1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
|
# ifndef _RHEOLEF_FIELD_LAZY_TERMINAL_H
# define _RHEOLEF_FIELD_LAZY_TERMINAL_H
//
// This file is part of Rheolef.
//
// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
//
// Rheolef is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Rheolef is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Rheolef; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// =========================================================================
// field_lazy = un-assembled field
// as returned by lazy_integrate, lazy_interpolate or encapsulated field_basic
// AUTHOR: Pierre.Saramito@imag.fr
// DATE: 6 april 1920
// SUMMARY:
// 1. concept & base class : see field_lazy.h
// 2. terminal
// 2.1. field
// 2.2. integrate
// 2.3. integrate on a band
// 2.4. interpolate
// see also "field_lazy_node.h"
//
#include "rheolef/field_lazy.h"
namespace rheolef {
#ifdef TO_CLEAN
// -------------------------------------------------------------------
// 1. concept & base class
// -------------------------------------------------------------------
namespace details {
// Define a trait type for detecting field expression valid arguments
// template<class T> struct is_field_lazy: std::false_type {};
// => should be defined in field.h for compilation reason,
// otherwise Sfinae is always failed in field.h
// Define a base class
template<class Derived>
class field_lazy_base {
public:
// no common methods yet
protected:
Derived& derived() { return *static_cast< Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
};
} // namespace details
#endif // TO_CLEAN
// -------------------------------------------------------------------
// 2. terminal
// -------------------------------------------------------------------
// 2.1. field
// -------------------------------------------------------------------
// field_lazy_terminal_field encapsulates the field_basic class
// It then appears as an unassembled field, for combining with
// others unassembled fields in expressions
//
namespace details {
template<class T, class M>
class field_lazy_terminal_field: public field_lazy_base<field_lazy_terminal_field<T,M>> {
public :
// definitions:
using base = field_lazy_base<field_lazy_terminal_field<T,M>>;
using size_type = geo_element::size_type;
using memory_type = M;
using scalar_type = T;
using field_type = field_basic<T,M>;
using space_type = typename field_type::space_type;
using geo_type = typename field_type::geo_type;
using float_type = typename float_traits<scalar_type>::type;
using band_type = band_basic<float_type,memory_type>;
using vector_element_type = Eigen::Matrix<scalar_type,Eigen::Dynamic,1>;
// allocator:
explicit field_lazy_terminal_field (const field_type& uh) : base(), _uh(uh) {}
// accessors:
const geo_type& get_geo() const { return _uh.get_geo(); }
const space_type& get_space() const { return _uh.get_space(); }
bool is_on_band() const { return false; }
band_type get_band() const { return band_type(); }
void initialize (const geo_type& omega_K);
void evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const;
// data:
protected:
field_type _uh;
};
// concept;
template<class T, class M>
struct is_field_lazy <field_lazy_terminal_field<T,M> > : std::true_type {};
// inlined;
template<class T, class M>
void
field_lazy_terminal_field<T,M>::initialize (const geo_type& omega_K)
{
_uh.dis_dof_update();
}
template<class T, class M>
void
field_lazy_terminal_field<T,M>::evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{
std::vector<size_type> dis_idof;
_uh.get_space().get_constitution().assembly_dis_idof (omega_K, K, dis_idof);
size_type loc_ndof = dis_idof.size();
uk.resize (loc_ndof);
for (size_type loc_jdof = 0; loc_jdof < loc_ndof; ++loc_jdof) {
size_type dis_jdof = dis_idof[loc_jdof];
uk [loc_jdof] = _uh.dis_dof (dis_jdof);
}
}
}// namespace details
// -------------------------------------------------------------------
// 2.2. integrate
