, cr1);

         /* descale */
         __m128i rw = _mm_srai_epi16(rws, 4);
         __m128i bw = _mm_srai_epi16(bws, 4);
         __m128i gw = _mm_srai_epi16(gws, 4);

         /* back to byte, set up for transpose */
         __m128i brb = _mm_packus_epi16(rw, bw);
         __m128i gxb = _mm_packus_epi16(gw, xw);

         /* transpose to interleave channels */
         __m128i t0 = _mm_unpacklo_epi8(brb, gxb);
         __m128i t1 = _mm_unpackhi_epi8(brb, gxb);
         __m128i o0 = _mm_unpacklo_epi16(t0, t1);
         __m128i o1 = _mm_unpackhi_epi16(t0, t1);

         /* store */
         _mm_storeu_si128((__m128i *) (out + 0), o0);
         _mm_storeu_si128((__m128i *) (out + 16), o1);
         out += 32;
      }
   }
#endif

#ifdef RJPEG_NEON
   /* in this version, step=3 support would be easy to add. but is there demand? */
   if (step == 4)
   {
      /* this is a fairly straightforward implementation and not super-optimized. */
      uint8x8_t signflip = vdup_n_u8(0x80);
      int16x8_t cr_const0 = vdupq_n_s16(   (short) ( 1.40200f*4096.0f+0.5f));
      int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f));
      int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f));
      int16x8_t cb_const1 = vdupq_n_s16(   (short) ( 1.77200f*4096.0f+0.5f));

      for (; i+7 < count; i += 8)
      {
         uint8x8x4_t o;

         /* load */
         uint8x8_t y_bytes  = vld1_u8(y + i);
         uint8x8_t cr_bytes = vld1_u8(pcr + i);
         uint8x8_t cb_bytes = vld1_u8(pcb + i);
         int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip));
         int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip));

         /* expand to s16 */
         int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4));
         int16x8_t crw = vshll_n_s8(cr_biased, 7);
         int16x8_t cbw = vshll_n_s8(cb_biased, 7);

         /* color transform */
         int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0);
         int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0);
         int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1);
         int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1);
         int16x8_t rws = vaddq_s16(yws, cr0);
         int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1);
         int16x8_t bws = vaddq_s16(yws, cb1);

         /* undo scaling, round, convert to byte */
         o.val[0] = vqrshrun_n_s16(rws, 4);
         o.val[1] = vqrshrun_n_s16(gws, 4);
         o.val[2] = vqrshrun_n_s16(bws, 4);
         o.val[3] = vdup_n_u8(255);

         /* store, interleaving r/g/b/a */
         vst4_u8(out, o);
         out += 8*4;
      }
   }
#endif

   for (; i < count; ++i)
   {
      int y_fixed = (y[i] << 20) + (1<<19); /* rounding */
      int cr      = pcr[i] - 128;
      int cb      = pcb[i] - 128;
      int r       = y_fixed + cr* float2fixed(1.40200f);
      int g       = y_fixed + cr*-float2fixed(0.71414f) + ((cb*-float2fixed(0.34414f)) & 0xffff0000);
      int b       = y_fixed                             +   cb* float2fixed(1.77200f);
      r >>= 20;
      g >>= 20;
      b >>= 20;
      if ((unsigned) r > 255)
         r = 255;
      if ((unsigned) g > 255)
         g = 255;
      if ((unsigned) b > 255)
         b = 255;
      out[0] = (uint8_t)r;
      out[1] = (uint8_t)g;
      out[2] = (uint8_t)b;
      out[3] = 255;
      out += step;
   }
}
#endif

/* set up the kernels */
static void rjpeg__setup_jpeg(rjpeg__jpeg *j)
{
   uint64_t mask = cpu_features_get();

   (void)mask;

   j->idct_block_kernel        = rjpeg__idct_block;
   j->YCbCr_to_RGB_kernel      = rjpeg__YCbCr_to_RGB_row;
   j->resample_row_hv_2_kernel = rjpeg__resample_row_hv_2;


