File: elasticity.tex

package info (click to toggle)
rheolef 7.1-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 77,392 kB
  • sloc: cpp: 105,337; sh: 16,014; makefile: 5,293; python: 1,359; xml: 221; yacc: 218; javascript: 202; awk: 61; sed: 5
file content (540 lines) | stat: -rw-r--r-- 19,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
\subsection{The linear elasticity problem}
\label{sec-elasticity}
\pbindex{elasticity}%
\cindex{boundary condition!Dirichlet}%
\cindex{boundary condition!Neumann}%
\cindex{benchmark!embankment}%

\subsubsection*{Formulation}

\cindex{tensor!Cauchy stress}%
  The total Cauchy stress tensor expresses:
  \begin{equation}
    \sigma({\bf u}) = \lambda \, {\rm div}({\bf u}).I + 2 \mu D({\bf u})
    \label{eq-elasticity-cauchy}
  \end{equation}
\cindex{Lam\'e coefficients}
  where $\lambda$ and $\mu$ are the Lam\'e coefficients.
\cindex{operator!gradient}%
\cindex{operator!divergence}%
\cindex{operator!gradient!symmetric part}%
  Here, $D({\bf u})$ denotes the symmetric part of the gradient operator
  and ${\rm div}$ is the divergence operator.
  Let us consider the elasticity problem for the 
  {\em embankment}, in $\Omega = ]0,1[^d$, $d = 2,3$.
  The problem writes:

  \ \ \ $(P)$: {\it find ${\bf u}=(u_0,\ldots,u_{d-1})$, defined in $\Omega$, such that:}
  \begin{equation}
    \begin{array}{rcl}
      -\ {\bf div}\,\sigma({\bf u}) &=& {\bf f} \ {\rm in}\ \Omega, \\
      \Frac{\partial {\bf u}}{\partial {\bf n}} &=& 0 \ {\rm on}\ \Gamma_{\rm top} \cup \Gamma_{\rm right} \\
      {\bf u} &=& 0 \ {\rm on}\ \Gamma_{\rm left} \cup \Gamma_{\rm bottom}, \\
      {\bf u} &=& 0 \ {\rm on}\ \Gamma_{\rm front} \cup \Gamma_{\rm back}, \mbox{ when } d=3
    \end{array}
    \label{eq-elasticity}
  \end{equation}
  where ${\bf f} = (0,-1)$ when $d=2$ and ${\bf f}=(0,0,-1)$ when $d=3$.
  The Lam\'e coefficients are assumed to satisfy $\mu>0$ and
  $\lambda+\mu>0$.
  Since the problem is linear, we can suppose that $\mu=1$ without
  any loss of generality.
 \begin{figure}[htb]
    \centerline{\includegraphics{square-cube-fig.pdf}}
    \caption{The boundary domains for the square and the cube.}
    \label{fig-square-cube}
 \end{figure}
  recall that, in order to avoid mistakes with the \code{C++} style indexes,
  we denote by $(x_0,\ldots,x_{d-1})$ the Cartesian coordinate
  system in $\mathbb{R}^d$.

  For $d=2$ we define the boundaries:
  \[
     \begin{array}{llllll}
	\Gamma_{\rm left}   &=& \{0\} \times ]0,1[, & \Gamma_{\rm right} &=& \{1\}\times ]0,1[  \\
	\Gamma_{\rm bottom} &=& ]0,1[ \times \{0\}, & \Gamma_{\rm top}   &=& ]0,1[ \times \{1\} \\
     \end{array}
  \]
  and for $d=3$:
  \[
     \begin{array}{llllll}
	\Gamma_{\rm back} &=& \{0\} \times ]0,1[^2,       & \Gamma_{\rm front}   &=& \{1\} \times ]0,1[^2 \\
	\Gamma_{\rm left}   &=& ]0,1[ \times \{0\} \times ]0,1[,     & \Gamma_{\rm right} &=& ]0,1[ \times \{1\}\times ]0,1[ \\
	\Gamma_{\rm bottom} &=& ]0,1[^2 \times \{0\}, & \Gamma_{\rm top}   &=& ]0,1[^2 \times \{1\}
     \end{array}
  \]
  These boundaries are represented on Fig.~\ref{fig-square-cube}.

