1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
\section*{Notations}
\begin{longtable}[c]{|r|l|l|}
\hline
\Rheolef & mathematics
& description
\\ \hline \hline \endhead
\code{d} & $d\in\{1,2,3\}$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& dimension of the physical space
\\ \hline
\code{interpolate}(\code{Vh},\emph{expr})
& $\pi_{V_h} (\mbox{\emph{expr}})$
& interpolation in the space $V_h$
\\ \hline
\code{integrate}(\code{omega},\emph{expr})
& $\displaystyle \int_\Omega \mbox{\emph{expr}}\;\mathrm{d}x$
& integration in $\Omega\subset\mathbb{R}^d$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
\\ \hline
\begin{tabular}{l}
\code{integrate}(omega, \\
\ \ \ \code{on_local_sides}(\emph{expr}))
\end{tabular}
& $\displaystyle \sum_{K\in\mathscr{T}_h} \int_{\partial K} \mbox{\emph{expr}}\;\mathrm{d}s$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& integration on the local element sides
\\ \hline
\hline
\code{dot(u,v)}
& ${\bf u}.{\bf v}={\displaystyle \sum_{i=0}^{d-1} u_iv_i}$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& vector scalar product
\\ \hline
\code{ddot(sigma,tau)}
& $\sigma:\tau={\displaystyle \sum_{i,j=0}^{d-1} \sigma_{i,j}\tau_{i,j}}$
& tensor scalar product
\\ \hline
\code{tr(sigma)}
& ${ {\rm tr}(\sigma) = \displaystyle \sum_{i=0}^{d-1} \sigma_{i,i} }$
& trace of a tensor
\\ \hline
\code{trans(sigma)}
& $\sigma^T$
& tensor transposition
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
\\ \hline
% TODO
% \code{otimes(u,v)}
% & ${\bf u}\otimes{\bf v}={\displaystyle \left( u_iv_j \right)_{0\leq i,j<d} }$
% \phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
% & tensorial product of two vectors
% \\ \hline
\begin{tabular}{r}
\code{sqr(phi)} \\
\code{norm2(phi)}
\end{tabular} & $\phi^2$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& square of a scalar
\\ \hline
\code{norm2(u)}
& $|{\bf u}|^2={\displaystyle \sum_{i=0}^{d-1} u_i^2}$
& square of the vector norm
\\ \hline
\code{norm2(sigma)}
& $|\sigma|^2={\displaystyle \sum_{i,j=0}^{d-1} \sigma_{i,j}^2}$
& square of the tensor norm
\\ \hline
\begin{tabular}{r}
\code{abs(phi)} \\
\code{norm(phi)}
\end{tabular} & $|\phi|$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& absolute value of a scalar
\\ \hline
\code{norm(u)}
& $|{\bf u}|={\displaystyle \left( \sum_{i=0}^{d-1} u_i^2 \right)^{1/2} }$
& vector norm
\\ \hline
\code{norm(sigma)}
& $|\sigma|={\displaystyle \left( \sum_{i,j=0}^{d-1} \sigma_{i,j}^2 \right)^{1/2} }$
& tensor norm
\\ \hline
\code{grad(phi)}
& $\nabla\phi={\displaystyle \left( \frac{\partial \phi}{\partial x_i} \right)_{0\leq i<d} }$
& gradient of a scalar field % in $\Omega\subset\mathbb{R}^d$
\\ \hline
\code{grad(u)}
& $\nabla{\bf u}={\displaystyle \left( \frac{\partial u_i}{\partial x_j} \right)_{0\leq i,j<d} }$
& gradient of a vector field
\\ \hline
\code{div(u)}
& ${\rm div}({\bf u})={\rm tr}(\nabla{\bf u})={\displaystyle \sum_{i=0}^{d-1} \frac{\partial u_i}{\partial x_i}}$
& divergence of a vector field
\\ \hline
\code{D(u)} & $D({\bf u})=\left( \nabla{\bf u} + \nabla{\bf u}^T \right)/2$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& \begin{tabular}{l}
symmetric part of \\
the gradient of a vector field
\end{tabular}
\\ \hline
\code{curl(u)}
& ${\bf curl}({\bf u})=\nabla \wedge {\bf u}$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& curl of a vector field, when $d=3$
\\ \hline
\code{curl(phi)}
& ${\bf curl}(\phi)= {\displaystyle \left(\frac{\partial \phi}{\partial x_1},
- \frac{\partial \phi}{\partial x_0} \right) }$
& curl of a scalar field, when $d=2$
\\ \hline
\code{curl(u)}
& ${\rm curl}({\bf u})= {\displaystyle \frac{\partial u_1}{\partial x_0}
- \frac{\partial u_0}{\partial x_1} }$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& curl of a vector field, when $d=2$
