File: notations.tex

package info (click to toggle)
rheolef 7.1-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 77,392 kB
  • sloc: cpp: 105,337; sh: 16,014; makefile: 5,293; python: 1,359; xml: 221; yacc: 218; javascript: 202; awk: 61; sed: 5
file content (250 lines) | stat: -rw-r--r-- 8,424 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
\section*{Notations}

\begin{longtable}[c]{|r|l|l|}
		\hline
  \Rheolef      & mathematics
		& description
		\\ \hline \hline \endhead
  \code{d} 	& $d\in\{1,2,3\}$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& dimension of the physical space
		\\ \hline
  \code{interpolate}(\code{Vh},\emph{expr}) 	
		& $\pi_{V_h} (\mbox{\emph{expr}})$
		& interpolation in the space $V_h$
		\\ \hline
  \code{integrate}(\code{omega},\emph{expr}) 	
		& $\displaystyle \int_\Omega \mbox{\emph{expr}}\;\mathrm{d}x$
		& integration in $\Omega\subset\mathbb{R}^d$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		\\ \hline
  \begin{tabular}{l}
    \code{integrate}(omega, \\
    \ \ \ \code{on_local_sides}(\emph{expr}))
  \end{tabular}
		& $\displaystyle \sum_{K\in\mathscr{T}_h} \int_{\partial K} \mbox{\emph{expr}}\;\mathrm{d}s$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& integration on the local element sides
		\\ \hline
		\hline
  \code{dot(u,v)}
		& ${\bf u}.{\bf v}={\displaystyle \sum_{i=0}^{d-1} u_iv_i}$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& vector scalar product
		\\ \hline
  \code{ddot(sigma,tau)}
		& $\sigma:\tau={\displaystyle \sum_{i,j=0}^{d-1} \sigma_{i,j}\tau_{i,j}}$
		& tensor scalar product
		\\ \hline
  \code{tr(sigma)}
		& ${ {\rm tr}(\sigma) = \displaystyle \sum_{i=0}^{d-1} \sigma_{i,i} }$
		& trace of a tensor
		\\ \hline
  \code{trans(sigma)}
		& $\sigma^T$
		& tensor transposition
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		\\ \hline
% TODO
%  \code{otimes(u,v)}
%		& ${\bf u}\otimes{\bf v}={\displaystyle \left( u_iv_j \right)_{0\leq i,j<d} }$
%		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
%		& tensorial product of two vectors
%		\\ \hline
  \begin{tabular}{r}
    \code{sqr(phi)} \\
    \code{norm2(phi)}
  \end{tabular} & $\phi^2$ 
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& square of a scalar
		\\ \hline
  \code{norm2(u)}
		& $|{\bf u}|^2={\displaystyle \sum_{i=0}^{d-1} u_i^2}$
		& square of the vector norm
		\\ \hline
  \code{norm2(sigma)}
		& $|\sigma|^2={\displaystyle \sum_{i,j=0}^{d-1} \sigma_{i,j}^2}$
		& square of the tensor norm
		\\ \hline
  \begin{tabular}{r}
    \code{abs(phi)} \\
    \code{norm(phi)}
  \end{tabular} & $|\phi|$ 
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& absolute value of a scalar
		\\ \hline
  \code{norm(u)}
		& $|{\bf u}|={\displaystyle \left( \sum_{i=0}^{d-1} u_i^2 \right)^{1/2} }$
		& vector norm
		\\ \hline
  \code{norm(sigma)}
		& $|\sigma|={\displaystyle \left( \sum_{i,j=0}^{d-1} \sigma_{i,j}^2 \right)^{1/2} }$
		& tensor norm
		\\ \hline
  \code{grad(phi)}
		& $\nabla\phi={\displaystyle \left( \frac{\partial \phi}{\partial x_i} \right)_{0\leq i<d} }$
		& gradient of a scalar field % in $\Omega\subset\mathbb{R}^d$
		\\ \hline
  \code{grad(u)}
		& $\nabla{\bf u}={\displaystyle \left( \frac{\partial u_i}{\partial x_j} \right)_{0\leq i,j<d} }$
		& gradient of a vector field
		\\ \hline
  \code{div(u)}
		& ${\rm div}({\bf u})={\rm tr}(\nabla{\bf u})={\displaystyle \sum_{i=0}^{d-1} \frac{\partial u_i}{\partial x_i}}$
		& divergence of a vector field
		\\ \hline
  \code{D(u)}   & $D({\bf u})=\left( \nabla{\bf u} + \nabla{\bf u}^T \right)/2$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& \begin{tabular}{l}
                  symmetric part of \\
                  the gradient of a vector field
                  \end{tabular}
		\\ \hline
  \code{curl(u)}
		& ${\bf curl}({\bf u})=\nabla \wedge {\bf u}$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& curl of a vector field, when $d=3$
		\\ \hline
  \code{curl(phi)}
		& ${\bf curl}(\phi)= {\displaystyle \left(\frac{\partial \phi}{\partial x_1},
                                                        - \frac{\partial \phi}{\partial x_0} \right) }$
		& curl of a scalar field, when $d=2$
		\\ \hline
  \code{curl(u)}
		& ${\rm curl}({\bf u})= {\displaystyle \frac{\partial u_1}{\partial x_0}
                                                     - \frac{\partial u_0}{\partial x_1} }$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& curl of a vector field, when $d=2$