  The variational formulation of this problem expresses:
 
  \ \ \ $(VF)$: {\it find ${\bf u}\in {\bf V}$ such that:}
  \begin{equation}
      a({\bf u},{\bf v}) = l({\bf v}), \ \forall {\bf v}\in {\bf V},
    \label{eq-elasticity-fv}
  \end{equation}
  where
  \begin{eqnarray*}
       a({\bf u},{\bf v}) &=& \int_\Omega \left( \lambda {\rm div}\,{\bf u} \,{\rm div}\,{\bf v} 
				+ 2D({\bf u}) : D({\bf v}) \right) \, dx, \\
       l({\bf v}) &=& \int_\Omega {\bf f} . {\bf v} \, dx, \\
       {\bf V} &=& \{ {\bf v} \in (H^1(\Omega))^2; \  
      		{\bf v} = 0 \ {\rm on}\ \Gamma_{\rm left} \cup \Gamma_{\rm bottom} \}, \mbox{ when } d=2 \\
       {\bf V} &=& \{ {\bf v} \in (H^1(\Omega))^3; \  
      		{\bf v} = 0 \ {\rm on}\ \Gamma_{\rm left} \cup \Gamma_{\rm bottom}
      		\cup \Gamma_{\rm right} \cup \Gamma_{\rm back} \}, \mbox{ when } d=3
  \end{eqnarray*}

\subsubsection*{Approximation}
  We introduce a mesh ${\cal T}_h$ of $\Omega$
  and for $k\geq 1$, the following finite dimensional spaces:
  \begin{eqnarray*}
      {\bf X}_h &=& \{ {\bf v}_h \in (H^1(\Omega))^d; \
          {\bf v}_{h/K} \in (P_k)^d, \
          \forall K \in {\cal T}_h \}, \\
      {\bf V}_h &=& {\bf X}_h \cap {\bf V}
  \end{eqnarray*}
  The approximate problem writes:

  \ \ \ $(VF)_h$: {\it find ${\bf u}_h \in {\bf V}_h$ such that:}
  \[
      a({\bf u}_h,{\bf v}_h) = l({\bf v}_h), \ \forall {\bf v}_h\in {\bf V}_h
  \]

%--------------------------
\myexamplelicense{embankment.cc}
\myexamplelicense{embankment.icc}
%--------------------------

\subsubsection*{Comments}
\cindex{form!{$2D({\bf u}):D({\bf v})+\lambda{\rm div}\,{\bf u}\,{\rm div}\,{\bf v}$}}%
\apindex{P1}%
\apindex{P2}%
The space is defined in a separate file \reffile{embankment.icc},
since it will be reused in others examples along this chapter:
\begin{lstlisting}[numbers=none,frame=none]
  space Vh (omega, "P2", "vector");
\end{lstlisting}
Note here the multi-component specification \code{"vector"} as a supplementary
argument to the \code{space} constructor.
The boundary condition contain a special cases for bi- and tridimensional cases.
The right-hand-side ${\bf f}_h$ represents the dimensionless gravity forces,
oriented on the vertical axis: the last component of ${\bf f}_h$ is set
to $-1$ as:
\begin{lstlisting}[numbers=none,frame=none]
    fh [d-1] = -1;
\end{lstlisting}
The code for the bilinear form $a(.,.)$ and the linear one $l(.)$ are closed
to their mathematical definitions: 
\begin{lstlisting}[numbers=none,frame=none]
  form  a  = integrate (lambda*div(u)*div(v) + 2*ddot(D(u),D(v)));
  field lh = integrate (dot(f,v));
\end{lstlisting}

\findex{catchmark}%
Finally, the $1/\lambda$ parameter and the
multi-field result are printed, using
mark labels, thanks to the \code{catchmark} stream manipulator.
Labels are convenient for post-processing purpose,
as we will see in the next paragraph.

