File: scaler_int.c

package info (click to toggle)
retroarch 1.3.6%2Bdfsg1-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 26,496 kB
  • ctags: 41,865
  • sloc: ansic: 250,395; cpp: 12,996; makefile: 3,500; objc: 3,266; xml: 2,141; python: 1,670; sh: 1,522; java: 798; asm: 542; perl: 393
file content (285 lines) | stat: -rw-r--r-- 10,082 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/* Copyright  (C) 2010-2015 The RetroArch team
 *
 * ---------------------------------------------------------------------------------------
 * The following license statement only applies to this file (scaler_int.c).
 * ---------------------------------------------------------------------------------------
 *
 * Permission is hereby granted, free of charge,
 * to any person obtaining a copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include <gfx/scaler/scaler_int.h>

#include <retro_inline.h>

#ifdef SCALER_NO_SIMD
#undef __SSE2__
#endif

#if defined(__SSE2__)
#include <emmintrin.h>
#ifdef _WIN32
#include <intrin.h>
#endif
#endif

/* ARGB8888 scaler is split in two:
 *
 * First, horizontal scaler is applied.
 * Here, all 8-bit channels are expanded to 16-bit. Values are then shifted 7 to left to occupy 15 bits.
 * The sign bit is kept empty as we have to do signed multiplication for the filter.
 * A mulhi [(a * b) >> 16] is applied which loses some precision, but is very efficient for SIMD.
 * It is accurate enough for 8-bit purposes.
 *
 * The fixed point 1.0 for filter is (1 << 14). After horizontal scale, the output is kept
 * with 16-bit channels, and will now have 13 bits of precision as [(a * (1 << 14)) >> 16] is effectively a right shift by 2.
 *
 * Vertical scaler takes the 13 bit channels, and performs the same mulhi steps.
 * Another 2 bits of precision is lost, which ends up as 11 bits.
 * Scaling is now complete. Channels are shifted right by 3, and saturated into 8-bit values.
 *
 * The C version of scalers perform the exact same operations as the SIMD code for testing purposes.
 */

#if defined(__SSE2__)
void scaler_argb8888_vert(const struct scaler_ctx *ctx, void *output_, int stride)
{
   int h, w, y;
   const uint64_t *input = ctx->scaled.frame;
   uint32_t      *output = (uint32_t*)output_;

   const int16_t *filter_vert = ctx->vert.filter;

   for (h = 0; h < ctx->out_height; h++, filter_vert += ctx->vert.filter_stride, output += stride >> 2)
   {
      const uint64_t *input_base = input + ctx->vert.filter_pos[h] * (ctx->scaled.stride >> 3);

      for (w = 0; w < ctx->out_width; w++)
      {
         __m128i final;
         __m128i res = _mm_setzero_si128();

         const uint64_t *input_base_y = input_base + w;

         for (y = 0; (y + 1) < ctx->vert.filter_len; y += 2, input_base_y += (ctx->scaled.stride >> 2))
         {
            __m128i coeff = _mm_set_epi64x(filter_vert[y + 1] * 0x0001000100010001ll, filter_vert[y + 0] * 0x0001000100010001ll);
            __m128i col   = _mm_set_epi64x(input_base_y[ctx->scaled.stride >> 3], input_base_y[0]);

            res = _mm_adds_epi16(_mm_mulhi_epi16(col, coeff), res);
         }

         for (; y < ctx->vert.filter_len; y++, input_base_y += (ctx->scaled.stride >> 3))
         {
            __m128i coeff = _mm_set_epi64x(0, filter_vert[y] * 0x0001000100010001ll);
            __m128i col   = _mm_set_epi64x(0, input_base_y[0]);

            res = _mm_adds_epi16(_mm_mulhi_epi16(col, coeff), res);
         }

         res       = _mm_adds_epi16(_mm_srli_si128(res, 8), res);
         res       = _mm_srai_epi16(res, (7 - 2 - 2));

         final     = _mm_packus_epi16(res, res);

         output[w] = _mm_cvtsi128_si32(final);
      }
   }
}
#else
void scaler_argb8888_vert(const struct scaler_ctx *ctx, void *output_, int stride)
{
   int h, w, y;
   const uint64_t      *input = ctx->scaled.frame;
   uint32_t           *output = (uint32_t*)output_;

   const int16_t *filter_vert = ctx->vert.filter;

   for (h = 0; h < ctx->out_height; h++, filter_vert += ctx->vert.filter_stride, output += stride >> 2)
   {
      const uint64_t *input_base = input + ctx->vert.filter_pos[h] * (ctx->scaled.stride >> 3);

      for (w = 0; w < ctx->out_width; w++)
      {
         int16_t res_a = 0;
         int16_t res_r = 0;
         int16_t res_g = 0;
         int16_t res_b = 0;

         const uint64_t *input_base_y = input_base + w;
         for (y = 0; y < ctx->vert.filter_len; y++, input_base_y += (ctx->scaled.stride >> 3))
         {
            uint64_t col = *input_base_y;

            int16_t a = (col >> 48) & 0xffff;
            int16_t r = (col >> 32) & 0xffff;
            int16_t g = (col >> 16) & 0xffff;
            int16_t b = (col >>  0) & 0xffff;

            int16_t coeff = filter_vert[y];

            res_a += (a * coeff) >> 16;
            res_r += (r * coeff) >> 16;
            res_g += (g * coeff) >> 16;
            res_b += (b * coeff) >> 16;
         }

         res_a >>= (7 - 2 - 2);
         res_r >>= (7 - 2 - 2);
         res_g >>= (7 - 2 - 2);
         res_b >>= (7 - 2 - 2);

         output[w] = (clamp_8bit(res_a) << 24) | (clamp_8bit(res_r) << 16) | (clamp_8bit(res_g) << 8) | (clamp_8bit(res_b) << 0);
      }
   }
}
#endif

