1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
\label{sec-surface}
\cindex{geometry!surface}%
\cindex{method!level set}%
This chapter deals with equations defined on a closed hypersurface.
We present three different numerical methods: the direct resolution
of the problem on an explicit surface mesh generated independently
of \Rheolef, the direct resolution on a surface mesh generated
by \Rheolef\ from a volume mesh, and finally a level set type method
based on a volume mesh in an $h$-narrow band containing the surface.
This last method allows one to define hybrid operators between surface and
volume-based finite element fields.
These methods are demonstrated on two model problems and two
different surfaces.
% ---------------------------------------------
%\subsubsection*{Problems statement}
% ---------------------------------------------
Let us consider a closed surface $\Gamma \in \mathbb{R}^d$, $d=2$ or $3$ and $\Gamma$
is a connected $C^2$ surface of dimension $d-1$ with $\partial\Gamma=0$.
We first consider the following problem:\\
\mbox{} \ \ $(P1)$ {\it find $u$, defined on $\Gamma$ such that:}
\begin{eqnarray}
u -\Delta_s u &=& f \ {\rm on}\ \Gamma
\label{eq-helmholtz-s}
\end{eqnarray}
where $f \in L^2(\Gamma)$.
\cindex{operator!Laplace-Beltrami}%
\cindex{operator!Helmholtz-Beltrami}%
For all function $u$ defined on $\Gamma$,
$\Delta_s$ denotes the Laplace-Beltrami operator:
\[
\Delta_s u = {\rm div}_s (\nabla_s u)
\]
where $\nabla_s$ and ${\rm div}_s$
are the tangential derivative and the surface divergence
along $\Gamma$, defined respectively,
for all scalar field $\varphi$ and vector field ${\bf v}$ by:
\begin{eqnarray*}
\nabla_s \varphi &=& (I - \mathbf{n} \otimes \mathbf{n})\, \nabla \varphi \\
{\rm div}_s \, {\bf v} &=& (I - \mathbf{n} \otimes \mathbf{n}) : \nabla {\bf v}
\end{eqnarray*}
Here, $\mathbf{n}$ denotes a unit normal on $\Gamma$.
We also consider the following variant of this problem:\\
\mbox{} \ \ $(P2)$ {\it find $u$, defined on $\Gamma$ such that:}
\begin{eqnarray}
-\Delta_s u &=& f \ {\rm on}\ \Gamma
\label{eq-laplace-s}
\end{eqnarray}
This second problem is similar to the first one: the Helmholtz
operator $I-\Delta_s$ has been replaced by the Laplace-Beltrami one $-\Delta_s$.
In that case, the solution is defined up to a constant:
if $u$ is a solution, then $u+c$ is also a solution for any constant $c\in\mathbb{R}$.
Thus, we refers to $(P1)$ as the Helmholtz-Beltrami problem
and to $(P2)$ as the Laplace-Beltrami one.
% -------------------------------------------------
\subsection{Approximation on an explicit surface mesh}
% -------------------------------------------------
% -----------------------------------------
\subsubsection{The Helmholtz-Beltrami problem}
% -----------------------------------------
\cindex{Green formula}%
Tanks to the surface Green formula (see appendix~\ref{sec-green-surface}),
the variational formulation of problem $(P1)$ writes:\\
\mbox{}\ \ $(VF1)$: {\it find $u \in H^1(\Gamma)$ such that:}
$$
a(u,v) = l(v), \ \forall v \in H^1(\Gamma)
$$
where for all $u,v\in H^1(\Gamma)$,
\begin{eqnarray*}
a(u,v) &=& \int_\Gamma \left( u \, v + \nabla_s u . \nabla_s v \right) \, {\rm d}s \\
l(v) &=& \int_\Gamma f \, v \, {\rm d}s
\end{eqnarray*}
Let $k\geq 1$ and consider
a $k$-th order curved surface finite element mesh $\Gamma_h$ of $\Gamma$.