\subsubsection*{How to run the program}
\label{sec-howtorun-elasticity}
  \begin{figure}[htb]
     \mbox{}\hspace{-2cm}
     %\begin{center}
       \begin{tabular}{cccc}
	    \includegraphics[height=7cm]{embankment-2d-fig.pdf} &
	    \hspace{0.2cm} &
	    \includegraphics[height=7cm]{embankment-2d-fill-fig.pdf} &
	    \\
	    \includegraphics[width=8cm]{embankment-3d-fig.png} &
	    \hspace{0.2cm} &
	    \includegraphics[width=8.5cm]{embankment-3d-fill-fig.png} &
	    \stereoglasses
       \end{tabular}
     %\end{center}
     \caption{The linear elasticity for $\lambda=1$ and $d=2$ and $d=3$:
	both wireframe and filled surfaces ; stereoscopic anaglyph mode for 3D solutions.
     }
     \label{fig-embankment-deformation}
  \end{figure}
Compile the program as usual (see page~\pageref{makefile}):
\begin{verbatim}
  make embankment
\end{verbatim}
and enter the commands:
\begin{verbatim}
  mkgeo_grid -t 10 > square.geo
  geo square.geo
\end{verbatim}
The triangular mesh has four boundary domains, named \code{left},
\code{right}, \code{top} and \code{bottom}.
Then, enter:
\begin{verbatim}
  ./embankment square.geo P1 > square-P1.field
\end{verbatim}
\fiindex{\filesuffix{.field} multi-component field}%
The previous command solves the problem for the corresponding mesh
and writes the multi-component solution in the \filesuffix{.field} file format.
\pindexoptopt{visualization}{mesh}{deformed}%
Run the deformation vector field visualization:
\pindexopt{field}{-nofill}%
\begin{verbatim}
  field square-P1.field
  field square-P1.field -nofill
\end{verbatim}
It bases on the default \code{paraview} render for 2D and 3D geometries.
The view is shown on Fig.~\ref{fig-embankment-deformation}. 
\pindex{gnuplot}%
If you are in trouble with \code{paraview}, you can switch to
the simpler \code{gnuplot} render:
\begin{verbatim}
  field square-P1.field -nofill -gnuplot
\end{verbatim}
The unix manual for the \code{field} command is available as:
\clindex{reference manual}%
\clindex{man}%
\begin{verbatim}
  man field
\end{verbatim}
A specific field component can be also selected for a scalar visualization:
\pindexopt{field}{-comp}%
\begin{verbatim}
  field -comp 0 square-P1.field
  field -comp 1 square-P1.field
\end{verbatim}
Next, perform a $P_2$ approximation of the solution:
\begin{verbatim}
  ./embankment square.geo P2 > square-P2.field
  field square-P2.field -nofill
\end{verbatim}
Finally, let us consider the three dimensional case
\pindexopt{field}{-fill}%
\pindexopt{field}{-stereo}%
\begin{verbatim}
  mkgeo_grid -T 10 > cube.geo
  ./embankment cube.geo P1 > cube-P1.field
  field cube-P1.field -stereo
  field cube-P1.field -stereo -fill
\end{verbatim}
\cindex{visualization!stereoscopic anaglyph}%
The two last commands show the solution in 3D stereoscopic anaglyph mode.
The graphic is represented on Fig.~\ref{fig-embankment-deformation}.
The $P_2$ approximation writes:
\begin{verbatim}
  ./embankment cube.geo P2 > cube-P2.field
  field cube-P2.field
\end{verbatim}

% ===================================
\subsection{Computing the stress tensor}
% ===================================

\subsubsection*{Formulation and approximation}
  The following code computes the total Cauchy stress tensor,
  reading the Lam\'e coefficient $\lambda$ and the deformation
  field ${\bf u}_h$ from a \filesuffix{.field} file.
  Let us introduce:
  \[
     T_h = \{ \tau_h \in (L^2(\Omega))^{d\times d}; \ 
		\tau_h = \tau_h^T \mbox{ and }
		\tau_{h;ij/K} \in P_{k-1}, \ \forall K\in {\cal T}_h,\ 
		1\leq i,j \leq d \}
  \]
  This computation expresses:

