1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
% --------------------------------------------
\subsection{Abstract setting}
% --------------------------------------------
\label{sec-hyperbolic-dg}%
\cindex{problem!hyperbolic nonlinear equation}
The aim of this paragraph is to study the
discontinuous Galerkin discretization of scalar nonlinear hyperbolic equations.
This section presents the general framework and discretization tools
while the next section illustrates the method for the Burgers equation.
% ------------------------------------
\subsubsection*{Problem statement}
% ------------------------------------
A time-dependent nonlinear hyperbolic problem writes in general
form~\citep[p.~99]{PieErn-2012}:
\ \ $(P)$: \emph{find $u$, defined in $]0,T[ \times \Omega$, such that}
\begin{subequations}
\begin{eqnarray}
\Frac{\partial u}{\partial t}
+
{\rm div}\,{\bf f}(u)
&=& 0
\ \mbox{ in } ]0,T[\times \Omega
\label{eq-dg-hyp-eqn}
\\
u(t\!=\!0) &=& u_0
\ \mbox{ in } \Omega
\label{eq-dg-hyp-ini}
\\
{\bf f}(u).{\bf n} &=& \Phi({\bf n};\,u,g)
\mbox{ on } ]0,T[\times \partial\Omega
\label{eq-dg-hyp-bc}
\end{eqnarray}
where $T>0$, $\Omega\subset \mathbb{R}^d$, $d=1,2,3$
and the initial condition ${\bf u}_0$ being known.
As usual, ${\bf n}$ denotes the outward unit normal
on the boundary $\partial\Omega$.
The function
\mbox{$
{\bf f}: \mathbb{R} \longrightarrow \mathbb{R}^d
$} is also known and supposed to be continuously differentiable.
The initial data $u_0$, defined in $\Omega$,
and the boundary one, $g$, defined on $\partial\Omega$ are given.
The function $\Phi$, called the Godunov flux associated to ${\bf f}$, is defined,
for all $\boldsymbol{\nu}\in\mathbb{R}^d$
and $a, b \in\mathbb{R}$, by
\begin{equation}
\Phi(\boldsymbol{\nu};\,a,b)
=
\left\{
\begin{array}{ll}
{\displaystyle \min_{v\in [a,b]}}
{\bf f}(v).\boldsymbol{\nu}
& \mbox{ when } a \leq b \\
{\displaystyle \max_{v\in [b,a]}}
{\bf f}(v).\boldsymbol{\nu}
& \mbox{ otherwise }
\end{array}
\right.
\label{eq-dg-hyp-flux-godunov}
\end{equation}
\end{subequations}
% Observe that the boundary condition is neither obvious nor explicit
% in the case of a nonlinear problem given by a general ${\bf f}$ function.
Note that, with this general formalism,
the linear transport problem considered in
the previous section~\ref{sec-transport-dg}
corresponds to (see e.g.~\citealp[p.~104]{PieErn-2012}:
\begin{subequations}
\begin{eqnarray}
\boldsymbol{f}(u) &=& \boldsymbol{a}u
\label{eq-dg-hyp-transport-f}
\\
\Phi(\boldsymbol{n};\,u,v) &=&
\boldsymbol{a}.\boldsymbol{n}
\Frac{u+v}{2}
+
\Frac{|\boldsymbol{a}.\boldsymbol{n}|}{2}
(u-v)
\label{eq-dg-hyp-transport-phi}
\end{eqnarray}
\end{subequations}
% ------------------------------------
\subsubsection*{Space discretization}
% ------------------------------------
In this section, we consider first the semi-discretization
with respect to space while the problem remains continuous
with respect to time.
The semi-discrete problem writes in variational
form~\citep[p.~100]{PieErn-2012}:
\ \ $(P)_h$: \emph{find $u_h\in C^1([0,T],X_h)$ such that}
\begin{eqnarray*}
\int_\Omega
\Frac{\partial u_h}{\partial t}
v_h
\,{\rm d}x
-
\int_\Omega
{\bf f}(u_h)
.\nabla_h v_h
\,{\rm d}x
+
\sum_{S\in \mathcal{S}_h^{(i)}}
\int_S
\Phi({\bf n};\,u_h^-,u_h^+)
\jump{v_h}
\,{\rm d}s
+
\int_{\partial\Omega}
\Phi({\bf n};\,u_h,g)
v_h
\,{\rm d}s
&=& 0,
\ \ \forall v_h\in X_h
\\
u_h(t\!=\!0) &=& \pi_h(u_0)
\end{eqnarray*}
where $\pi_h$ denotes the Lagrange
interpolation operator on $X_h$
and others notations has been introduced in the
previous section.