We define the space $W_h$:
$$
W_h = \left\lbrace v_h \in H^1(\Gamma_h) ; v_{|_S} \in P_k, \forall S \in \Gamma_h \right\rbrace
$$
The approximate problem writes:\\
\mbox{}\ \ {\it $(VF1)_h$: find $u_h\in W_h$ such that:}
\begin{eqnarray*}
a(u_h,v_h) &=& l(v_h), \ \ \forall v_h\in W_h \\
\end{eqnarray*}
% -----------------------------------------
\myexamplelicense{helmholtz_s.cc}
% -----------------------------------------
% -----------------------------------------
\subsubsection*{Comments}
% -----------------------------------------
The problem involves the Helmholtz operator
and thus, the code is similar to
\exindex{neumann-nh.cc}%
\reffile{neumann-nh.cc}
presented page~\pageref{neumann-nh.cc}.
\findex{integrate}%
\cindex{form!{$\nabla_s u.\nabla_s v+uv$}}%
Let us comments the only differences:
\begin{lstlisting}[numbers=none,frame=none]
form a = integrate (u*v + dot(grad_s(u),grad_s(v)));
\end{lstlisting}
The form refers to the \code{grad_s} operator
instead of the \code{grad} one, since only
the coordinates related to the surface are involved.
\begin{lstlisting}[numbers=none,frame=none]
field lh = integrate (f(d)*v);
\end{lstlisting}
The right-hand-side does not involve any boundary term,
since the surface $\Gamma$ is closed: the boundary domain $\partial \Gamma=\emptyset$.
%
As test problem, the surface $\Gamma$ is the unit circle when
$d=2$ and the unit sphere when $d=3$.
\cindex{benchmark!Dziuk-Elliott-Heine on a sphere}%
The data $f$ has been chosen as in \citet[p.~17]{DecDziEllHei-2009}.
This choice is convenient since the exact solution is known.
Recall that the spherical coordinates $(\rho,\theta,\phi)$
are defined from the Cartesian ones $(x_0,x_1,x_2)$ by:
\cindex{coordinate system!spherical}%
\cindex{geometry!sphere}%
\[
\rho = \sqrt{x_0^2 + x_1^2 + x_2^2}
,\ \
\phi = \arccos\left(x_2/\rho\right)
,\ \
\theta = \left\{
\begin{array}{ll}
\arccos\left(x_0/\sqrt{x_0^2+x_1^2}\right) & \mbox{ when } x_1 \geq 0 \\
2\pi - \arccos\left(x_0/\sqrt{x_0^2+x_1^2}\right) & \mbox{ otherwise }
\end{array}
\right.
\]
% -----------------------------------------
\myexamplelicense{sphere.icc}
% -----------------------------------------
% -------------------------------
\subsubsection*{How to run the program}
% -------------------------------
The program compile as usual:
\begin{verbatim}
make helmholtz_s
\end{verbatim}
A mesh of a circle is generated by:
\pindex{mkgeo_ball}%
\pindexopt{mkgeo_ball}{-s}%
\pindexopt{mkgeo_ball}{-e}%
\cindex{geometry!circle}%
\begin{verbatim}
mkgeo_ball -s -e 100 > circle.geo
geo circle -gnuplot
\end{verbatim}
The \code{mkgeo_ball} is a convenient script that
\pindex{gmsh}%
generates a mesh with the {\tt gmsh} mesh generator.
Then, the problem resolution writes:
\begin{verbatim}
./helmholtz_s circle P1 > circle.field
field circle.field
field circle.field -elevation
\end{verbatim}
The tridimensional case is similar:
\pindexopt{mkgeo_ball}{-t}%
\pindexopt{geo}{-stereo}%
\pindexopt{field}{-stereo}%
\begin{verbatim}
mkgeo_ball -s -t 10 > sphere.geo
geo sphere.geo -stereo
./helmholtz_s sphere.geo P1 > sphere.field
field sphere.field
field sphere.field -stereo
\end{verbatim}
The solution is represented on Fig~.\ref{fig-sphere-s-geo}.left.
\begin{figure}[htb]
%\begin{center}
\begin{tabular}{ccc}
%TODO: le maillage correspond a n=5 et la solution a n=10 !