// -------------------------------------------------------------------
// field_lazy_terminal_integrate is returned by the integrate(domain) function
// It contains the domain of integration and integration options (quadrature)
// The sumitted elements K during evaluation belongs to a superset omega_K of "domain"
// => the boolean is_on_domain[K_ie] behaves as an indicator function for "domain"
//
namespace details {
template<class Expr>
class field_lazy_terminal_integrate_rep {
public :
// definitions:
using size_type = geo_element::size_type;
using memory_type = typename Expr::memory_type;
using scalar_type = typename Expr::scalar_type;
using space_type = typename Expr::space_type;
using geo_type = typename Expr::geo_type;
using float_type = typename float_traits<scalar_type>::type;
using band_type = band_basic<float_type,memory_type>;
using vector_element_type = Eigen::Matrix<scalar_type,Eigen::Dynamic,1>;
// allocators:
field_lazy_terminal_integrate_rep (
const Expr& expr,
const integrate_option& iopt);
field_lazy_terminal_integrate_rep (
const geo_type& domain,
const Expr& expr,
const integrate_option& iopt);
field_lazy_terminal_integrate_rep (
std::string domname,
const Expr& expr,
const integrate_option& iopt);
// accessors:
const geo_type& get_geo() const { return _domain; }
const space_type& get_space() const { return _expr.get_vf_space(); }
bool is_on_band() const { return false; }
band_type get_band() const { return band_type(); }
void initialize (const geo_type& omega_K) const;
void evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const;
// data:
protected:
geo_type _domain;
mutable Expr _expr;
mutable integrate_option _iopt;
mutable disarray<int,memory_type> _is_on_domain;
mutable geo_type _prev_omega_K;
mutable size_type _prev_K_dis_ie;
mutable vector_element_type _prev_uk;
// internal:
const geo_type& get_default_geo () const;
};
// inlined;
template<class Expr>
field_lazy_terminal_integrate_rep<Expr>::field_lazy_terminal_integrate_rep (
const geo_type& domain,
const Expr& expr,
const integrate_option& iopt)
: _domain(domain),
_expr(expr),
_iopt(iopt),
_is_on_domain(),
_prev_omega_K(),
_prev_K_dis_ie(std::numeric_limits<size_type>::max()),
_prev_uk()
{
}
// missing domain:
template<class Expr>
field_lazy_terminal_integrate_rep<Expr>::field_lazy_terminal_integrate_rep (
const Expr& expr,
const integrate_option& iopt)
: _domain(),
_expr(expr),
_iopt(iopt),
_is_on_domain(),
_prev_omega_K(),
_prev_K_dis_ie(std::numeric_limits<size_type>::max()),
_prev_uk()
{
_domain = get_default_geo();
}
// missing domain:
template<class Expr>
field_lazy_terminal_integrate_rep<Expr>::field_lazy_terminal_integrate_rep (
std::string domname,
const Expr& expr,
const integrate_option& iopt)
: _domain(),
_expr(expr),
_iopt(iopt),
_is_on_domain(),
_prev_omega_K(),
_prev_K_dis_ie(std::numeric_limits<size_type>::max()),
_prev_uk()
{
_domain = get_default_geo() [domname];
}
template<class Expr>
const typename field_lazy_terminal_integrate_rep<Expr>::geo_type&
field_lazy_terminal_integrate_rep<Expr>::get_default_geo () const
{
// TODO: improve the automatic determination of the domain ?
return get_space().get_constitution().get_geo();
}
template<class Expr>
void
field_lazy_terminal_integrate_rep<Expr>::initialize (const geo_type& omega_K) const
{
using float_type = typename float_traits<scalar_type>::type;
_iopt._is_on_interface = false;
_iopt._is_inside_on_local_sides = false;
_expr.initialize (_domain, _iopt);
_prev_omega_K = omega_K;
_prev_K_dis_ie = std::numeric_limits<size_type>::max();
// --------------------------------
// initialize the domain indicator:
// --------------------------------
// TODO: sub-domain
// _domain could be a subdomain of omega_K:
// in that case evaluate(omega_K,K) should return a zero uk vector
// when K do not belongs to _domain
size_type K_map_d = omega_K.dimension();
_is_on_domain.resize (omega_K.geo_element_ownership(K_map_d));