  \ \ \ {\it find $\sigma_h$ such that:}
  \[
	m(\sigma_h, \tau) = b(\tau, {\bf u}_h), \forall \tau \in T_h
  \]
  where
  \begin{eqnarray*}
	m(\sigma, \tau) &=& \int_\Omega \sigma : \tau \, dx
	  ,
	  \\
        b(\tau, {\bf u})
	&=&
	\int_\Omega 
	  \left(
		2 D({\bf u}) : \tau \, dx
        	+ 
		\lambda {\rm div}({\bf u})\,{\rm tr}(\tau)
	  \right)
	  \, dx
	  ,
  \end{eqnarray*}
where ${\rm tr}(\tau) = \sum_{i=1}^d \tau_{ii}$ is the trace
of the tensor $\tau$.

%-------------------------- 
\myexamplelicense{stress.cc}
%-------------------------- 

\subsubsection*{Comments}
  In order to our code \code{stress.cc} to apply also for the forthcoming incompressible case
  $\lambda=+\infty$, the Lam\'e coefficient is introduced as $1/\lambda$.
  Its value is zero in the incompressible case.
  By this way, the previous code applies for any deformation
  field, and is not restricted to our {\em embankment} problem.
\apindex{discontinuous}%
  The stress tensor is obtained by a direct interpolation of the $u_h$ first derivatives.
  As $u_h$ is continuous and piecewise polynomial $P_k$,
  its derivatives are also piecewise polynomials with degree $k-1$,
  but \emph{discontinuous} at inter-element boundaries~: this approximation is denoted as $P_{k-1,d}$.
  Thus, the stress tensor belongs to the space $T_h$ with the $P_{k-1,d}$ element.

\subsubsection*{How to run the program}
\cindex{tensor!visualization as ellipsoid}
  \begin{figure}[htb]
     %\begin{center}
       \begin{tabular}{cccc}
	  \includegraphics[scale=0.30]{embankment-2d-tensor-fig.png} &
	  \hspace{0.1cm} &
	  \includegraphics[scale=0.30]{embankment-3d-tensor-fig.png} &
	  \stereoglasses
       \end{tabular}
     %\end{center}
     \caption{The stress tensor visualization (linear elasticity $\lambda=1$).}
     \label{fig-embankment-tensor}
  \end{figure}
  