% sur le maillage n=10 on ne voit pas les aretes courbes...
\includegraphics[height=6.5cm]{sphere_s_P1_geo.png} &
\includegraphics[height=6.5cm]{sphere_s_P1_field.png} & \\
\includegraphics[height=6.5cm]{sphere_s_P3_geo.pdf} &
\includegraphics[height=6.5cm]{sphere_s_P3_field.png} &
\stereoglasses
\end{tabular}
%\end{center}
\caption{Helmholtz-Beltrami problem:
high-order curved surface mesh
and its corresponding isoparametric solution:
(top) $order=1$; (bottom) $order=3$.}
\label{fig-sphere-s-geo}
\end{figure}
Higher-order isoparametric finite elements can be considered for the
curved geometry:
\cindex{geometry!curved}%
\apindex{isoparametric}%
\pindexopt{geo}{-subdivide}%
\begin{verbatim}
mkgeo_ball -s -e 30 -order 3 > circle-P3.geo
geo circle-P3.geo -subdivide 10
\end{verbatim}
Observe the curved edges (see Fig~.\ref{fig-sphere-s-geo}).
The \code{-subdivide} option allows a graphical representation of the
curved edges by subdividing each edge in ten linear parts, since graphical
softwares are not yet able to represent curved elements.
The computation with the $P_3$ isoparametric approximation writes:
\begin{verbatim}
./helmholtz_s circle-P3 P3 > circle-P3.field
field circle-P3.field -elevation -gnuplot
\end{verbatim}
Note that both the curved geometry and the finite element are second order.
The tridimensional counterpart writes simply:
\begin{verbatim}
mkgeo_ball -s -t 10 -order 3 > sphere-P3.geo
geo sphere-P3.geo -gnuplot
./helmholtz_s sphere-P3 P3 > sphere-P3.field
field sphere-P3.field
field sphere-P3.field -stereo
\end{verbatim}
The solution is represented on Fig~.\ref{fig-sphere-s-geo}).right-bottom.
The graphical representation is not yet able to represent the high-order
approximation: each elements is subdivided and a piecewise linear representation is
used in each sub-elements.
\cindex{error analysis}%
\cindex{convergence!error!versus mesh}%
\cindex{convergence!error!versus polynomial degree}%
\begin{figure}[htb]
\begin{center}
\begin{tabular}{cc}
\includegraphics{cvge-helmholtz-s-sphere-l2.pdf} &
\includegraphics{cvge-helmholtz-s-sphere-linf.pdf} \\
\includegraphics{cvge-helmholtz-s-sphere-h1.pdf} &
\end{tabular}
\end{center}
\caption{Curved non-polynomial surface:
error analysis in $L^2$, $L^\infty$ and $H^1$ norms.}
\label{fig-surface-err}
\end{figure}
\myexamplenoinput{helmholtz_s_error.cc}%
Since the exact solution is known, the error can be computed:
this is done by the program \code{helmholtz_s_error.cc}.
This file is not presented here, as it is similar to some others
examples, but can be founded in the \Rheolef\ example directory.
Figure~\ref{fig-surface-err} plots the error in various norms
versus element size for different isoparametric approximations.
\clearpage
% -----------------------------------------
\subsubsection{The Laplace-Beltrami problem}
% -----------------------------------------
This problem has been introduced in~\eqref{eq-laplace-s}, page~\pageref{eq-laplace-s}.
While the treatment of the Helmholtz-Beltrami problem was similar to the
Helmholtz problem with Neumann boundary conditions,
here, the treatment of the Laplace-Beltrami problem is similar to the
Laplace problem with Neumann boundary conditions:
see section~\ref{sec-neumann-laplace}, page~\pageref{sec-neumann-laplace}.
Note that for both problems, the solution is defined up to a constant.
Thus, the linear problem has a singular matrix.
The \reffile{laplace_s.cc} code is similar
to the \reffile{neumann-laplace.cc} one, as presented in section~\ref{sec-neumann-laplace}.
The only change lies one the definition of the right-hand side.