std::fill (_is_on_domain.begin(), _is_on_domain.end(), false);
if (_domain.map_dimension() == omega_K.map_dimension()) {
if (_domain == omega_K || _domain.variant() != geo_abstract_base_rep<float_type>::geo_domain) {
#ifdef TODO
// => _domain has the same element numbering as omega_K
// _domain.variant() is a geo or a geo_domain_indirect
trace_macro ("lazy_int(init): domain="<<_domain.name()<<": same numbering as "<<omega_K.name()<<"...");
size_type first_dis_ie = omega_K.geo_element_ownership (omega_K.map_dimension()).first_index();
trace_macro ("lazy_int(init): first_dis_ie="<<first_dis_ie);
trace_macro ("lazy_int(init): _is_on_domain.size="<<_is_on_domain.size());
for (size_type dom_ie = 0, dom_ne = _domain.size(); dom_ie < dom_ne; ++dom_ie) {
trace_macro ("lazy_int(init): dom_ie="<<dom_ie);
const geo_element& K = _domain [dom_ie];
size_type dis_ie = K.dis_ie();
trace_macro ("lazy_int(init): K.dis_ie="<<dis_ie);
check_macro (first_dis_ie <= dis_ie, "invalid index"); // PARANO
size_type ie = dis_ie - first_dis_ie;
trace_macro ("lazy_int(init): ie="<<ie);
check_macro (ie <= _is_on_domain.size(), "invalid index"); // PARANO
_is_on_domain [ie] = true;
}
#endif // TODO
trace_macro ("lazy_int(init): domain="<<_domain.name()<<": same numbering as "<<omega_K.name()<<" done");
} else {
error_macro ("geo_domain="<<_domain.name()<<" subset of "<<omega_K.name()<<": not yet");
}
} else if (_domain.map_dimension()+1 == omega_K.map_dimension()) {
check_macro (_domain.get_background_geo() == omega_K, "unexpected domain \""
<<_domain.name()<<"\" as subset of \""<<omega_K.name()<<"\"");
if (_domain.variant() != geo_abstract_base_rep<float_type>::geo_domain) {
trace_macro ("lazy_int(init): domain(bdry or sides)="<<_domain.name()<<" subset of "<<omega_K.name()<<"...");
for (size_type dom_ie = 0, dom_ne = _domain.size(); dom_ie < dom_ne; ++dom_ie) {
const geo_element& S = _domain [dom_ie];
size_type dis_is = S.dis_ie();
// _domain="sides" or "boundary" or other d-1 sides domain
// for a side S, will access to its neighbours K0 & K1
size_type K_dis_ie = S.master(0); // TODO: domain = "interface" : orient could be -1 and then choose S.master(1) !!
check_macro (K_dis_ie != std::numeric_limits<size_type>::max(),
"unexpected isolated side S="<<S.name()<<S.dis_ie());
const geo_element& K = omega_K.dis_get_geo_element (K_map_d, K_dis_ie);
size_type dis_ie = K.dis_ie(); // not necessarily on the same proc as S
_is_on_domain.dis_entry (dis_ie) = true;
}
_is_on_domain.dis_entry_assembly();
trace_macro ("lazy_int(init): domain(bdry or sides)="<<_domain.name()<<" subset of "<<omega_K.name()<<" done");
} else {
error_macro ("geo_domain(bdry or sides)="<<_domain.name()<<" subset of "<<omega_K.name()<<": not yet");
}
} else {
error_macro ("unsupported domain \"" << _domain.name()
<< "\" with map_dimension=" << _domain.map_dimension()
<< " when integrated in geometry \"" << omega_K.name()
<< "\" with map_dimension=" << omega_K.map_dimension());
}
}
/*
compute local idofs on S from the basis in K ?
all dofs in K are numberd from 0 to ndof(K)-1
for each S :
is_in_S[0:ndof(K)-1] = false
for each subgeo_dim=0 to S.dim :
for each subgeo T of S with T.dim=subgeo_dim
get T.first_idof and T.last_idof from basis infos
for idof=T.first_idof to T.last_idof-1
is_in_S[idof] = true
ndof_S = 0
for idof = 0 to ndof(K)-1
if is_in_S[idof] then ndof_S++
idof_S2idof.resize (ndof_S)
idof_S = 0
for idof = 0 to ndof(K)-1
if is_in_S[idof] then
idof_S2idof[idof_S++] = idof
finally:
for idof_S = 0 to ndof_S-1
uk[idof_S2idof[idof_S] = us[idof_S]
The computation of idof_S2idof could be done on the basis(hat_K)
one time for all for all sides S at initialization or on the fly
at the first request
- first step : we do it here, for all K
- second step : we move it on the basis class in an internal mutable data
For a space product eg Yh=Xh*Mh we have to concactenate the idof_S2idof arrays
=> will be a member function of space class ?