  First, compile the program:
\begin{verbatim}
  make stress
\end{verbatim}
\cindex{tensor!field}%
\pindexopt{field}{-proj}%
The visualization for the stress tensor as ellipses writes:
\pindex{paraview}%
\begin{verbatim}
  ./stress < square-P1.field > square-stress-P1.field
  ./stress < square-P2.field > square-stress-P2.field
  field square-stress-P1.field -proj
  field square-stress-P2.field -proj
\end{verbatim}
This visualization based on \code{paraview} requires
the \code{TensorGlyph} feature, available since \code{paraview-5.0}.
\apindex{discontinuous}%
\cindex{projection!in {$L^2$} norm}%
\apindex{P0}%
\apindex{P1d}%
\apindex{P1}%
\apindex{P2}%
\pindexopt{field}{-stereo}%
  Recall that the stress, as a derivative of the deformation, is 
  P0 (resp. P1d) and discontinuous when the deformation is P1 (resp. P2) and continuous.
  The approximate stress tensor field is projected as
  a continuous piecewise linear space, using the \code{-proj} option.
  Conversely, the 3D visualization bases on ellipsoids:
\begin{verbatim}
  ./stress < cube-P1.field > cube-stress-P1.field
  field cube-stress-P1.field -proj -stereo
\end{verbatim}
  \begin{figure}[htb]
     \begin{center}
       \begin{tabular}{cccc}
	    \includegraphics[width=6cm]{embankment-2d-s01-P0-fig.pdf} &
	    \hspace{0.0cm} &
	    \includegraphics[width=8cm]{embankment-2d-s01-P1d-elevation-fig.png} &
		\\
	    \includegraphics[width=7cm]{embankment-3d-s01-P0-fig.png} &
	    \hspace{0.0cm} &
	    \includegraphics[width=7cm]{embankment-3d-s01-P1d-fig.png} &
	    \stereoglasses
       \end{tabular}
     \end{center}
     \caption{The $\sigma_{01}$ stress component (linear elasticity $\lambda=1$):
        $d=2$ (top) and $d=3$ (bottom) ;
	$P_0$ (left) and $P_1$ discontinuous approximation (right).
     }
     \label{fig-embankment-s01}
  \end{figure}
\apindex{discontinuous}%
\pindexopt{field}{-elevation}%
You can observe a discontinuous constant or piecewise linear representation
of the approximate stress component $\sigma_{01}$
(see Fig.~\ref{fig-embankment-s01}):
\begin{verbatim}
  field square-stress-P1.field -comp 01
  field square-stress-P2.field -comp 01 -elevation
  field square-stress-P2.field -comp 01 -elevation -stereo
\end{verbatim}
\pindexopt{field}{-stereo}%
\pindex{paraview}%
Note that the \code{-stereo} implies the \code{paraview} render:
this feature available with \code{paraview}.
The approximate stress field can be also projected on
a continuous piecewise space:
\begin{verbatim}
  field square-stress-P2.field -comp 01 -elevation -proj
\end{verbatim}
  The tridimensional case writes simply (see Fig.~\ref{fig-embankment-s01}):
\pindexopt{field}{-comp}%
\begin{verbatim}
  ./stress < cube-P1.field > cube-stress-P1.field
  ./stress < cube-P2.field > cube-stress-P2.field
  field cube-stress-P1.field -comp 01 -stereo
  field cube-stress-P2.field -comp 01 -stereo 
\end{verbatim}
and also the P1-projected versions write:
\begin{verbatim}
  field cube-stress-P1.field -comp 01 -stereo -proj
  field cube-stress-P2.field -comp 01 -stereo -proj
\end{verbatim}
  These operations can be repeated for each $\sigma_{ij}$ components
  and for both \code{P1} and \code{P2} approximation of the
  deformation field.

% =======================
\subsection{Mesh adaptation}
% =======================
\cindex{mesh!adaptation!anisotropic}%
\findex{adapt}%
The main principle of the auto-adaptive mesh
writes~\citep{Hec-2006-bamg,BorGeoHecLauMohSal-1995,CasHecMohPir-1997,Val-1990,RoqMicSar-2000}:
\begin{verbatim}
      din >> omega;
      uh = solve(omega);
      for (unsigned int i = 0; i < n; i++) {
          ch = criterion(uh);
          omega = adapt(ch);
          uh = solve(omega);
      }
\end{verbatim}
The initial mesh is used to compute a first solution.
The adaptive loop compute an {\em adaptive criterion},
denoted by \code{ch},
that depends upon the problem under consideration and the
polynomial approximation used.
Then, a new mesh is generated, based on this criterion.
A second solution on an adapted mesh can be constructed.
The adaptation loop converges generally in roughly 5 to 20 iterations.

Let us apply this principle to the elasticity problem.

% -----------------------------------
\myexamplelicense{embankment_adapt.cc}
\myexamplelicense{elasticity_solve.icc}
\myexamplelicense{elasticity_criterion.icc}
\clindex{odiststream}
% -----------------------------------