% -----------------------------------------
\myexamplelicense{laplace_s.cc}
\myexamplelicense{torus.icc}
% -----------------------------------------
As test problem, the surface $\Gamma$ is the a torus when $d=3$.
\cindex{benchmark!Olshanskii-Reusken-Grande on a torus}%
The data $f$ has been chosen as in~\citet[p.~3355]{OlsReuGra-2009}.
This choice is convenient since the exact solution is known.
\cindex{coordinate system!torus}%
Let $R$ and $r$ denotes the large and small torus radii, respectively.
The torus coordinates $(\rho,\theta,\phi)$ are defined linked
to the Cartesian ones by:
\[
\left( \begin{array}{c}
x_0 \\ x_1 \\ x_2
\end{array} \right)
=
R
\left( \begin{array}{c}
\cos(\phi) \\ \sin(\phi) \\ 0
\end{array} \right)
+
\rho
\left( \begin{array}{r}
\cos(\phi) \cos(\theta) \\ \sin(\phi) \cos(\theta) \\ \sin(\theta)
\end{array} \right)
\]
Here $\rho$ is the distance from the point to the circle in the $x_0x_1$ plane
around $0$ with radius $R$, $\theta$ is the angle from the positive $(x_0,x_1,0)$
to $x_0$ and $\phi$ is the angle from the positive $x_0$ axis to $(x_0,x_1,0)$.
% -------------------------------------
\subsubsection*{How to run the program ?}
% -------------------------------------
\begin{figure}[htb]
%\begin{center}
\begin{tabular}{ccc}
\includegraphics[width=6.5cm]{torus_s_P1_geo.png} &
\includegraphics[width=6.5cm]{torus_s_P1_field.png} & \\
\includegraphics[width=6.5cm]{torus_s_P2_geo.pdf} &
\includegraphics[width=6.5cm]{torus_s_P2_field.png} &
\stereoglasses
\end{tabular}
%\end{center}
\caption{Laplace-Beltrami problem on a torus:
high-order curved surface mesh
and its corresponding isoparametric solution:
(top) $order=1$; (bottom) $order=2$.}
\label{fig-torus-s-geo}
\end{figure}
\fiindex{\filesuffix{.mshcad} gmsh geometry}%
\pindex{gmsh}%
\cindex{geometry!torus}%
The surface mesh of the torus is generated by:
\begin{verbatim}
gmsh -2 torus.mshcad -format msh2 -o torus.msh
msh2geo torus.msh > torus.geo
geo torus.geo -stereo
\end{verbatim}
\myexamplenoinput{torus.mshcad}%
The \reffile{torus.mshcad} is not presented here:
it can be founded in the \Rheolef\ example directory.
Then, the computation and visualization writes:
\begin{verbatim}
make laplace_s
./laplace_s torus.geo P1 > torus.field
field torus.field
field torus.field -stereo
\end{verbatim}
For a higher-order approximation:
% TODO P3:
% gmsh -2 -order 3 torus.mshcad -format msh2 -o torus-P3.msh
% msh2geo torus-P3.msh > torus-P3.geo
% fatal{0}(geo_seq_upgrade.cc,429): invalid permutation
% => bug in gmsh: extrude and high order ?
\pindexopt{geo}{-gnuplot}%
\begin{verbatim}
gmsh -2 -order 2 torus.mshcad -format msh2 -o torus-P2.msh
msh2geo torus-P2.msh > torus-P2.geo
geo torus-P2.geo -gnuplot
./laplace_s torus-P2.geo P2 > torus-P2.field
field torus-P2.field -stereo
\end{verbatim}
The solution is represented on Fig.~\ref{fig-torus-s-geo}.
By editing \reffile{torus.mshcad} and changing the
density of discretization, we can improve the approximate solution
and converge to the exact solution.
Due to a bug~\citep{gmsh-bug-curved-high-order} in the current gmsh version~2.5.1
the convergence is not optimal ${\cal O}(h^k)$ for higher values of $k$.
\clearpage
% -------------------------------------------------------------------
\subsection{Building a surface mesh from a level set function}
% -------------------------------------------------------------------
\cindex{method!level set}%
The previous method is limited to not-too-complex surface $\Gamma$,
that can be described by a regular finite element surface mesh $\Gamma_h$.
