1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
|
#ifndef _RHEOLEF_FIELD_EXPR_RECURSIVE_H
#define _RHEOLEF_FIELD_EXPR_RECURSIVE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// field-valued nonlinear expressions, as:
//
// field wh = interpolate (Xh, 1/uh - uh*(1-vh)):
// Float Ih = integrate (omega, 1/uh - uh*(1-vh), qopt):
//
// author: Pierre.Saramito@imag.fr
//
// date: 15 september 2015
//
// Notes; use template expressions and SFINAE techiques
// The interpolation operator is required, as in
// 1/uh and uh*vh that do not belong to Xh when uh, vh in Xh
//
// SUMMARY:
// 1. unary operations
// 1.1. unary node
// 1.2. unary calls
// 1.3. unary compose
// 2. binary operations
// 2.1. binary node
// 2.2. binary calls
// 2.3. binary compose
//
#include "rheolef/field_expr_terminal.h"
namespace rheolef {
// -------------------------------------------
// 1. unary operations
// -------------------------------------------
// 1.1. unary node
// -------------------------------------------
namespace details {
template<class UnaryFunction, class Expr>
class field_expr_v2_nonlinear_node_unary {
public:
// typedefs:
using size_type = geo_element::size_type;
using memory_type = typename Expr::memory_type;
using result_type = typename details::generic_unary_traits<UnaryFunction>::template result_hint<typename Expr::result_type>::type;
using value_type = result_type;
using scalar_type = typename scalar_traits<value_type>::type;
using float_type = typename float_traits<scalar_type>::type;
using geo_type = geo_basic<float_type,memory_type>;
using band_type = band_basic<float_type,memory_type>;
using space_type = space_basic<float_type,memory_type>;
using self_type = field_expr_v2_nonlinear_node_unary<UnaryFunction,Expr>;
// alocators:
field_expr_v2_nonlinear_node_unary (const UnaryFunction& f, const Expr& expr);
// --------------------------------------------
// accessors for the affine & homogeneous case:
// --------------------------------------------
using is_affine_homogeneous
= and_type<
or_type<
std::is_same<UnaryFunction,details::unary_plus>
,std::is_same<UnaryFunction,details::negate>
,std::is_same<UnaryFunction,details::binder_first <details::plus, scalar_type>>
,std::is_same<UnaryFunction,details::binder_second<details::plus, scalar_type>>
,std::is_same<UnaryFunction,details::binder_first <details::minus, scalar_type>>
,std::is_same<UnaryFunction,details::binder_second<details::minus, scalar_type>>
,std::is_same<UnaryFunction,details::binder_first <details::multiplies,scalar_type>>
,std::is_same<UnaryFunction,details::binder_second<details::multiplies,scalar_type>>
,std::is_same<UnaryFunction,details::binder_second<details::divides, scalar_type>>
>
,is_field_expr_affine_homogeneous<Expr>
>;
bool have_homogeneous_space (space_basic<scalar_type,memory_type>& Vh) const {
return is_affine_homogeneous::value
&& _expr.have_homogeneous_space (Vh);
}
// minimal forward iterator interface:
struct const_iterator {
using iterator_category = std::forward_iterator_tag;
using value_type = typename Expr::scalar_type;
using reference = value_type&;
using pointer = value_type*;
using difference_type = std::ptrdiff_t;
const_iterator (UnaryFunction f, typename Expr::const_iterator expr_iter)
: _f(f), _expr_iter (expr_iter) {}
const_iterator& operator++ () { ++_expr_iter; return *this; }
value_type operator* () const { return _f (*_expr_iter); }
protected:
const UnaryFunction _f;
typename Expr::const_iterator _expr_iter;
};
const_iterator begin_dof() const { return const_iterator (_f, _expr.begin_dof()); }
// --------------------------------------------
// interface for the general nonlinear case:
// --------------------------------------------
// accessors:
static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<result_type>::value;
const Expr& expr() const { return _expr; }
space_constant::valued_type valued_tag() const {
return details::generic_unary_traits<UnaryFunction>::valued_tag (_expr.valued_tag());
}
#ifdef TO_CLEAN
// field_lazy interface:
const geo_type& get_geo() const { return _expr.get_geo(); }
const band_type& get_band() const { return _expr.get_band(); }
const space_type& get_space() const { return _expr.get_space(); }
bool is_on_band () const { return _expr.is_on_band(); }
void initialize (const geo_type& omega_K) { _expr.initialize (omega_K); }
#endif // TO_CLEAN
// initializators:
// field_lazy interface:
void initialize (
const piola_on_pointset<float_type>& pops,
const integrate_option& iopt)
{ _expr.initialize (pops, iopt); }
void initialize (
const space_basic<float_type,memory_type>& Xh,
const piola_on_pointset<float_type>& pops,
const integrate_option& iopt)
{ _expr.initialize (Xh, pops, iopt); }
// -------------------------
// run time check args types
// -------------------------
template<class Result, class Arg, class Status>
struct evaluate_call_check {
template<class M>
void operator() (
const self_type& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value)
{
fatal_macro ("invalid type resolution: Result="<<typename_macro(Result)
<< ", Arg="<<typename_macro(Arg)
<< ", UnaryFunction="<<typename_macro(UnaryFunction));
}
template<class M>
void operator() (
const self_type& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
fatal_macro ("invalid type resolution: Result="<<typename_macro(Result)
<< ", Arg="<<typename_macro(Arg)
<< ", UnaryFunction="<<typename_macro(UnaryFunction));
}
};
template<class Result, class Arg>
struct evaluate_call_check<Result,Arg,std::true_type> {
// in an element:
template<class M>
void operator() (
const self_type& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
Eigen::Matrix<Arg,Eigen::Dynamic,1> value1;
obj._expr.evaluate (omega_K, K, value1);
value.resize(value1.size());
for (size_type i = 0, ni = value.rows(); i < ni; ++i) {
value[i] = obj._f (value1[i]);
}
}
// on a side:
template<class M>
void operator() (
const self_type& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
