1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef.h"
using namespace rheolef;
using namespace std;
size_t d;
Float epsilon;
Float u (const point& x) {
Float x0 = (d <= 2) ? x[0] : x[1];
if (x0 < Float(0.5))
return x0*((1+3*epsilon)/(2*(1+epsilon)) - x0)/(2*epsilon);
else
return (1-x0)*(x0 + (1-epsilon)/(2*(1+epsilon)))/2;
}
int main(int argc, char**argv) {
environment rheolef (argc, argv);
Float error_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
field uh;
din >> catchmark("epsilon") >> epsilon
>> catchmark("u") >> uh;
d = uh.get_geo().dimension();
space Xh = uh.get_space();
field pi_h_u = lazy_interpolate(Xh, u);
field eh = pi_h_u - uh;
trial u (Xh); test v (Xh);
form m = integrate (u*v);
derr << "error_linf " << eh.max_abs() << endl
<< "error_l2 " << sqrt(m(eh,eh)) << endl;
return (eh.max_abs() < error_linf_expected) ? 0 : 1;
}
|