File: neumann-laplace.tex

package info (click to toggle)
rheolef 7.1-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 77,392 kB
  • sloc: cpp: 105,337; sh: 16,014; makefile: 5,293; python: 1,359; xml: 221; yacc: 218; javascript: 202; awk: 61; sed: 5
file content (213 lines) | stat: -rw-r--r-- 7,131 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
%----------------------------------------------------
%\section{Non-homogeneous Neumann boundary conditions for the Laplace operator}
%----------------------------------------------------
\label{sec-neumann-laplace}
\pbindex{Poisson}%
\cindex{boundary condition!Neumann}%

In this chapter we study how to solve a ill-posed problem
with a solution defined up to a constant.

\subsubsection*{Formulation}
  Let $\Omega$ be a bounded open and simply connected subset of $\mathbb{R}^d$, 
  $d=1,2$ or $3$.
  Let $f \in L^{2}(\Omega)$ and
  $g \in H^{\frac{1}{2}}(\partial \Omega)$ satisfying
  the following compatibility condition:
  \[
	\int_\Omega f \, {\rm d}x
	+
	\int_{\partial\Omega} g \, {\rm d}s
	=
	0
  \]
  The problem writes:\\
  $(P_5)_h$: {\it find $u$, defined in $\Omega$ such that:}
  \begin{eqnarray*}
      -\Delta u &=& f \ {\rm in}\ \Omega \\
      \Frac{\partial u}{ \partial n} &=& g \ {\rm on}\ \partial \Omega
  \end{eqnarray*}
\cindex{method!conjugate gradient algorithm}%
\cindex{method!minres algorithm}%
  Since this problem only involves the derivatives of $u$,
  it is defined up to a constant:
  it is then clear that its solution is never unique~\citep[p.~11]{GirRav-1986}.
  A discrete version of this problem could be solved iteratively
  by the conjugate gradient or the MINRES algorithm~\citep{PaiSau-1975}.
  In order to solve it by a direct method,
  we get round this difficulty by seeking~$u$ in the following space
  \[	
	V = \{ v\in H^1(\Omega);\ \  b(v,1) = 0 \}
  \]
  where
  \[
	b(v,\mu) = \mu \, \int_\Omega v \, {\rm d}x,
		\ \ \forall v\in L^2(\Omega),
		\forall \mu\in \mathbb{R}
  \]
  The variational formulation of this problem writes:

  $(VF_5)$: {\it find $u \in V$ such that:}
  $$
    a(u,v) = \ell(v), \ \forall v \in V
  $$
  where
  \begin{eqnarray*}
    a(u,v) &=& \int_\Omega \nabla u . \nabla v \, \mathrm{d}x \\
    \ell(v) &=& \int_\Omega f v \, \mathrm{d}x \\
           + \int_{\partial \Omega} g v \, \mathrm{d}s
  \end{eqnarray*}
  Since the direct discretization of the space $V$ is not
  an obvious task,
  the constraint $b(u,1) = 0$ is enforced by a Lagrange multiplier
\cindex{Lagrange!multiplier}%
  $\lambda\in \mathbb{R}$.
  Let us introduce the Lagrangian, defined
  for all $v\in H^1(\Omega)$ and $\mu\in\mathbb{R}$ by:
  \[
    L(v,\mu) = \Frac{1}{2} a(v,v) + b(v,\mu) - \ell(v)
  \]
  The saddle point $(u,\lambda)\in H^1(\Omega)\times\mathbb{R}$
  of this Lagrangian is characterized as the unique solution
  of:
  \begin{eqnarray*}
	a(u,v) + b(v,\lambda)
		&=& \ell(v), \ \ \forall v\in H^ 1(\Omega) \\
	b(u,\mu) \phantom{+ b(v,\lambda)}
	        &=& 0,    \ \ \ \ \  \forall \mu\in\mathbb{R}
  \end{eqnarray*}
  It is clear that if $(u,\lambda)$ is solution of this problem,
  then $u\in V$ and $u$ is a solution of $(VF_5)$.
  Conversely, let $u\in V$ the solution of $(VF_5)$.
  Choosing $v=v_0$ where $v_0(x)=1$, $\forall x\in\Omega$
  leads to 
  \mbox{$
     \lambda\,{\rm meas}(\Omega)=\ell(v_0)
  $}.
  From the definition of $\ell(.)$ and the compatibility 
  condition between the data $f$ and $g$, we get $\lambda=0$.
  Note that the saddle point problem extends to the case
  when $f$ and $g$ does not satisfies the compatibility condition,
  and in that case $\lambda=\ell(v_0)/{\rm meas}(\Omega)$.
  