#if defined(__SSE2__)
void scaler_argb8888_horiz(const struct scaler_ctx *ctx, const void *input_, int stride)
{
   int h, w, x;
   const uint32_t *input = (const uint32_t*)input_;
   uint64_t *output      = ctx->scaled.frame;

   for (h = 0; h < ctx->scaled.height; h++, input += stride >> 2, output += ctx->scaled.stride >> 3)
   {
      const int16_t *filter_horiz = ctx->horiz.filter;

      for (w = 0; w < ctx->scaled.width; w++, filter_horiz += ctx->horiz.filter_stride)
      {
         __m128i res = _mm_setzero_si128();

         const uint32_t *input_base_x = input + ctx->horiz.filter_pos[w];

         for (x = 0; (x + 1) < ctx->horiz.filter_len; x += 2)
         {
            __m128i coeff = _mm_set_epi64x(filter_horiz[x + 1] * 0x0001000100010001ll, filter_horiz[x + 0] * 0x0001000100010001ll);

            __m128i col = _mm_unpacklo_epi8(_mm_set_epi64x(0,
                     ((uint64_t)input_base_x[x + 1] << 32) | input_base_x[x + 0]), _mm_setzero_si128());

            col = _mm_slli_epi16(col, 7);
            res = _mm_adds_epi16(_mm_mulhi_epi16(col, coeff), res);
         }

         for (; x < ctx->horiz.filter_len; x++)
         {
            __m128i coeff = _mm_set_epi64x(0, filter_horiz[x] * 0x0001000100010001ll);
            __m128i col   = _mm_unpacklo_epi8(_mm_set_epi32(0, 0, 0, input_base_x[x]), _mm_setzero_si128());

            col = _mm_slli_epi16(col, 7);
            res = _mm_adds_epi16(_mm_mulhi_epi16(col, coeff), res);
         }

         res       = _mm_adds_epi16(_mm_srli_si128(res, 8), res);

#ifdef __x86_64__
         output[w] = _mm_cvtsi128_si64(res);
#else /* 32-bit doesn't have si64. Do it in two steps. */
         union
         {
            uint32_t *u32;
            uint64_t *u64;
         } u;
         u.u64 = output + w;
         u.u32[0] = _mm_cvtsi128_si32(res);
         u.u32[1] = _mm_cvtsi128_si32(_mm_srli_si128(res, 4));
#endif
      }
   }
}
#else
static INLINE uint64_t build_argb64(uint16_t a, uint16_t r, uint16_t g, uint16_t b)
{
   return ((uint64_t)a << 48) | ((uint64_t)r << 32) | ((uint64_t)g << 16) | ((uint64_t)b << 0);
}

void scaler_argb8888_horiz(const struct scaler_ctx *ctx, const void *input_, int stride)
{
   int h, w, x;
   const uint32_t *input = (uint32_t*)input_;
   uint64_t *output      = ctx->scaled.frame;

   for (h = 0; h < ctx->scaled.height; h++, input += stride >> 2, output += ctx->scaled.stride >> 3)
   {
      const int16_t *filter_horiz = ctx->horiz.filter;

      for (w = 0; w < ctx->scaled.width; w++, filter_horiz += ctx->horiz.filter_stride)
      {
         const uint32_t *input_base_x = input + ctx->horiz.filter_pos[w];

         int16_t res_a = 0;
         int16_t res_r = 0;
         int16_t res_g = 0;
         int16_t res_b = 0;

         for (x = 0; x < ctx->horiz.filter_len; x++)
         {
            uint32_t col = input_base_x[x];

            int16_t a = (col >> (24 - 7)) & (0xff << 7);
            int16_t r = (col >> (16 - 7)) & (0xff << 7);
            int16_t g = (col >> ( 8 - 7)) & (0xff << 7);
            int16_t b = (col << ( 0 + 7)) & (0xff << 7);

            int16_t coeff = filter_horiz[x];

            res_a += (a * coeff) >> 16;
            res_r += (r * coeff) >> 16;
            res_g += (g * coeff) >> 16;
            res_b += (b * coeff) >> 16;
         }

         output[w] = build_argb64(res_a, res_r, res_g, res_b);
      }
   }
}
#endif

void scaler_argb8888_point_special(const struct scaler_ctx *ctx,
      void *output_, const void *input_,
      int out_width, int out_height,
      int in_width, int in_height,
      int out_stride, int in_stride)
{
   int h, w;
   const uint32_t *input = NULL;
   uint32_t *output      = NULL;
   int x_pos  = (1 << 15) * in_width / out_width - (1 << 15);
   int x_step = (1 << 16) * in_width / out_width;
   int y_pos  = (1 << 15) * in_height / out_height - (1 << 15);
   int y_step = (1 << 16) * in_height / out_height;

   (void)ctx;

   if (x_pos < 0)
      x_pos = 0;
   if (y_pos < 0)
      y_pos = 0;

   input = (const uint32_t*)input_;
   output = (uint32_t*)output_;

   for (h = 0; h < out_height; h++, y_pos += y_step, output += out_stride >> 2)
   {
      int x = x_pos;
      const uint32_t *inp = input + (y_pos >> 16) * (in_stride >> 2);

      for (w = 0; w < out_width; w++, x += x_step)
         output[w] = inp[x >> 16];
   }
}