\subsubsection*{Comments}

The criterion is here:
\[
  c_h = \left\{
    \begin{array}{ll}
	|{\bf u}_h|                            & \mbox{ when using } P_1 \\ 
	(\sigma({\bf u}_h):D({\bf u}_h))^{1/2} & \mbox{ when using } P_2
    \end{array}
  \right.
\]
\findex{interpolate}%
The \code{elasticity_criterion} function compute it as
\begin{lstlisting}[numbers=none,frame=none]
  return interpolate (Xh, norm(uh));
\end{lstlisting}
\findex{sqr}%
\findex{norm2}%
when using $P_1$, and as
\begin{lstlisting}[numbers=none,frame=none]
  return interpolate (T0h, sqrt(2*norm2(D(uh)) + lambda*sqr(div(uh))));
\end{lstlisting}
when using $P_2$.
The \code{sqr} function returns the square of a scalar.
Conversely, the \code{norm2} function returns the square of the norm.
%
\findex{adapt}%
In the min program, the result of the \code{elasticity_criterion} function is send to
the \code{adapt} function:
\begin{lstlisting}[numbers=none,frame=none]
  field ch = elasticity_criterion (lambda, uh);
  omega = adapt (ch, options);
\end{lstlisting}


\clindex{adapt_option}%
The \code{adapt_option} declaration is used by \Rheolef\  to
send options to the mesh generator.
The \code{err} parameter controls the error via the edge length of the mesh:
the smaller it is, the smaller the edges of the mesh are.
In our example, is set by default to one.
Conversely, the \code{hmin} parameter controls minimal edge length.

\subsubsection*{How to run the program}

  \begin{figure}[htb]
     \begin{center}
       \begin{tabular}{ccc}
	  $P_1$: 6771 elements, 3663 vertices
	  &&
	  $P_2$: 1636 elements, 920 vertices
	  \\
	  \includegraphics[height=7cm]{embankment-adapt-2d-P1-fig.png}
	  &
	  \hspace{0.3cm}
	  &
	  \includegraphics[height=7cm]{embankment-adapt-2d-P2-fig.png}
       \end{tabular}
     \end{center}
     \caption{Adapted meshes: the deformation visualization for $P_1$ and $P_2$ approximations.}
     \label{fig-embankment-adapt-deformation}
  \end{figure}
The compilation command writes:
\begin{verbatim}
    make embankment_adapt
\end{verbatim}
The mesh loop adaptation is initiated from a \code{bamg} mesh
(see also appendix~\ref{sec-bamg}).
\pindex{bamg}%
\exindex{square.bamgcad}%
\exindex{square.dmn}%
\fiindex{\filesuffix{.bamg} bamg mesh}%
\fiindex{\filesuffix{.bamgcad} bamg geometry}%
\begin{verbatim}
    bamg -g square.bamgcad -o square.bamg
    bamg2geo square.bamg square.dmn > square.geo
    ./embankment_adapt square P1 2e-2
\end{verbatim}
The last command line argument is the target error.
The code performs a loop of five mesh adaptations: the corresponding meshes
are stored in files, from \code{square-001.geo.gz} to \code{square-005.geo.gz},
and the associated solutions in files, from
\code{square-001.field.gz} to \code{square-005.field.gz}.
\pindex{gzip}%
\fiindex{\filesuffix{.gz} gzip compressed file}%
The additional \filesuffix{.gz} suffix expresses that the files are
compressed using \code{gzip}.
\pindexopt{field}{-nofill}%
\begin{verbatim}
    geo square-005.geo
    field square-005.field -nofill
\end{verbatim}
Note that the \filesuffix{.gz} suffix is automatically
assumed by the \code{geo} and the \code{field} commands.

For a piecewise quadratic approximation:
\begin{verbatim}
    ./embankment_adapt square P2 5e-3
\end{verbatim}
Then, the visualization writes:
\begin{verbatim}
    geo square-005.geo
    field square-005.field -nofill
\end{verbatim}
A one-dimensional mesh adaptive procedure is also possible:
\exindex{line.mshcad}%
\pindex{gmsh}%
\fiindex{\filesuffix{.msh} gmsh mesh}
\fiindex{\filesuffix{.mshcad} gmsh geometry}
\begin{verbatim}
    gmsh -1 line.mshcad -format msh2 -o line.msh
    msh2geo line.msh > line.geo
    geo line.geo
    ./embankment_adapt line P2
    geo line-005.geo
    field line-005.field -comp 0 -elevation
\end{verbatim}
The three-dimensional extension of this mesh adaptive procedure is in development.