\subsubsection*{Approximation}
\cindex{Lagrange!interpolation}
  As usual, we introduce a mesh ${\cal T}_h$ of $\Omega$
  and the finite dimensional space $X_h$:
  $$
      X_h = \{ v \in H^1(\Omega); \
          v_{/K} \in P_k, \
          \forall K \in {\cal T}_h \}
  $$
  The approximate problem writes:\\
  {\it $(VF_5)_h$: find $(u_h,\lambda_h)\in X_h\times \mathbb{R}$ such that:}
  \begin{eqnarray*}
	a(u_h,v) + b(v,\lambda_h)
		&=& \ell(v), \ \ \forall v\in X_h \\
	b(u_h,\mu) \phantom{+ b(v,\lambda)}
	        &=& 0,    \ \ \ \ \  \forall \mu\in\mathbb{R}
  \end{eqnarray*}

% ------------------------------
\myexamplelicense{neumann-laplace.cc}
% ------------------------------

\subsubsection*{Comments}
  Let $\Omega \subset \mathbb{R}^d$, $d=1,2,3$.
  We choose $f(x) = 1$ and $g(x) = -1/(2d)$.
  This example is convenient, since the exact solution is known:
  $$
	u(x) = - \Frac{1}{12} + \Frac{1}{2d} \sum_{i=1}^d x_i(1-x_i)
  $$
  The code looks like the previous ones.
  Let us comment the changes.
  The discrete bilinear form $b$ is computed as $b\in X_h$
  that interprets as a linear application from $X_h$ to $\mathbb{R}$:
  $b(v_h)=m(v_h,1)$. Thus $b$ is computed as
\begin{lstlisting}[numbers=none,frame=none]
  field b = integrate(v);
\end{lstlisting} 
  Let 
  \[
     \mathcal{A}
	=
     \left( \begin{array}{cc} 
        {\tt a} & {\tt trans(b)} \\ 
        {\tt b}  & 0 
     \end{array} \right)
	, \ \ \ 
     \mathcal{U}
     	=
     \left( \begin{array}{c} 
        {\tt uh} \\ 
        {\tt lambda} 
     \end{array} \right)
	, \ \ \ 
     \mathcal{B}
     	=
     \left( \begin{array}{c} 
        {\tt lh} \\
        0
     \end{array} \right)
  \]
  The problem admits the following matrix form:
  \[
     \mathcal{A} \ \mathcal{U} = \mathcal{B}
  \]
\cindex{matrix!concatenation}
  The matrix that represents the bilinear fo
  and its right-hand side are assembled as:
\begin{lstlisting}[numbers=none,frame=none]
  form  A = {{   a,      b},
             { trans(b), 0}};
  field Bh = {   lh,     0};
\end{lstlisting}
Both the pairs $\mathcal{U}=(u_h,\lambda)$
and $\mathcal{B}=(b,0)$ belong to the
vectorial space~$X_h\times \mathbb{R}$.
and $\mathcal{B}=(b,0)$ belong to the
Then, the variable \code{Uh} could be declared as:
\begin{lstlisting}[numbers=none,frame=none]
  field Uh (Bh.get_space(), 0); 
\end{lstlisting}
%
\cindex{matrix!singular}%
\cindex{matrix!indefinite}%
\findex{ldlt}%
Note that the matrix $\mathcal{A}$ is symmetric and non-singular, but indefinite~: 
it admits eigenvalues that are either strictly positive or strictly negative.
While the Choleski factorization is not possible, its variant the $LDL^T$ one
is performed, thanks to the \code{ldlt} function:
\begin{lstlisting}[numbers=none,frame=none]
  A.set_symmetry(true);
  problem p (A);
  p.solve (Bh, Uh);
\end{lstlisting}
Then, the \code{uh} field is extracted as the first
component of the the \code{Uh} one:
\begin{lstlisting}[numbers=none,frame=none]
  dout << Uh[0];
\end{lstlisting}
%% \findex{catchmark}%
%%   Finally, the statement
%% \begin{lstlisting}[numbers=none,frame=none]
%%   dout << catchmark("u") << uh
%%        << catchmark("lambda") << lambda << endl;
%% \end{lstlisting}
%%   writes the solution $(u_h,\lambda)$.
%%   The \code{catchmark} function writes marks together with the solution in the output stream.
%%   These marks are suitable for a future reading with the same format, as:
%% \begin{lstlisting}[numbers=none,frame=none]
%%   din  >> catchmark("u") >> uh
%%        >> catchmark("lambda") >> lambda;
%% \end{lstlisting}
%%   This is useful for post-treatment, visualization and error analysis.

\subsubsection*{How to run the program}

  As usual, enter:
\begin{verbatim}
  make neumann-laplace
  mkgeo_grid -t 10 > square.geo
  ./neumann-laplace square P1 | field -
\end{verbatim}