For convenience, we introduce the
discrete operator $G_h$, defined for all
$u_h,v_h\in X_h$ by
\begin{eqnarray}
\int_\Omega
G_h(u_h)
v_h
\,{\rm d}x
=
-
\int_\Omega
{\bf f}(u_h)
.\nabla_h v_h
\,{\rm d}x
+
\sum_{S\in \mathcal{S}_h^{(i)}}
\int_S
\Phi({\bf n};\,u_h^-,u_h^+)
\jump{v_h}
\,{\rm d}s
+
\int_{\partial\Omega}
\Phi({\bf n};\,u_h,g)
v_h
\,{\rm d}s
\label{eq-dg-hyp-def-Gh}
\end{eqnarray}
For a given $u_h\in X_h$, we also define the linear form $g_h$ as
\begin{eqnarray*}
g(v_h)
&=&
\int_\Omega
G_h(u_h)
v_h
\,{\rm d}x
\end{eqnarray*}
As the matrix $M$, representing the $L^2$ scalar product in $X_h$,
is block-diagonal, it can be easily inverted
at the element level, and for a given $u_h\in X_h$,
we have $G(u_h)=M^{-1}g_h$.
%
Then, the problem
writes equivalently as a set of coupled
nonlinear ordinary differential equations.
\ \ $(P)_h$: \emph{find $u_h\in C^1([0,T],X_h)$ such that}
\begin{eqnarray*}
\Frac{\partial u_h}{\partial t}
+
G_h(u_h)
&=&
0
\end{eqnarray*}
% ---------------------------------------
\subsubsection*{Time discretization}
% ---------------------------------------
\label{sec-hyperbolic-runge-kutta}%
\cindex{method!Runge-Kutta scheme}%
% TODO: pas clair: Gh ici et lh(vh) dans le code
% et on ne sais pas d'ou vient inv_m*lh
Let $\Delta t>0$ be the time step.
The previous nonlinear ordinary differential equations
are discretized by using a specific explicit Runge-Kutta
with intermediates states~\citep{ShuOsh-1988,GotShu-1998,GotShuTad-2001}.
This specific variant of the usual Runge-Kutta scheme,
called \emph{strong stability preserving},
is suitable for avoiding possible spurious oscillations of the approximate
solution when the exact solution has a poor regularity.
Let $u_h^n$ denotes the approximation of $u_h$ at
time $t_n=n\Delta t$, $n\geq 0$.
Then $u_h^{n+1}$ is defined by
recurrence:
\begin{eqnarray*}
u_h^{n,0} &=& u_h^n
\\
u_h^{n,i} &=&
\sum_{j=0}^{i-1}
\alpha_{i,j} u_h^{n,j}
-
\Delta t\,\beta_{i,j} G_h\left(u_h^{n,j}\right)
, \ \ 1\leq i\leq p
\\
u_h^{n+1} &=& u_h^{n,p}
\end{eqnarray*}
where the coefficients satisfy $\alpha_{i,j}\geq 0$
and $\beta_{i,j}\geq 0$
for all $1\leq i\leq p$ and $0\leq j\leq i-1$,
and
\mbox{$
\sum_{j=0}^{i-1} \alpha_{i,j}=1
$}
for all $1\leq i\leq p$.
\cindex{method!Euler explicit scheme}%
Note that when $p=1$ this scheme coincides with the usual
explicit Euler scheme.
For a general $p\geq 1$ order scheme, there are $p-1$ intermediate states
$u_h^{n,i}$, $i=1\ldots p-1$.
%
% ---------------------------------------
\myexamplenoinput{runge_kutta_ssp.icc}
% ---------------------------------------
Computation of the coefficients
$\alpha_{i,j}$
and $\beta_{i,j}$
can be founded in~\citep{ShuOsh-1988,GotShu-1998,GotShuTad-2001}
and are grouped in file~\file{runge_kutta_ssp.icc}
of the examples directory for convenience.
|