Eigen::Matrix<Arg,Eigen::Dynamic,1> value1;
obj._expr.evaluate_on_side (omega_K, K, sid, value1);
value.resize (value1.size());
for (size_type i = 0, ni = value.rows(); i < ni; ++i) {
value[i] = obj._f (value1[i]);
}
}
};
// -------------------------------------------
// evaluate in an element, with known arg type
// -------------------------------------------
template<class Result, class Arg, class M>
void evaluate_call (
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename details::generic_unary_traits<UnaryFunction>::template hint<Arg,Result>::result_type result_type;
typedef typename details::and_type<
typename details::is_equal<Result,result_type>::type
,typename details::not_type<typename details::is_error<Arg>::type>::type
>::type
status_t;
evaluate_call_check<Result,Arg,status_t> eval;
eval (*this, omega_K, K, value);
}
// -------------------------------------------
// evaluate on a side, with known arg type
// -------------------------------------------
template<class Result, class Arg, class M>
void evaluate_call (
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename details::generic_unary_traits<UnaryFunction>::template hint<Arg,Result>::result_type result_type;
typedef typename details::and_type<
typename details::is_equal<Result,result_type>::type
,typename details::not_type<typename details::is_error<Arg>::type>::type
>::type
status_t;
evaluate_call_check<Result,Arg,status_t> eval;
eval (*this, omega_K, K, sid, value);
}
// -------------------------------------------
// determine args at compile-time or run-time:
// -------------------------------------------
template<class This, class Result, class Arg, space_constant::valued_type ArgTag = space_constant::valued_tag_traits<Arg>::value>
struct evaluate_switch {};
// when arg is unknown at run-time:
template<class This, class Result, class Arg>
struct evaluate_switch<This, Result, Arg, space_constant::last_valued> {
template<class M>
void evaluate (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename scalar_traits<Arg>::type T;
space_constant::valued_type arg_valued_tag = obj._expr.valued_tag();
switch (arg_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result,T,M> (omega_K, K, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, point_basic<T> > (omega_K, K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, tensor_basic<T> > (omega_K, K, value); break;
default: { error_macro ("unexpected valued tag="<<arg_valued_tag); }
}
}
template<class M>
void evaluate_on_side (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename scalar_traits<Arg>::type T;
space_constant::valued_type arg_valued_tag = obj._expr.valued_tag();
switch (arg_valued_tag) {
case space_constant::scalar:
obj.template evaluate_call<Result,T> (omega_K, K, sid, value); break;
case space_constant::vector:
obj.template evaluate_call<Result, point_basic<T> > (omega_K, K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
obj.template evaluate_call<Result, tensor_basic<T> > (omega_K, K, value); break;
default: { error_macro ("unexpected valued tag="<<arg_valued_tag); }
}
}
};
// specializations when arg is known at compile-time:
#define _RHEOLEF_evaluate_switch_specialization(VALUED,VALUE) \
template<class This, class Result, class Arg> \
struct evaluate_switch <This, Result, Arg, VALUED> { \
typedef typename scalar_traits<Arg>::type T; \
typedef typename float_traits<Arg>::type float_type; \
\
void evaluate ( \
const This& obj, \
const geo_basic<float_type,memory_type>& omega_K, \
const geo_element& K, \
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const \
{ obj.template evaluate_call<Result, VALUE> (omega_K, K, value); } \
\
template<class M> \
void evaluate_on_side ( \
const This& obj, \
const geo_basic<float_type,M>& omega_K, \
const geo_element& K, \
const side_information_type& sid, \
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const \
{ obj.template evaluate_call<Result, VALUE> (omega_K, K, sid, value); } \
}; \
_RHEOLEF_evaluate_switch_specialization(space_constant::scalar,T)
_RHEOLEF_evaluate_switch_specialization(space_constant::vector,point_basic<T>)
_RHEOLEF_evaluate_switch_specialization(space_constant::tensor,tensor_basic<T>)
_RHEOLEF_evaluate_switch_specialization(space_constant::tensor3,tensor3_basic<T>)
_RHEOLEF_evaluate_switch_specialization(space_constant::tensor4,tensor4_basic<T>)
#undef _RHEOLEF_evaluate_switch_specialization
// ----------------------
// evaluate in an element
// ----------------------
template<class Result>
void
evaluate (
const geo_basic<float_type,memory_type>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef field_expr_v2_nonlinear_node_unary<UnaryFunction, Expr> This;
typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,Result>::argument_type
A1;
evaluate_switch <This, Result, A1> helper;
helper.evaluate (*this, omega_K, K, value);
}
// -------------------
// evaluate on a side:
// -------------------
template<class Result>
void
evaluate_on_side (
const geo_basic<float_type,memory_type>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef field_expr_v2_nonlinear_node_unary<UnaryFunction, Expr> This;
typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,Result>::argument_type
A1;
evaluate_switch <This, Result, A1> helper;
helper.evaluate_on_side (*this, omega_K, K, sid, value);
}
template<class Result>
bool valued_check() const {
typedef typename details::generic_unary_traits<UnaryFunction>::template hint<typename Expr::value_type,Result>::argument_type
A1;
if (! is_undeterminated<A1>::value) return _expr.template valued_check<A1>();
return true;
}
protected:
// data:
UnaryFunction _f;
Expr _expr;
// working area:
public:
mutable std::array<
Eigen::Matrix<scalar_type,Eigen::Dynamic,1>
,reference_element::max_variant> _scalar_val;
mutable std::array<
Eigen::Matrix<point_basic<scalar_type>,Eigen::Dynamic,1>
,reference_element::max_variant> _vector_val;
mutable std::array<