When the surface change, as in a time-dependent process, complex
change of topology often occurs and the mesh $\Gamma_h$ can degenerate or
be too complex to be efficiently meshed.
In that case, the surface is described implicitly as
the zero isosurface, or zero {\em level set}, of a function:
\[
\Gamma = \{ x\in \Lambda; \ \ \phi(x) = 0 \}
\]
where $\Lambda\subset\mathbb{R}^d$ is a bounding box of the surface $\Gamma$.
The following code automatically generates
the mesh $\Gamma_h$ of the surface described by the zero isosurface
of a discrete $\phi_h\in X_h$ level set function:
\[
\Gamma_h = \{ x\in \Lambda; \ \ \phi_h(x) = 0 \}
\]
where $X_h$ is a piecewise affine functional space over a mesh
${\cal T}_h$ of $\Lambda$:
\[
X_h = \{ \varphi \in L^2(\Lambda) \cap C^0(\Lambda); \
\varphi_{/K} \in P_1, \
\forall K \in {\cal T}_h \}
\]
The polynomial approximation is actually limited here to first
order: building higher order curved finite element surface meshes
from a level set function is planed for the future versions of \Rheolef.
Finally, a computation, as performed
in the previous paragraph can be done using $\Gamma_h$.
We also point out the limitations of this approach.
% -----------------------------------------
\myexamplelicense{level_set_sphere.cc}
% -----------------------------------------
% -----------------------------------------
\subsubsection*{Comments}
% -----------------------------------------
\findex{level_set}%
\clindex{level_set_option}%
All the difficult work of building the intersection mesh $\Gamma_h$,
defined as the zero level set of the $\phi_h$ function,
is performed by the \code{level_set} function:
\begin{lstlisting}[numbers=none,frame=none]
geo gamma = level_set (phi_h, opts);
\end{lstlisting}
When $d=3$, intersected tetrahedra leads to either triangular or quadrangular faces.
By default, quadrangular faces are split into two triangles.
An optional \code{-tq} program flag allows one to conserve quadrangles in the surface mesh:
it set the \code{split_to_triangle} optional field to false.
% -----------------------------------------
\subsubsection*{How to run the program ?}
% -----------------------------------------
\begin{figure}[htb]
\begin{tabular}{ccc}
\includegraphics[height=5.5cm]{level-set-circle-geo.pdf} &
\includegraphics[height=5.5cm]{level-set-circle-field.png} & \\
\includegraphics[height=5.5cm]{level-set-sphere-geo.png} &
\includegraphics[height=5.5cm]{level-set-sphere-field.png} &\\
\includegraphics[height=5.0cm]{level-set-torus-geo.png} &
\includegraphics[height=5.0cm]{level-set-torus-field.png} &
\stereoglasses
\end{tabular}
\caption{Building an explicit surface mesh from level set:
(top) circle;
(center) sphere;
(bottom) torus.
}
\label{fig-intersection-sphere}
\end{figure}
After the compilation, generates the mesh
of a bounding box $\Lambda=[-2,2]^d$ of the surface and run the program:
\begin{verbatim}
make level_set_sphere
mkgeo_grid -t 20 -a -2 -b 2 -c -2 -d 2 > square2.geo
./level_set_sphere square2.geo > circle.geo
geo circle.geo -gnuplot
\end{verbatim}
The computation of the previous paragraph can be reused:
\begin{verbatim}
./helmholtz_s circle.geo P1 | field -paraview -
\end{verbatim}
Note that, while the bounding box mesh was uniform,
the intersected mesh could present arbitrarily small edge length
(see also Fig.~\ref{fig-intersection-sphere}):
\begin{verbatim}
geo -min-element-measure circle.geo
geo -max-element-measure circle.geo
\end{verbatim}
Let us turn to the $d=3$ case:
\begin{verbatim}
mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube2.geo
./level_set_sphere cube2.geo | geo -upgrade - > sphere.geo
geo sphere.geo -stereo
./helmholtz_s sphere.geo P1 | field -
\end{verbatim}
While the bounding box mesh was uniform,
the triangular elements obtained by intersecting the 3D bounding box
mesh with the level set function can present arbitrarily irregular sizes
and shapes (see also Fig.~\ref{fig-intersection-sphere}):
\begin{verbatim}
geo -min-element-measure -max-element-measure sphere.geo
\end{verbatim}
Nevertheless, and surprisingly,
\citet{OlsReuXu-2012} recently showed that
the finite element method converges on these irregular
intersected families of meshes.
