1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//! @examplefile mosolov_error_yield_surface.cc The Mossolov problem for a circular pipe -- error analysis for the yield surface
#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "mosolov_exact_circle.h"
Float delta (Float f, Float g) { return (f*g >= 0) ? 0 : 1; }
int main(int argc, char**argv) {
environment rheolef (argc,argv);
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
Float Bi;
field sigma_h;
din >> catchmark("Bi") >> Bi
>> catchmark("sigma") >> sigma_h;
space Th = sigma_h.get_space();
geo omega = Th.get_geo();
integrate_option iopt;
iopt.set_family(integrate_option::gauss);
iopt.set_order(4*(Th.degree()+1));
Float err_ys_l1 = integrate (omega,
compose(delta, norm(sigma_h)-Bi, norm(sigma())-Bi), iopt);
dout << "err_ys_l1 = " << err_ys_l1 << endl;
return err_ys_l1 < tol ? 0 : 1;
}
|