Eigen::Matrix<tensor_basic<scalar_type>,Eigen::Dynamic,1>
,reference_element::max_variant> _tensor_val;
mutable std::array<
Eigen::Matrix<tensor3_basic<scalar_type>,Eigen::Dynamic,1>
,reference_element::max_variant> _tensor3_val;
mutable std::array<
Eigen::Matrix<tensor4_basic<scalar_type>,Eigen::Dynamic,1>
,reference_element::max_variant> _tensor4_val;
};
template<class UnaryFunction, class Expr>
field_expr_v2_nonlinear_node_unary<UnaryFunction,Expr>::field_expr_v2_nonlinear_node_unary (
const UnaryFunction& f,
const Expr& expr)
: _f(f),
_expr(expr),
_scalar_val(),
_vector_val(),
_tensor_val(),
_tensor3_val(),
_tensor4_val()
{
}
template<class F, class Expr> struct is_field_expr_v2_nonlinear_arg <field_expr_v2_nonlinear_node_unary<F,Expr>> : std::true_type {};
//template<class F, class Expr> struct has_field_lazy_interface <field_expr_v2_nonlinear_node_unary<F,Expr>> : std::true_type {};
template<class F, class Expr> struct is_field_expr_affine_homogeneous<field_expr_v2_nonlinear_node_unary<F,Expr>, typename std::enable_if<
field_expr_v2_nonlinear_node_unary<F,Expr>::is_affine_homogeneous::value>::type>: std::true_type {};
} // namespace details
// -------------------------------------------
// 1.2. unary calls
// -------------------------------------------
// unary operators +- and std::math
// ------------------------
// standard unary operators
// ------------------------
#define _RHEOLEF_make_field_expr_v2_nonlinear_unary_operator(FUNCTION,FUNCTOR) \
template<class Expr> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_nonlinear_arg<Expr>::value \
&& ! details::is_field_expr_v2_constant <Expr>::value \
&& ! details::has_field_rdof_interface <Expr>::value \
,details::field_expr_v2_nonlinear_node_unary< \
FUNCTOR \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type \
> \
>::type \
FUNCTION (const Expr& expr) \
{ \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type wrap_t; \
return details::field_expr_v2_nonlinear_node_unary <FUNCTOR,wrap_t> (FUNCTOR(), wrap_t(expr)); \
}
_RHEOLEF_make_field_expr_v2_nonlinear_unary_operator (operator+, details::unary_plus)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_operator (operator-, details::negate)
#undef _RHEOLEF_make_field_expr_v2_nonlinear_unary_operator
// ------------------------
// std::cmath
// ------------------------
#define _RHEOLEF_make_field_expr_v2_nonlinear_unary_operator(FUNCTION,FUNCTOR) \
template<class Expr> \
inline \
typename \
std::enable_if< \
( details::is_field_expr_v2_nonlinear_arg<Expr>::value \
|| details::is_field<Expr>::value) \
&& ! details::is_field_expr_v2_constant <Expr>::value \
,details::field_expr_v2_nonlinear_node_unary< \
FUNCTOR \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type \
> \
>::type \
FUNCTION (const Expr& expr) \
{ \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type wrap_t; \
return details::field_expr_v2_nonlinear_node_unary <FUNCTOR,wrap_t> (FUNCTOR(), wrap_t(expr)); \
}
#define _RHEOLEF_make_field_expr_v2_nonlinear_unary_function(FUNCTION) \
_RHEOLEF_make_field_expr_v2_nonlinear_unary_operator(FUNCTION, details::FUNCTION##_)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (cos)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (sin)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (tan)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (acos)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (asin)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (atan)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (cosh)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (sinh)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (tanh)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (exp)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (log)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (log10)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (sqrt)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (abs)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (fabs)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (floor)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (ceil)
// rheolef extensions
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (sqr)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (norm)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (norm2)
// tr(sigma_h) & trans(sigma_h) : trace & transpose of a tensor-valued field
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (tr)
_RHEOLEF_make_field_expr_v2_nonlinear_unary_function (trans)
#undef _RHEOLEF_make_field_expr_v2_nonlinear_unary_function
#undef _RHEOLEF_make_field_expr_v2_nonlinear_unary_operator
// -------------------------------------------
// 1.3. unary compose
// -------------------------------------------
template<class Function, class Expr>
inline
typename
std::enable_if<
details::is_field_expr_v2_nonlinear_arg<Expr>::value
,details::field_expr_v2_nonlinear_node_unary<
typename details::function_traits<Function>::functor_type
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type
>
>::type
compose (const Function& f, const Expr& expr)
{
typedef typename details::function_traits<Function>::functor_type fun_wrap_t;
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type expr_wrap_t;
return details::field_expr_v2_nonlinear_node_unary <fun_wrap_t, expr_wrap_t> (fun_wrap_t(f), expr_wrap_t(expr));
}
// ---------------------------------------------------------------------------
// 2. binary operations
// ---------------------------------------------------------------------------
// 2.1. binary node
// -------------------------------------------
namespace details {
template<class BinaryFunction, class Expr1, class Expr2>
class field_expr_v2_nonlinear_node_binary {
public:
// typedefs:
using size_type = geo_element::size_type;
using result_type = typename details::generic_binary_traits<BinaryFunction>::template result_hint<typename Expr1::result_type,typename Expr2::result_type>::type;