%---------------------------------------
\myexamplenoinput{level_set_torus.cc}
%---------------------------------------
This approach can be extended to the Laplace-Beltrami problem
on a torus:
\begin{verbatim}
sed -e 's/sphere/torus/' < level_set_sphere.cc > level_set_torus.cc
make level_set_torus
./level_set_torus cube2.geo | geo -upgrade - > torus.geo
geo torus.geo -stereo
./laplace_s torus.geo P1 | field -
\end{verbatim}
Note that the intersected mesh is also irregular:
\begin{verbatim}
geo -min-element-measure -max-element-measure torus.geo
\end{verbatim}
\clearpage
% ---------------------------------------------------------
\subsection{The banded level set method}
% ---------------------------------------------------------
\cindex{method!level set!banded}%
The banded level set method presents the advantages of the
two previous methods without their drawback: it applies to
very general geometries, as described by a level set funtion,
and stronger convergence properties, as usual finite element methods.
The previous intersection mesh
can be circumvented by enlarging the surface $\Gamma_h$
to a band $\beta_h$ containing all the intersected elements
of ${\cal T}_h$ (see ~\citealp{OlsReuGra-2009,Abo-2010-m2r,Dic-2011-m2r}):
\[
\beta_h = \{ K \in {\cal T}_h; K\cap\Gamma_h \neq \emptyset \}
\]
Then, we introduce $B_h$ the piecewise affine functional space over $\beta_h$:
\[
B_h = \{ v \in L^2(\beta_h) \cap C^0(\beta_h); \
v_{/K} \in P_1, \
\forall K \in {\cal T}_h \}
\]
The problem is extended from $\Gamma_h$ to $\beta_h$ as:\\
\mbox{}\ \ $(VF)_h$: {\it find $u_h \in B_h$ such that:}
$$
a(u_h,v_h) = l(v_h), \ \forall v_h \in B_h
$$
where, for all $u,v\in B_h$,
\begin{eqnarray*}
a(u,v) &=& \int_{\Gamma_h} \left( u \, v + \nabla_s u . \nabla_s v\right) \, {\rm d}s \\
l(v) &=& \int_{\Gamma_h} f \, v \, {\rm d}s
\end{eqnarray*}
for all $u_h,v_h\in B_h$.
Note that while $u_h$ and $v_h$ are defined over $\beta_h$,
the summations in the variational formulations are restricted
only to $\Gamma_h\subset \beta_h$.
% -----------------------------------------
\myexamplelicense{helmholtz_band_iterative.cc}
% -----------------------------------------
% -----------------------------------------
\subsubsection*{Comments}
% -----------------------------------------
\clindex{band}%
The band is build directly from the level set function as:
\begin{lstlisting}[numbers=none,frame=none]
band gamma_h (phi_h);
\end{lstlisting}
The band structure is a small class that groups
the surface mesh $\Gamma_h$, available as \code{gamma_h.level_set()},
and the $\beta_h$ mesh, available as \code{gamma_h.band()}.
It also manages some correspondence between both meshes.
Then, the space of piecewise affine functions over the band is introduced:
\begin{lstlisting}[numbers=none,frame=none]
space Bh (gamma_h.band(), "P1");
\end{lstlisting}
\cindex{function!\code{integrate}!on a band}%
Next, the bilinear form is computed by using the \code{integrate} function,
with the band \code{gamma_h} as a domain-like argument:
\begin{lstlisting}[numbers=none,frame=none]
form a = integrate (gamma_h, u*v + dot(grad_s(u),grad_s(v)));
\end{lstlisting}
The right-hand side also admits the \code{gamma_h} argument:
\begin{lstlisting}[numbers=none,frame=none]
field lh = integrate (gamma_h, f(d)*v);
\end{lstlisting}
Recall that summations for both forms and right-hand side
will be performed on $\Gamma_h$, represented
by \code{gamma_h.level_set()}, while the approximate functional space is $B_h$.