\\ \hline
\code{grad_s(phi)}
& \begin{tabular}{l}
$\nabla_s\phi=P\nabla\phi$ \\
\hspace{1cm} where $P=I-{\bf n}\otimes{\bf n}$
\end{tabular}
& tangential gradient of a scalar
\\ \hline
\code{grad_s(u)}
& $\nabla_s{\bf u}=\nabla{\bf u}P$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& tangential gradient of a vector
\\ \hline
\code{Ds(u)}
& $D_s({\bf u})=P D({\bf u}) P$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& symmetrized tangential gradient
\\ \hline
\code{div_s(u)}
& ${\rm div}_s({\bf u})={\rm tr}(D_s({\bf u}))$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& tangential divergence
\\ \hline
& & unit outward normal on $\Gamma=\partial\Omega$ \\
\code{normal()}
& ${\bf n}$
& or on an oriented surface $\Omega$ \\
& & or on an internal oriented side $S$
\\ \hline
&&\\
\code{jump(phi)}
& $\jump{\phi}=\phi_{|K_0}-\phi_{|K_1}$
& jump accros inter-element side \\
& & $S=\partial K_0\cap K_1$
\\ \hline
\code{average(phi)}
& $\average{\phi}=(\phi_{|K_0}+\phi_{|K_1})/2$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& average across $S$
\\ \hline
\code{inner(phi)}
& $\phi_{|K_0}$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& inner trace on $S$
\\ \hline
\code{outer(phi)}
& $\phi_{|K_1}$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& outer trace on $S$
\\ \hline
\code{h_local()}
&
$ h_K = {\rm meas}(K)^{1/d}$
& length scale on an element $K$
\\ \hline
&&\\
\code{penalty()}
&
$ \varpi_s = {\rm max}\left(
\Frac{{\rm meas}(\partial K_0)}{{\rm meas}(K_0)}, \
\Frac{{\rm meas}(\partial K_1)}{{\rm meas}(K_1)}
\right)$
& penalty coefficient on $S$
\\ \hline
&&\\
\code{grad_h(phi)}
& $(\nabla_h\phi)_{|K}=\nabla(\phi_{|K}), \forall K\in\mathcal{T}_h$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& broken gradient
\\ \hline
\code{div_h(u)}
& $({\rm div}_h{\bf u})_{|K}={\rm div}({\bf u}_{|K}), \forall K\in\mathcal{T}_h$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& broken divergence of a vector field
\\ \hline
&&\\
\code{Dh(u)}
& $(D_h({\bf u}))_{|K}=D({\bf u}_{|K}), \forall K\in\mathcal{T}_h$
& broken symmetric part of \\
&& the gradient of a vector field
\\ \hline
&&\\
\code{sin(phi)} & $\sin(\phi)$
& standard mathematical functions
\\
\code{cos(phi)} & $\cos(\phi)$
& extended to scalar fields
\\
\code{tan(phi)} & $\tan(\phi)$ & \\
\code{acos(phi)} & $\cos^{-1}(\phi)$ & \\
\code{asin(phi)} & $\sin^{-1}(\phi)$ & \\
\code{atan(phi)} & $\tan^{-1}(\phi)$ & \\
\code{cosh(phi)} & $\cosh(\phi)$ & \\
\code{sinh(phi)} & $\sinh(\phi)$ & \\
\code{tanh(phi)} & $\tanh(\phi)$ & \\
\code{exp(phi)} & $\exp(\phi)$ & \\
\code{log(phi)} & $\log(\phi)$ & \\
\code{log10(phi)} & $\log10(\phi)$ & \\
\code{floor(phi)} & $\lfloor \phi \rfloor$
& largest integral not greater than $\phi$
\\
\code{ceil(phi)} & $\lceil \phi \rceil$
& smallest integral not less than $\phi$
\\
\code{min(phi,psi)} & $\min(\phi,\psi)$ & \\
\code{max(phi,psi)} & $\max(\phi,\psi)$ & \\
\code{pow(phi,psi)} & $\phi^\psi$ & \\
\code{atan2(phi,psi)} & $\tan^{-1}(\psi/\phi)$ & \\
\code{fmod(phi,psi)} & $\phi-\lfloor \phi/\psi+1/2\rfloor\,\psi$
& floating point remainder
\\
&& \\ \hline
\code{compose(f,phi)}
& $f\circ\phi = f(\phi)$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& applies an unary function $f$
\\ \hline
% \code{compose(f,phi,psi)}
% & $f(\phi,\psi)$
% \phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
% & applies a binary function $f$
% \\ \hline
\code{compose(f,phi1,\ldots,phin)}
& $f(\phi_1,\ldots,\phi_n)$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& applies a $n$-ary function $f$, \ $n\geq 1$
\\ \hline
\code{compose(phi,X)}
& $\phi\circ X$, \ $X(x)=x+{\bf d}(x)$
\phantom{${\displaystyle \sum_{i,j=0}^{d-1}}$}
& composition with a characteristic
\\ \hline
\end{longtable}
|