#if defined(__SSE2__)
   if (mask & RETRO_SIMD_SSE2)
   {
      j->idct_block_kernel        = rjpeg__idct_simd;
      j->YCbCr_to_RGB_kernel      = rjpeg__YCbCr_to_RGB_simd;
      j->resample_row_hv_2_kernel = rjpeg__resample_row_hv_2_simd;
   }
#endif

#ifdef RJPEG_NEON
   j->idct_block_kernel           = rjpeg__idct_simd;
   j->YCbCr_to_RGB_kernel         = rjpeg__YCbCr_to_RGB_simd;
   j->resample_row_hv_2_kernel    = rjpeg__resample_row_hv_2_simd;
#endif
}

/* clean up the temporary component buffers */
static void rjpeg__cleanup_jpeg(rjpeg__jpeg *j)
{
   int i;
   for (i=0; i < j->s->img_n; ++i)
   {
      if (j->img_comp[i].raw_data)
      {
         free(j->img_comp[i].raw_data);
         j->img_comp[i].raw_data = NULL;
         j->img_comp[i].data = NULL;
      }

      if (j->img_comp[i].raw_coeff)
      {
         free(j->img_comp[i].raw_coeff);
         j->img_comp[i].raw_coeff = 0;
         j->img_comp[i].coeff = 0;
      }

      if (j->img_comp[i].linebuf)
      {
         free(j->img_comp[i].linebuf);
         j->img_comp[i].linebuf = NULL;
      }
   }
}

static uint8_t *rjpeg_load_jpeg_image(rjpeg__jpeg *z, unsigned *out_x, unsigned *out_y, int *comp, int req_comp)
{
   int n, decode_n;
   int k;
   unsigned int i,j;
   rjpeg__resample res_comp[4];
   uint8_t *coutput[4] = {0};
   uint8_t *output     = NULL;
   z->s->img_n         = 0; /* make rjpeg__cleanup_jpeg safe */

   /* validate req_comp */
   if (req_comp < 0 || req_comp > 4)
      return rjpeg__errpuc("bad req_comp", "Internal error");

   /* load a jpeg image from whichever source, but leave in YCbCr format */
   if (!rjpeg__decode_jpeg_image(z))
      goto error;

   /* determine actual number of components to generate */
   n = req_comp ? req_comp : z->s->img_n;

   if (z->s->img_n == 3 && n < 3)
      decode_n = 1;
   else
      decode_n = z->s->img_n;

   /* resample and color-convert */
   for (k=0; k < decode_n; ++k)
   {
      rjpeg__resample *r = &res_comp[k];

      /* allocate line buffer big enough for upsampling off the edges
       * with upsample factor of 4 */
      z->img_comp[k].linebuf = (uint8_t *) malloc(z->s->img_x + 3);
      if (!z->img_comp[k].linebuf)
         goto error;

      r->hs       = z->img_h_max / z->img_comp[k].h;
      r->vs       = z->img_v_max / z->img_comp[k].v;
      r->ystep    = r->vs >> 1;
      r->w_lores  = (z->s->img_x + r->hs-1) / r->hs;
      r->ypos     = 0;
      r->line0    = r->line1 = z->img_comp[k].data;
      r->resample = rjpeg__resample_row_generic;

      if      (r->hs == 1 && r->vs == 1)
         r->resample = rjpeg_resample_row_1;
      else if (r->hs == 1 && r->vs == 2)
         r->resample = rjpeg__resample_row_v_2;
      else if (r->hs == 2 && r->vs == 1)
         r->resample = rjpeg__resample_row_h_2;
      else if (r->hs == 2 && r->vs == 2)
         r->resample = z->resample_row_hv_2_kernel;
   }

   /* can't error after this so, this is safe */
   output = (uint8_t *) malloc(n * z->s->img_x * z->s->img_y + 1);

   if (!output)
      goto error;