\cindex{method!minres algorithm}%
\cindex{matrix!singular}%
Due to this summation on $\Gamma_h$ instead of $\beta_h$,
the matrix of the system is singular~\citep{OlsReuGra-2009,OlsReu-2010,Abo-2010-m2r}
and the MINRES algorithm has been chosen to solve the linear system:
\begin{lstlisting}[numbers=none,frame=none]
minres (a.uu(), uh.set_u(), lh.u(), eye(), sopt);
\end{lstlisting}
\findex{diag}%
\clindex{eye}%
\cindex{matrix!diagonal}
\cindex{matrix!identity}
The \code{eye()} argument represents here the identity preconditioner, i.e. no preconditioner
at all.
It has few influence of the convergence properties of the matrix and
could be replaced by another simple one:
the diagonal of the matrix \code{diag(a.uu())}
without sensible gain of performance:
\begin{lstlisting}[numbers=none,frame=none]
minres (a.uu(), uh.set_u(), lh.u(), diag(a.uu()), sopt);
\end{lstlisting}
See the reference manual for more about \code{minres},
e.g. on the \Rheolef\ web site or as unix manual
\clindex{reference manual}%
\clindex{man}%
\begin{verbatim}
man minres
\end{verbatim}
%Finally, the $\beta_h$ meshe is saved:
%it will be required for the post-treatment of the solution.
% -----------------------------------------
\subsubsection*{How to run the program}
% -----------------------------------------
\begin{figure}[htb]
\mbox{}\hspace{-1cm}
\begin{tabular}{ccc}
\includegraphics[height=6.0cm]{banded-level-set-circle-geo.png} &
\includegraphics[height=6.0cm]{banded-level-set-circle-field.png} & \\
\includegraphics[height=7.0cm]{banded-level-set-sphere-geo.png} &
\includegraphics[height=6.0cm]{banded-level-set-sphere-field.png} & \\
\includegraphics[height=4.5cm]{banded-level-set-torus-geo.png} &
\includegraphics[height=4.5cm]{banded-level-set-torus-field.png} &
\stereoglasses
\end{tabular}
\caption{The banded level set method:
(top) circle;
(center) sphere;
(bottom) torus.
}
\label{fig-band-sphere}
\end{figure}
The compilation and run writes:
\begin{verbatim}
make helmholtz_band_iterative
mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube-20.geo
./helmholtz_band_iterative cube-20.geo > sphere-band.field
\end{verbatim}
The run generates also two meshes (see Fig.~\ref{fig-band-sphere}):
the intersection mesh and the band around it.
The solution is here defined on this band: this extension has
no interpretation in terms of the initial problem and can be
restricted to the intersection mesh for visualization purpose:
\begin{verbatim}
make proj_band
./proj_band < sphere-band.field | field -
\end{verbatim}
The \reffile{proj_band.cc} is presented below.
The run generates also the $\Gamma_h$ mesh (see Fig.~\ref{fig-band-sphere}),
required for the visualization.
%
The two-dimensional case is obtained simply by replacing the 3D bounding box by a 2D one:
\pindexopt{field}{-elevation}%
\pindexopt{field}{-bw}%
\pindexopt{field}{-stereo}%
\begin{verbatim}
mkgeo_grid -t 20 -a -2 -b 2 -c -2 -d 2 > square-20.geo
./helmholtz_band_iterative square-20.geo > circle-band.field
./proj_band < circle-band.field | field -paraview -
./proj_band < circle-band.field | field -elevation -bw -stereo -
\end{verbatim}
% -----------------------------------------
\myexamplelicense{proj_band.cc}
% -----------------------------------------
% -------------------------------------------------------------------
\subsection{Improving the banded level set method with a direct solver}
% -------------------------------------------------------------------
The iterative algorithm previously used for solving the linear
system is not optimal:
for 3D problems on a surface, the bidimensionnal connectivity
of the sparse matrix suggests that a direct sparse factorization
would be much more efficient.