*/
template <class T>
void
compute_idof_S2idof_K (
const basis_basic<T>& b,
const reference_element& hat_K,
std::array<std::vector<size_t>,
reference_element::max_side_by_variant>& idof_S2idof_K,
std::array<size_t,
reference_element::max_side_by_variant>& ndof_S,
size_t& ndof_K)
{
trace_macro ("compute_idof_S2idof_K: hat_K="<<hat_K.name()<<"...");
using size_type = geo_element::size_type;
check_macro (hat_K.dimension() > 0, "idof_S2idof_K: invalid K.dimension=0");
size_type sid_dim = hat_K.dimension()-1;
trace_macro ("compute_idof_S2idof_K: sid_dim="<<sid_dim);
ndof_K = b.ndof (hat_K);
// ------------------------------
// 1) is_in_S [loc_isid] [idof_K]
// ------------------------------
std::array<std::vector<bool>, reference_element::max_side_by_variant> is_in_S;
std::array<std::map<size_type,size_type>, reference_element::max_side_by_variant> idof_S2idof_K_map;
for (size_type loc_isid = 0, loc_nsid = hat_K.n_subgeo(sid_dim); loc_isid < loc_nsid; ++loc_isid) {
is_in_S[loc_isid].resize (ndof_K);
std::fill (is_in_S[loc_isid].begin(), is_in_S[loc_isid].end(), false);
reference_element hat_S = hat_K.subgeo (sid_dim, loc_isid);
trace_macro ("compute_idof_S2idof_K: loc_isid="<<loc_isid<<", hat_S="<<hat_S.name());
size_type idof_S = 0;
for (size_type sub_sid_dim = 0; sub_sid_dim <= sid_dim; ++sub_sid_dim) {
size_type first_idof_K = b.first_idof_by_dimension (hat_K, sub_sid_dim);
trace_macro ("compute_idof_S2idof_K: first_idof_K(hat_K="<<hat_K.name()<<",sub_sid_dim="<<sub_sid_dim<<") = " <<first_idof_K);
for (size_type loc_isub_sid = 0; loc_isub_sid < hat_S.n_subgeo(sub_sid_dim); ++loc_isub_sid) {
reference_element hat_T = hat_S.subgeo (sub_sid_dim, loc_isub_sid);
size_type ndof_K_on_T = b.ndof_on_subgeo (hat_K.dimension(), hat_T.variant());
size_type loc_T_idx = 0;
switch (sub_sid_dim) {
case 0: {
loc_T_idx = hat_K.subgeo_local_vertex (sid_dim, loc_isid, loc_isub_sid);
break;
}
case 1: {
if (sid_dim == 1) {
loc_T_idx = loc_isid; // the side=edge in 2D itself
} else {
error_macro("compute_idof_S2idof_K: dof on edge in 3D: not yet");
}
break;
}
case 2:
default:{
if (sid_dim == 2) {
loc_T_idx = loc_isid; // the side=face in 3D itself
} else {
error_macro("compute_idof_S2idof_K: dof on face in 3D: not yet");
}
break;
}
}
trace_macro ("compute_idof_S2idof_K: ndof_K_on_T(hat_K.dim="<<hat_K.dimension()<<",hat_T="<<hat_T.name()<<") = " <<ndof_K_on_T);
trace_macro ("compute_idof_S2idof_K: T_idx="<<loc_T_idx);
size_type start_idof_K = first_idof_K + ndof_K_on_T*loc_T_idx;
size_type last_idof_K = first_idof_K + ndof_K_on_T*(loc_T_idx+1);
for (size_type idof_K = start_idof_K; idof_K < last_idof_K; ++idof_K) {
if (is_in_S [loc_isid] [idof_K]) continue;
is_in_S [loc_isid] [idof_K] = true;
idof_S2idof_K_map [loc_isid] [idof_S] = idof_K;
trace_macro ("idof_S2idof_K_map(isid="<<loc_isid<<",idof_S="<<idof_S<<") = "<<idof_K);
++idof_S;
}
}
}
}
#ifdef TO_CLEAN
// ------------------------------
// 2) count ndof on each S
// ------------------------------
for (size_type loc_isid = 0, loc_nsid = hat_K.n_subgeo(sid_dim); loc_isid < loc_nsid; ++loc_isid) {
ndof_S [loc_isid] = 0;
for (size_type idof_K = 0; idof_K < ndof_K; ++idof_K) {
if (is_in_S [loc_isid] [idof_K]) {
ndof_S [loc_isid]++;
}
}