using value_type = result_type;
using scalar_type = typename scalar_traits<value_type>::type;
using float_type = typename float_traits<value_type>::type;
using memory_type = typename Expr1::memory_type;
// alocators:
field_expr_v2_nonlinear_node_binary (
const BinaryFunction& f,
const Expr1& expr1,
const Expr2& expr2);
// --------------------------------------------
// accessors for the affine & homogeneous case:
// --------------------------------------------
// the result expr is affine-homogeneous if and only if:
// binop expr1 expr2
// +- A|C A|C
// */ A C
// * C A
using is_affine_homogeneous
= or_type<
and_type<
or_type<
std::is_same<BinaryFunction,details::plus>
,std::is_same<BinaryFunction,details::minus>
>
,is_field_expr_affine_homogeneous<Expr1>
,is_field_expr_affine_homogeneous<Expr2>
>
,and_type<
or_type<
std::is_same<BinaryFunction,details::multiplies>
,std::is_same<BinaryFunction,details::divides>
>
,is_field_expr_affine_homogeneous<Expr1>
,is_field_expr_v2_constant <Expr2>
>
,and_type<
std::is_same<BinaryFunction,details::multiplies>
,is_field_expr_v2_constant <Expr1>
,is_field_expr_affine_homogeneous<Expr2>
>
>;
bool have_homogeneous_space (space_basic<scalar_type,memory_type>& Vh) const {
space_basic<scalar_type,memory_type> Vh2;
return is_affine_homogeneous::value
&& _expr1.have_homogeneous_space (Vh)
&& _expr2.have_homogeneous_space (Vh2)
&& Vh.name() == Vh2.name();
}
// minimal forward iterator interface:
struct const_iterator {
using iterator_category = std::forward_iterator_tag;
using value_type = typename promote<
typename Expr1::scalar_type,
typename Expr2::scalar_type>::type;
using reference = value_type&;
using pointer = value_type*;
using difference_type = std::ptrdiff_t;
const_iterator (const BinaryFunction& f, typename Expr1::const_iterator iter1, typename Expr2::const_iterator iter2)
: _f(f), _iter1 (iter1), _iter2 (iter2) {}
const_iterator& operator++ () { ++_iter1; ++_iter2; return *this; }
value_type operator* () const { return _f (*_iter1, *_iter2); }
protected:
const BinaryFunction _f;
typename Expr1::const_iterator _iter1;
typename Expr2::const_iterator _iter2;
};
const_iterator begin_dof() const { return const_iterator (_f, _expr1.begin_dof(), _expr2.begin_dof()); }
// --------------------------------------------
// interface for the general nonlinear case:
// --------------------------------------------
// accessors:
static const space_constant::valued_type valued_hint = space_constant::valued_tag_traits<result_type>::value;
space_constant::valued_type valued_tag() const {
return details::generic_binary_traits<BinaryFunction>::valued_tag(_expr1.valued_tag(), _expr2.valued_tag());
}
// initializers:
void initialize (
const piola_on_pointset<float_type>& pops,
const integrate_option& iopt)
{
_expr1.initialize (pops, iopt);
_expr2.initialize (pops, iopt);
}
void initialize (
const space_basic<float_type,memory_type>& Xh,
const piola_on_pointset<float_type>& pops,
const integrate_option& iopt)
{
_expr1.initialize (Xh, pops, iopt);
_expr2.initialize (Xh, pops, iopt);
}
// evaluators:
template<class Result, class Arg1, class Arg2, class M>
void evaluate_internal2 (
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
Eigen::Matrix<Arg1,Eigen::Dynamic,1> value1; _expr1.evaluate (omega_K, K, value1);
Eigen::Matrix<Arg2,Eigen::Dynamic,1> value2; _expr2.evaluate (omega_K, K, value2);
value.resize (value1.size());
// TODO: DVT_EIGEN_BLAS1
for (size_t i = 0, ni = value.rows(); i < ni; ++i) {
value[i] = _f (value1[i], value2[i]);
}
}
template<class Result, class Arg1, class Arg2, class M>
void evaluate_internal2 (
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
Eigen::Matrix<Arg1,Eigen::Dynamic,1> value1; _expr1.evaluate_on_side (omega_K, K, sid, value1);
Eigen::Matrix<Arg2,Eigen::Dynamic,1> value2; _expr2.evaluate_on_side (omega_K, K, sid, value2);
value.resize (value1.size());
for (size_t i = 0, ni = value.rows(); i < ni; ++i) {
value[i] = _f (value1[i], value2[i]);
}
}
template<class This, class Result, class ReturnType, class Arg1, class Arg2>
struct evaluate_internal {
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
fatal_macro ("unexpected return type "
<< pretty_typename_macro(ReturnType) << ": "
<< pretty_typename_macro(Result) << " was expected for function "
<< pretty_typename_macro(BinaryFunction) << "("
<< pretty_typename_macro(Arg1) << ","
<< pretty_typename_macro(Arg2) << ")");
}
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
fatal_macro ("unexpected return type "
<< pretty_typename_macro(ReturnType) << ": "
<< pretty_typename_macro(Result) << " was expected for function "
<< pretty_typename_macro(BinaryFunction) << "("
<< pretty_typename_macro(Arg1) << ","
<< pretty_typename_macro(Arg2) << ")");
}
};
template<class This, class Result, class Arg1, class Arg2>
struct evaluate_internal<This,Result,Result,Arg1,Arg2> {
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{ obj.template evaluate_internal2<Result,Arg1,Arg2,M> (omega_K, K, value); }
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{ obj.template evaluate_internal2 <Result,Arg1,Arg2,M> (omega_K, K, sid, value);
}
};
template<class Result, class Arg1, class Arg2, class M>
void evaluate_call (
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<Arg1,Arg2>::type ReturnType;
typedef field_expr_v2_nonlinear_node_binary<BinaryFunction, Expr1, Expr2> This;
evaluate_internal<This,Result,ReturnType,Arg1,Arg2> eval_int;
eval_int (*this, omega_K, K, value);
}
template<class Result, class Arg1, class Arg2, class M>
void evaluate_call (
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename details::generic_binary_traits<BinaryFunction>::template result_hint<Arg1,Arg2>::type ReturnType;
typedef field_expr_v2_nonlinear_node_binary<BinaryFunction, Expr1, Expr2> This;
evaluate_internal<This,Result,ReturnType,Arg1,Arg2> eval_int;
eval_int (*this, omega_K, K, sid, value);
}