		\\ \hline
  \code{grad_s(phi)}
                & \begin{tabular}{l}
                   $\nabla_s\phi=P\nabla\phi$ \\
		   \hspace{1cm} where $P=I-{\bf n}\otimes{\bf n}$
                  \end{tabular}
		& tangential gradient of a scalar
		\\ \hline
  \code{grad_s(u)}
                & $\nabla_s{\bf u}=\nabla{\bf u}P$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& tangential gradient of a vector 
		\\ \hline
  \code{Ds(u)}
                & $D_s({\bf u})=P D({\bf u}) P$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& symmetrized tangential gradient
		\\ \hline
  \code{div_s(u)}
                & ${\rm div}_s({\bf u})={\rm tr}(D_s({\bf u}))$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& tangential divergence
		\\ \hline
                & & unit outward normal on $\Gamma=\partial\Omega$ \\
  \code{normal()}
                & ${\bf n}$
		& or on an oriented surface $\Omega$ \\
		& & or on an internal oriented side $S$
		\\ \hline
		&&\\
  \code{jump(phi)}
                & $\jump{\phi}=\phi_{|K_0}-\phi_{|K_1}$
		& jump accros inter-element side \\
		& & $S=\partial K_0\cap K_1$ 
		\\ \hline
  \code{average(phi)}
                & $\average{\phi}=(\phi_{|K_0}+\phi_{|K_1})/2$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& average across $S$
		\\ \hline
  \code{inner(phi)}
                & $\phi_{|K_0}$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& inner trace on $S$
		\\ \hline
  \code{outer(phi)}
                & $\phi_{|K_1}$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& outer trace on $S$
		\\ \hline
  \code{h_local()}	
		&
  		$ h_K = {\rm meas}(K)^{1/d}$
		& length scale on an element $K$
		\\ \hline
		&&\\
  \code{penalty()}	
		&
  		$ \varpi_s = {\rm max}\left(
            		\Frac{{\rm meas}(\partial K_0)}{{\rm meas}(K_0)}, \ 
            		\Frac{{\rm meas}(\partial K_1)}{{\rm meas}(K_1)}
        	  \right)$
		& penalty coefficient on $S$
		\\ \hline
		&&\\
  \code{grad_h(phi)}
		& $(\nabla_h\phi)_{|K}=\nabla(\phi_{|K}), \forall K\in\mathcal{T}_h$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& broken gradient
		\\ \hline
  \code{div_h(u)}
		& $({\rm div}_h{\bf u})_{|K}={\rm div}({\bf u}_{|K}), \forall K\in\mathcal{T}_h$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		& broken divergence of a vector field
		\\ \hline
		&&\\
  \code{Dh(u)}
		& $(D_h({\bf u}))_{|K}=D({\bf u}_{|K}), \forall K\in\mathcal{T}_h$
		& broken symmetric part of \\
		&& the gradient of a vector field
		\\ \hline
		&&\\
  \code{sin(phi)} & $\sin(\phi)$
		  & standard mathematical functions
		  \\
  \code{cos(phi)} & $\cos(\phi)$ 
		  & extended to scalar fields
		  \\
  \code{tan(phi)} & $\tan(\phi)$ & \\
  \code{acos(phi)} & $\cos^{-1}(\phi)$ & \\
  \code{asin(phi)} & $\sin^{-1}(\phi)$ & \\
  \code{atan(phi)} & $\tan^{-1}(\phi)$ & \\
  \code{cosh(phi)} & $\cosh(\phi)$ & \\
  \code{sinh(phi)} & $\sinh(\phi)$ & \\
  \code{tanh(phi)} & $\tanh(\phi)$ & \\
  \code{exp(phi)} & $\exp(\phi)$ & \\
  \code{log(phi)} & $\log(\phi)$ & \\
  \code{log10(phi)} & $\log10(\phi)$ & \\
  \code{floor(phi)} & $\lfloor \phi \rfloor$ 
		  & largest integral not greater than $\phi$
                  \\
  \code{ceil(phi)} & $\lceil \phi \rceil$ 
                  & smallest integral not less than $\phi$
                  \\
  \code{min(phi,psi)} & $\min(\phi,\psi)$ & \\
  \code{max(phi,psi)} & $\max(\phi,\psi)$ & \\
  \code{pow(phi,psi)} & $\phi^\psi$ & \\
  \code{atan2(phi,psi)} & $\tan^{-1}(\psi/\phi)$ & \\
  \code{fmod(phi,psi)} & $\phi-\lfloor \phi/\psi+1/2\rfloor\,\psi$ 
                  & floating point remainder
		  \\ 
		  && \\ \hline
  \code{compose(f,phi)}
		  & $f\circ\phi = f(\phi)$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		  & applies an unary function $f$
		  \\ \hline
% \code{compose(f,phi,psi)}
%		  & $f(\phi,\psi)$
%		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
%		  & applies a binary function $f$
%		  \\ \hline
  \code{compose(f,phi1,\ldots,phin)}
		  & $f(\phi_1,\ldots,\phi_n)$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		  & applies a $n$-ary function $f$, \ $n\geq 1$
		  \\ \hline
  \code{compose(phi,X)}
		  & $\phi\circ X$, \ $X(x)=x+{\bf d}(x)$
		  	\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
		  & composition with a characteristic
		  \\ \hline
\end{longtable}