   /* now go ahead and resample */
   for (j=0; j < z->s->img_y; ++j)
   {
      uint8_t *out = output + n * z->s->img_x * j;
      for (k=0; k < decode_n; ++k)
      {
         rjpeg__resample *r = &res_comp[k];
         int         y_bot  = r->ystep >= (r->vs >> 1);

         coutput[k]         = r->resample(z->img_comp[k].linebuf,
               y_bot ? r->line1 : r->line0,
               y_bot ? r->line0 : r->line1,
               r->w_lores, r->hs);

         if (++r->ystep >= r->vs)
         {
            r->ystep = 0;
            r->line0 = r->line1;
            if (++r->ypos < z->img_comp[k].y)
               r->line1 += z->img_comp[k].w2;
         }
      }

      if (n >= 3)
      {
         uint8_t *y = coutput[0];
         if (z->s->img_n == 3)
            z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
         else
            for (i=0; i < z->s->img_x; ++i)
            {
               out[0] = out[1] = out[2] = y[i];
               out[3] = 255; /* not used if n==3 */
               out += n;
            }
      }
      else
      {
         uint8_t *y = coutput[0];
         if (n == 1)
            for (i=0; i < z->s->img_x; ++i)
               out[i] = y[i];
         else
            for (i=0; i < z->s->img_x; ++i)
               *out++ = y[i], *out++ = 255;
      }
   }

   rjpeg__cleanup_jpeg(z);
   *out_x = z->s->img_x;
   *out_y = z->s->img_y;

   if (comp)
      *comp  = z->s->img_n; /* report original components, not output */
   return output;

error:
   rjpeg__cleanup_jpeg(z);
   return NULL;
}

static unsigned char *rjpeg__jpeg_load(rjpeg__context *s, unsigned *x, unsigned *y, int *comp, int req_comp)
{
   rjpeg__jpeg j;
   j.s = s;
   rjpeg__setup_jpeg(&j);
   return rjpeg_load_jpeg_image(&j, x,y,comp,req_comp);
}

int rjpeg_process_image(rjpeg_t *rjpeg, void **buf_data,
      size_t size, unsigned *width, unsigned *height)
{
   int comp;
   uint32_t *img         = NULL;
   uint32_t *pixels      = NULL;
   unsigned size_tex     = 0;

   if (!rjpeg)
      return IMAGE_PROCESS_ERROR;

   img   = (uint32_t*)rjpeg_load_from_memory(rjpeg->buff_data, size, width, height, &comp, 4);

   if (!img)
      return IMAGE_PROCESS_ERROR;

   size_tex = (*width) * (*height);
   pixels   = (uint32_t*)malloc(size_tex * sizeof(uint32_t));

   if (!pixels)
   {
      free(img);
      return IMAGE_PROCESS_ERROR;
   }

   *buf_data = pixels;

   /* Convert RGBA to ARGB */
   while (size_tex--)
   {
      unsigned int texel = img[size_tex];
      unsigned int A     = texel & 0xFF000000;
      unsigned int B     = texel & 0x00FF0000;
      unsigned int G     = texel & 0x0000FF00;
      unsigned int R     = texel & 0x000000FF;
      ((unsigned int*)pixels)[size_tex] = A | (R << 16) | G | (B >> 16);
   };

   free(img);

   return IMAGE_PROCESS_END;
}

bool rjpeg_set_buf_ptr(rjpeg_t *rjpeg, void *data)
{
   if (!rjpeg)
      return false;

   rjpeg->buff_data = (uint8_t*)data;

   return true;
}

void rjpeg_free(rjpeg_t *rjpeg)
{
   if (!rjpeg)
      return;

   free(rjpeg);
}

rjpeg_t *rjpeg_alloc(void)
{
   rjpeg_t *rjpeg = (rjpeg_t*)calloc(1, sizeof(*rjpeg));
   if (!rjpeg)
      return NULL;
   return rjpeg;
}