// when both args are defined at compile time:
template<class This, class Result,
class Arg1, space_constant::valued_type Arg1Tag,
class Arg2, space_constant::valued_type Arg2Tag>
struct evaluate_switch {
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{ obj.template evaluate_call<Result, Arg1, Arg2> (omega_K, K, value); }
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{ obj.template evaluate_call<Result, Arg1, Arg2> (omega_K, K, sid, value); }
};
// specialization when both args are undefined at compile time:
template<class This, class Result,
class Arg1,
class Arg2>
struct evaluate_switch<This, Result,
Arg1, space_constant::last_valued,
Arg2, space_constant::last_valued> {
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename scalar_traits<Arg1>::type T1;
typedef typename scalar_traits<Arg2>::type T2;
space_constant::valued_type arg1_valued_tag = obj._expr1.valued_tag();
space_constant::valued_type arg2_valued_tag = obj._expr2.valued_tag();
switch (arg1_valued_tag) {
case space_constant::scalar: {
switch (arg2_valued_tag) {
case space_constant::scalar:
return obj.template evaluate_call<Result, T1, T2> (omega_K, K, value); break;
case space_constant::vector:
return obj.template evaluate_call<Result, T1, point_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
return obj.template evaluate_call<Result, T1, tensor_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor3:
return obj.template evaluate_call<Result, T1, tensor3_basic<T2> >(omega_K, K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
break;
}
case space_constant::vector: {
switch (arg2_valued_tag) {
case space_constant::scalar:
return obj.template evaluate_call<Result, point_basic<T1>, T2> (omega_K, K, value); break;
case space_constant::vector:
return obj.template evaluate_call<Result, point_basic<T1>, point_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
return obj.template evaluate_call<Result, point_basic<T1>, tensor_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor3:
return obj.template evaluate_call<Result, point_basic<T1>, tensor3_basic<T2> >(omega_K, K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
break;
}
case space_constant::tensor:
case space_constant::unsymmetric_tensor: {
switch (arg2_valued_tag) {
case space_constant::scalar:
return obj.template evaluate_call<Result, tensor_basic<T1>, T2> (omega_K, K, value); break;
case space_constant::vector:
return obj.template evaluate_call<Result, tensor_basic<T1>, point_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
return obj.template evaluate_call<Result, tensor_basic<T1>, tensor_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor3:
return obj.template evaluate_call<Result, tensor_basic<T1>, tensor3_basic<T2> >(omega_K, K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
break;
}
case space_constant::tensor3: {
switch (arg2_valued_tag) {
case space_constant::scalar:
return obj.template evaluate_call<Result, tensor3_basic<T1>, T2> (omega_K, K, value); break;
case space_constant::vector:
return obj.template evaluate_call<Result, tensor3_basic<T1>, point_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
return obj.template evaluate_call<Result, tensor3_basic<T1>, tensor_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor3:
return obj.template evaluate_call<Result, tensor3_basic<T1>, tensor3_basic<T2> >(omega_K, K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
break;
}
default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
}
}
};
// specialization when only first arg is defined at compile time:
template<class This, class Result,
class Arg1, space_constant::valued_type Arg1Tag,
class Arg2>
struct evaluate_switch<This, Result,
Arg1, Arg1Tag,
Arg2, space_constant::last_valued> {
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename scalar_traits<Arg2>::type T2;
space_constant::valued_type arg2_valued_tag = obj._expr2.valued_tag();
switch (arg2_valued_tag) {
case space_constant::scalar:
return obj.template evaluate_call<Result, Arg1, T2> (omega_K, K, value); break;
case space_constant::vector:
return obj.template evaluate_call<Result, Arg1, point_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
return obj.template evaluate_call<Result, Arg1, tensor_basic<T2> > (omega_K, K, value); break;
case space_constant::tensor3:
return obj.template evaluate_call<Result, Arg1, tensor3_basic<T2> > (omega_K, K, value); break;
default: error_macro ("unexpected second argument valued tag="<<arg2_valued_tag);
}
}
};
// specialization when only second arg is defined at compile time:
template<class This, class Result,
class Arg1,
class Arg2, space_constant::valued_type Arg2Tag>
struct evaluate_switch<This, Result,
Arg1, space_constant::last_valued,
Arg2, Arg2Tag> {
template<class M>
void operator() (
const This& obj,
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename scalar_traits<Arg1>::type T1;
space_constant::valued_type arg1_valued_tag = obj._expr1.valued_tag();
switch (arg1_valued_tag) {
case space_constant::scalar:
return obj.template evaluate_call<Result, T1, Arg2> (omega_K, K, value); break;
case space_constant::vector:
return obj.template evaluate_call<Result, point_basic<T1>, Arg2> (omega_K, K, value); break;
case space_constant::tensor:
case space_constant::unsymmetric_tensor:
return obj.template evaluate_call<Result, tensor_basic<T1>, Arg2> (omega_K, K, value); break;
case space_constant::tensor3:
return obj.template evaluate_call<Result, tensor3_basic<T1>, Arg2>(omega_K, K, value); break;
default: error_macro ("unexpected first argument valued tag="<<arg1_valued_tag);
}
}
};
template<class Result, class M>
void evaluate (
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::first_argument_type A1;
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::second_argument_type A2;
static const space_constant::valued_type first_argument_tag = space_constant::valued_tag_traits<A1>::value;