Recall that $\phi_h=0$ on $\Gamma_h$.
Thus, if $u_h \in B_h$ is solution of the problem, then
$u_h+\alpha \phi_{h|\beta_h}\in B_h$ is also solution
for any $\alpha\in \mathbb{R}$,
where $\phi_{h|\beta_h}\in B_h$ denotes the restriction
of the level set function $\phi_h\in X_h$ on the band $\beta_h$.
Thus there is multiplicity of solutions and the matrix of the problem is singular.
The direct resolution is still possible on a modified linear system with additional
constraints in order to recover the unicity of the solution.
We impose the constraint that the solution $u_h$ should be
othogonal to $\phi_{h|\beta_h}\in B_h$.
\begin{figure}[htb]
\begin{center}
\begin{tabular}{cc}
\includegraphics[height=7.5cm]{banded-level-set-cc-geo.pdf} &
\end{tabular}
\end{center}
\caption{The banded level set method:
the band is composed of several connected components.
}
\label{fig-band-cc}
\end{figure}
\cindex{mesh!connected components}%
In some special cases, the band is composed of several
connected components (see Fig.~\ref{fig-band-cc}):
this appends when a vertex of the bounding box mesh belongs to $\Gamma_h$.
In that case, the constraint should be expressed on each connected component.
Fig.~\ref{fig-band-cc} shows also the case when a full side of an element is
included in $\Gamma_h$: such an element of the band is called {\em isolated}.
% -----------------------------------------
\myexamplelicense{helmholtz_band.cc}
% -----------------------------------------
% -----------------------------------------
\subsubsection*{Comments}
% -----------------------------------------
The management of the special sides and vertices that are fully included in $\Gamma_h$
is perfomed by:
\begin{lstlisting}[numbers=none,frame=none]
Bh.block ("isolated");
Bh.unblock ("zero");
\end{lstlisting}
The addition of linear constraints is similar
to the \reffile{neumann-laplace.cc} code, as
presented in section~\ref{sec-neumann-laplace}:
\begin{lstlisting}[numbers=none,frame=none]
form A = {{ a, trans(b)},
{ b, 0 }};
\end{lstlisting}
Here \code{b} is a \code{vector<field>},
i.e. a vector of linear constraints, one per connected component
of the band $\beta_h$.
% -----------------------------------------
\subsubsection*{How to run the program}
% -----------------------------------------
The commands are similar to the previous iterative implementation,
just replacing \code{helmholtz_band_iterative} by \code{helmholtz_band}.
This approach could be also adapted to the Laplace-Beltrami
problem on the torus.
% -----------------------------------------
\myexamplelicense{laplace_band.cc}
% -----------------------------------------
% -----------------------------------------
\subsubsection*{Comments}
% -----------------------------------------
The code is similar to the previous one \code{helmholtz_band.cc}.
Since the solution is defined up to a constant,
an additional linear constraint has to be inserted:
\[
\int_{\Gamma_h} u_h \, {\rm d}x = 0
\]
This writes:
\begin{lstlisting}[numbers=none,frame=none]
field c = integrate (gamma_h, v);
form A = {{ a, trans(b), c },
{ b, 0, 0 },
{ trans(c), 0, 0 }};
\end{lstlisting}
% -----------------------------------------
\subsubsection*{How to run the program}
% -----------------------------------------
\begin{verbatim}
make laplace_band
mkgeo_grid -T 20 -a -2 -b 2 -c -2 -d 2 -f -2 -g 2 > cube-20.geo
./laplace_band cube-20.geo > torus-band.field
./proj_band < torus-band.field | field -stereo -
\end{verbatim}
% do no more work:
% geo cube-20.band.geo -stereo -cut
The solution is represented on Fig.~\ref{fig-band-sphere}.bottom.
\vfill
|