static const space_constant::valued_type second_argument_tag = space_constant::valued_tag_traits<A2>::value;
typedef field_expr_v2_nonlinear_node_binary<BinaryFunction, Expr1, Expr2> This;
evaluate_switch <This, Result, A1, first_argument_tag, A2, second_argument_tag> eval;
eval (*this, omega_K, K, value);
}
template<class Result, class M>
void
evaluate_on_side (
const geo_basic<float_type,M>& omega_K,
const geo_element& K,
const side_information_type& sid,
Eigen::Matrix<Result,Eigen::Dynamic,1>& value) const
{
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::first_argument_type A1;
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::second_argument_type A2;
static const space_constant::valued_type first_argument_tag = space_constant::valued_tag_traits<A1>::value;
static const space_constant::valued_type second_argument_tag = space_constant::valued_tag_traits<A2>::value;
typedef field_expr_v2_nonlinear_node_binary<BinaryFunction, Expr1, Expr2> This;
evaluate_switch <This, Result, A1, first_argument_tag, A2, second_argument_tag> eval;
eval (*this, omega_K, K, sid, value);
}
template<class Result>
bool valued_check() const {
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::first_argument_type A1;
typedef typename details::generic_binary_traits<BinaryFunction>::template hint<
typename Expr1::value_type
,typename Expr2::value_type
,Result>::second_argument_type A2;
bool status = true;
if (! is_undeterminated<A1>::value) status &= _expr1.template valued_check<A1>();
if (! is_undeterminated<A2>::value) status &= _expr2.template valued_check<A2>();
return status;
}
protected:
// data:
BinaryFunction _f;
Expr1 _expr1;
Expr2 _expr2;
};
template<class BinaryFunction, class Expr1, class Expr2>
field_expr_v2_nonlinear_node_binary<BinaryFunction,Expr1,Expr2>::field_expr_v2_nonlinear_node_binary (
const BinaryFunction& f,
const Expr1& expr1,
const Expr2& expr2)
: _f(f),
_expr1(expr1),
_expr2(expr2)
{
}
template<class F, class Expr1, class Expr2> struct is_field_expr_v2_nonlinear_arg <field_expr_v2_nonlinear_node_binary<F,Expr1,Expr2>> : std::true_type {};
//template<class F, class Expr1, class Expr2> struct has_field_lazy_interface <field_expr_v2_nonlinear_node_binary<F,Expr1,Expr2>> : std::true_type {};
template<class F, class Expr1, class Expr2> struct is_field_expr_affine_homogeneous<field_expr_v2_nonlinear_node_binary<F,Expr1,Expr2>, typename std::enable_if<
field_expr_v2_nonlinear_node_binary<F,Expr1,Expr2>::is_affine_homogeneous::value>::type>: std::true_type {};
} // namespace details
// -------------------------------------------
// 2.2. binary calls
// -------------------------------------------
/*
combination table:
+- | c a n
---|-------
c | C A N
a | A A N
n | N N N
* | c a n
---|-------
c | C A N
a | A N N
n | N N N
/ | c a n
---|-------
c | C N N
a | A N N
n | N N N
argument:
c : constant, as scalar, point, tensor, ect
l : affine homogeneous expr argument: as field, field_rdof_indirect or field_expr_node::is_affine_homogeneous
n : function, functor or ! field_expr_node::is_affine_homogeneous
result:
C : constant : this combination is not implemented here
A,N : are implemented here
rules:
at least one of the two args is not of type "c"
when c: c value is embeded in bind_first or bind_second
and the operation reduces to an unary one
when a: if it is a field_convertible, it should be wrapped
in field_expr_v2_nonlinear_terminal_field
when c: no wrapper is need
implementation:
The a and n cases are grouped, thanks to the wrapper_traits
and it remains to cases :
1) both args are field_expr_v2_nonlinear or a function
2) one arg is a field_expr_v2_nonlinear or a function and the second argument is a constant
*/
// -------------------------------------------
// binary+-
// -------------------------------------------
// TODO: remove rdof+-rdof when rdof_binary is available
#define _RHEOLEF_make_field_expr_v2_nonlinear_binary(FUNCTION,FUNCTOR) \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_nonlinear_arg<Expr1>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value \
&& ! details::is_field_expr_v2_constant <Expr1>::value \
&& ! details::is_field_expr_v2_constant <Expr2>::value \
,details::field_expr_v2_nonlinear_node_binary< \
FUNCTOR \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
return details::field_expr_v2_nonlinear_node_binary <FUNCTOR,wrap1_t,wrap2_t> \
(FUNCTOR(), wrap1_t(expr1), wrap2_t(expr2)); \
} \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_constant <Expr1>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value \
&& ! details::is_field_expr_v2_constant <Expr2>::value \
&& !(details::has_field_rdof_interface <Expr2>::value \
&& details::is_rheolef_arithmetic <Expr1>::value) \
,details::field_expr_v2_nonlinear_node_unary< \
details::binder_first< \
FUNCTOR \
,typename details::field_promote_first_argument< \
Expr1 \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
>::type \
> \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_promote_first_argument< \
Expr1 \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
>::type \
value_type; \
typedef details::binder_first<FUNCTOR,value_type> fun_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap2_t>(fun_t(FUNCTOR(), expr1), wrap2_t(expr2)); \
} \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_constant <Expr2>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr1>::value \
&& ! details::is_field_expr_v2_constant <Expr1>::value \
&& !(details::has_field_rdof_interface <Expr1>::value \
&& details::is_rheolef_arithmetic <Expr2>::value) \
,details::field_expr_v2_nonlinear_node_unary< \
details::binder_second< \
FUNCTOR \
,typename details::field_promote_second_argument< \
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
,Expr2 \
>::type \
> \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_promote_second_argument< \
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
,Expr2 \
>::type \
value_type; \
typedef details::binder_second<FUNCTOR,value_type> fun_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap1_t>(fun_t(FUNCTOR(), expr2), wrap1_t(expr1)); \
}
_RHEOLEF_make_field_expr_v2_nonlinear_binary (operator+, details::plus)
_RHEOLEF_make_field_expr_v2_nonlinear_binary (operator-, details::minus)
#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary
// -------------------------------------------
// binary*
// -------------------------------------------
#define _RHEOLEF_make_field_expr_v2_nonlinear_binary(FUNCTION,FUNCTOR) \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_nonlinear_arg<Expr1>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value \
&& ! details::is_field_expr_v2_constant <Expr1>::value \
&& ! details::is_field_expr_v2_constant <Expr2>::value \
,details::field_expr_v2_nonlinear_node_binary< \
FUNCTOR \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
return details::field_expr_v2_nonlinear_node_binary <FUNCTOR,wrap1_t,wrap2_t> \
(FUNCTOR(), wrap1_t(expr1), wrap2_t(expr2)); \
} \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_constant <Expr1>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value \
&& ! details::is_field_expr_v2_constant <Expr2>::value \
&& !(details::has_field_rdof_interface <Expr2>::value \
&& details::is_rheolef_arithmetic <Expr1>::value) \
,details::field_expr_v2_nonlinear_node_unary< \
details::binder_first< \
FUNCTOR \
,typename details::field_promote_first_argument< \
Expr1 \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
>::type \
> \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_promote_first_argument< \
Expr1 \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
>::type \
value_type; \
typedef details::binder_first<FUNCTOR,value_type> fun_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap2_t>(fun_t(FUNCTOR(), expr1), wrap2_t(expr2)); \
} \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_constant <Expr2>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr1>::value \
&& ! details::is_field_expr_v2_constant <Expr1>::value \
&& !(details::has_field_rdof_interface <Expr1>::value \
&& details::is_rheolef_arithmetic <Expr2>::value) \
,details::field_expr_v2_nonlinear_node_unary< \
details::binder_second< \
FUNCTOR \
,typename details::field_promote_second_argument< \
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
,Expr2 \
>::type \
> \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_promote_second_argument< \
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
,Expr2 \
>::type \
value_type; \
typedef details::binder_second<FUNCTOR,value_type> fun_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap1_t>(fun_t(FUNCTOR(), expr2), wrap1_t(expr1)); \
}
_RHEOLEF_make_field_expr_v2_nonlinear_binary (operator*, details::multiplies)
#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary
// -------------------------------------------
// binary/
// -------------------------------------------
#define _RHEOLEF_make_field_expr_v2_nonlinear_binary(FUNCTION,FUNCTOR) \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_nonlinear_arg<Expr1>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value \
&& ! details::is_field_expr_v2_constant <Expr1>::value \
&& ! details::is_field_expr_v2_constant <Expr2>::value \
,details::field_expr_v2_nonlinear_node_binary< \
FUNCTOR \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
return details::field_expr_v2_nonlinear_node_binary <FUNCTOR,wrap1_t,wrap2_t> \
(FUNCTOR(), wrap1_t(expr1), wrap2_t(expr2)); \
} \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_constant <Expr1>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value \
&& ! details::is_field_expr_v2_constant <Expr2>::value \
,details::field_expr_v2_nonlinear_node_unary< \
details::binder_first< \
FUNCTOR \
,typename details::field_promote_first_argument< \
Expr1 \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
>::type \
> \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_promote_first_argument< \
Expr1 \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
>::type \
value_type; \
typedef details::binder_first<FUNCTOR,value_type> fun_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap2_t>(fun_t(FUNCTOR(), expr1), wrap2_t(expr2)); \
} \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_constant <Expr2>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr1>::value \
&& ! details::is_field_expr_v2_constant <Expr1>::value \
&& !(details::has_field_rdof_interface <Expr1>::value \
&& details::is_rheolef_arithmetic <Expr2>::value) \
,details::field_expr_v2_nonlinear_node_unary< \
details::binder_second< \
FUNCTOR \
,typename details::field_promote_second_argument< \
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
,Expr2 \
>::type \
> \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_promote_second_argument< \
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
,Expr2 \
>::type \
value_type; \
typedef details::binder_second<FUNCTOR,value_type> fun_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap1_t>(fun_t(FUNCTOR(), expr2), wrap1_t(expr1)); \
}
_RHEOLEF_make_field_expr_v2_nonlinear_binary (operator/, details::divides)
#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary
// -------------------------------------------
// std::maths
// -------------------------------------------
#define _RHEOLEF_make_field_expr_v2_nonlinear_binary(FUNCTION,FUNCTOR) \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_nonlinear_arg<Expr1>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value \
&& ! details::is_field_expr_v2_constant <Expr1>::value \
&& ! details::is_field_expr_v2_constant <Expr2>::value \
,details::field_expr_v2_nonlinear_node_binary< \
FUNCTOR \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
return details::field_expr_v2_nonlinear_node_binary <FUNCTOR,wrap1_t,wrap2_t> \
(FUNCTOR(), wrap1_t(expr1), wrap2_t(expr2)); \
} \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_constant <Expr1>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value \
&& ! details::is_field_expr_v2_constant <Expr2>::value \
,details::field_expr_v2_nonlinear_node_unary< \
details::binder_first< \
FUNCTOR \
,typename details::field_promote_first_argument< \
Expr1 \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
>::type \
> \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_promote_first_argument< \
Expr1 \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type \
>::type \
value_type; \
typedef details::binder_first<FUNCTOR,value_type> fun_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t; \
return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap2_t>(fun_t(FUNCTOR(), expr1), wrap2_t(expr2)); \
} \
template<class Expr1, class Expr2> \
inline \
typename \
std::enable_if< \
details::is_field_expr_v2_constant <Expr2>::value \
&& details::is_field_expr_v2_nonlinear_arg<Expr1>::value \
&& ! details::is_field_expr_v2_constant <Expr1>::value \
,details::field_expr_v2_nonlinear_node_unary< \
details::binder_second< \
FUNCTOR \
,typename details::field_promote_second_argument< \
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
,Expr2 \
>::type \
> \
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type \
> \
>::type \
FUNCTION (const Expr1& expr1, const Expr2& expr2) \
{ \
typedef typename details::field_promote_second_argument< \
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type \
,Expr2 \
>::type \
value_type; \
typedef details::binder_second<FUNCTOR,value_type> fun_t; \
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t; \
return details::field_expr_v2_nonlinear_node_unary<fun_t,wrap1_t>(fun_t(FUNCTOR(), expr2), wrap1_t(expr1)); \
}
#define _RHEOLEF_make_field_expr_v2_nonlinear_binary_function(FUNCTION) \
_RHEOLEF_make_field_expr_v2_nonlinear_binary (FUNCTION, details::FUNCTION##_) \
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (atan2)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (pow)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (fmod)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (min)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (max)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (dot)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (ddot)
_RHEOLEF_make_field_expr_v2_nonlinear_binary_function (dddot)
#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary_function
#undef _RHEOLEF_make_field_expr_v2_nonlinear_binary
// -------------------------------------------
// 2.3. binary compose
// -------------------------------------------
// note: compose 1 & 2 are not reductible to n-ary
// as it uses deductible return types
// TODO: do not use deductible types => reduces to n-ary !!
// two args are field-expressions
template<class Function, class Expr1, class Expr2>
inline
typename
std::enable_if<
details::is_field_expr_v2_nonlinear_arg<Expr1>::value
&& ! details::is_field_expr_v2_constant <Expr1>::value
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value
&& ! details::is_field_expr_v2_constant <Expr2>::value
,details::field_expr_v2_nonlinear_node_binary<
typename details::function_traits<Function>::functor_type
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type
>
>::type
compose (const Function& f, const Expr1& expr1, const Expr2& expr2)
{
typedef typename details::function_traits<Function>::functor_type fun_wrap_t;
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type expr1_wrap_t;
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type expr2_wrap_t;
return details::field_expr_v2_nonlinear_node_binary
<fun_wrap_t, expr1_wrap_t, expr2_wrap_t>
(fun_wrap_t(f), expr1_wrap_t(expr1), expr2_wrap_t(expr2));
}
// left arg is a constant
template <class Function, class Expr1, class Expr2>
inline
typename
std::enable_if<
details::is_field_expr_v2_constant <Expr1>::value
&& details::is_field_expr_v2_nonlinear_arg<Expr2>::value
&& ! details::is_field_expr_v2_constant <Expr2>::value
,details::field_expr_v2_nonlinear_node_unary<
details::binder_first<
typename details::function_traits<Function>::functor_type
,typename promote<
Expr1
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type
>::type
>
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type
>
>::type
compose (const Function& f, const Expr1& expr1, const Expr2& expr2)
{
typedef typename promote<
Expr1
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type::value_type
>::type value_type;
typedef typename details::function_traits<Function>::functor_type wrap_fun_t;
typedef details::binder_first<wrap_fun_t,value_type> binded_fun_t;
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr2>::type wrap2_t;
return details::field_expr_v2_nonlinear_node_unary
<binded_fun_t, wrap2_t>
(binded_fun_t(wrap_fun_t(f), expr1), wrap2_t(expr2));
}
// right arg is a constant
template <class Function, class Expr1, class Expr2>
inline
typename
std::enable_if<
details::is_field_expr_v2_nonlinear_arg<Expr1>::value
&& ! details::is_field_expr_v2_constant <Expr1>::value
&& details::is_field_expr_v2_constant <Expr2>::value
,details::field_expr_v2_nonlinear_node_unary<
details::binder_second<
typename details::function_traits<Function>::functor_type
,typename promote<
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type
,Expr2
>::type
>
,typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type
>
>::type
compose (const Function& f, const Expr1& expr1, const Expr2& expr2)
{
typedef typename promote<
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type::value_type
,Expr2
>::type value_type;
typedef typename details::function_traits<Function>::functor_type wrap_fun_t;
typedef details::binder_second<wrap_fun_t,value_type> binded_fun_t;
typedef typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr1>::type wrap1_t;
return details::field_expr_v2_nonlinear_node_unary
<binded_fun_t, wrap1_t>
(binded_fun_t(wrap_fun_t(f), expr2), wrap1_t(expr1));
}
} // namespace rheolef
#endif // _RHEOLEF_FIELD_EXPR_RECURSIVE_H
|