trace_macro ("compute_idof_S2idof_K: ndof_S[isid="<<loc_isid<<"]="<<ndof_S[loc_isid]);
}
#endif // TO_CLEAN
// ------------------------------
// 3) set idof_S2idof_K
// ------------------------------
for (size_type loc_isid = 0, loc_nsid = hat_K.n_subgeo(sid_dim); loc_isid < loc_nsid; ++loc_isid) {
ndof_S [loc_isid] = idof_S2idof_K_map [loc_isid].size();
idof_S2idof_K[loc_isid].resize (ndof_S [loc_isid]);
for (auto p : idof_S2idof_K_map [loc_isid]) {
size_type idof_S = p.first;
size_type idof_K = p.second;
if (is_in_S [loc_isid] [idof_K]) {
idof_S2idof_K [loc_isid] [idof_S] = idof_K;
trace_macro ("idof_K(isid="<<loc_isid<<",idof_S="<<idof_S<<") = "<< idof_K);
idof_S++;
}
}
}
trace_macro ("compute_idof_S2idof_K done");
}
template<class Expr>
void
field_lazy_terminal_integrate_rep<Expr>::evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{
if (_prev_omega_K == omega_K && _prev_K_dis_ie == K.dis_ie()) {
uk = _prev_uk;
return;
}
if (_domain.map_dimension() == omega_K.map_dimension()) {
trace_macro ("lazy_int(eval): domain="<<_domain.name()<<": same numbering as "<<omega_K.name()<<"...");
_expr.evaluate (omega_K, K, uk);
trace_macro ("lazy_int(eval): domain="<<_domain.name()<<": same numbering as "<<omega_K.name()<<" done");
} else { // _domain.map_dimension()+1 == omega_K.map_dimension()
trace_macro ("lazy_int(eval): domain(bdry or sides)="<<_domain.name()<<" subset of "<<omega_K.name()<<"...");
std::array<std::vector<size_type>, reference_element::max_side_by_variant> idof_S2idof_K;
std::array<size_type, reference_element::max_side_by_variant> ndof_S;
size_type ndof_K = 0;
check_macro (get_space().size() == 0, "lazy_int(eval): "<<get_space().size()<<"-component space: not yet supported");
compute_idof_S2idof_K (get_space().get_basis(), K, idof_S2idof_K, ndof_S, ndof_K); // TODO: do it in space:: with concat
uk = vector_element_type::Zero (ndof_K, 1);
trace_macro ("lazy_int(eval): uk.size="<<uk.size());
check_macro (K.dimension() > 0, "lazy_int(eval): invalid K.dimension=0");
size_type sid_dim = K.dimension()-1;
vector_element_type us;
for (size_type loc_isid = 0, nsid = K.n_subgeo(sid_dim); loc_isid < nsid; ++loc_isid) {
size_type dis_isid = K.subgeo_dis_index(sid_dim,loc_isid);
const geo_element& S = omega_K.dis_get_geo_element (sid_dim, dis_isid);
side_information_type sid;
K.get_side_informations (S, sid);
_expr.evaluate (_domain, S, us);
trace_macro ("lazy_int(eval): us(loc_isid="<<loc_isid<<").size="<<us.size());
check_macro (size_type(us.size()) == ndof_S [loc_isid], "invalid us size");
for (size_type idof_S = 0; idof_S < ndof_S [loc_isid]; ++idof_S) {
size_type idof_K = idof_S2idof_K[loc_isid][idof_S];
trace_macro ("lazy_int(eval): uk[idof_K="<<idof_K<<"] += us[idof_S="<<idof_S<<"] = " << us[idof_S]);
uk[idof_K] += us[idof_S];
}
}
trace_macro ("lazy_int(eval): domain(bdry or sides)="<<_domain.name()<<" subset of "<<omega_K.name()<<" done");
}
_prev_uk = uk; // expensive to compute, so memorize it for common subexpressions
_prev_omega_K = omega_K;
_prev_K_dis_ie = K.dis_ie();
trace_macro("lazy_int(K="<<K.name()<<K.dis_ie()<<",prev="<<_prev_K_dis_ie<<"): compute");
}
template<class Expr>
class field_lazy_terminal_integrate: public smart_pointer_nocopy<field_lazy_terminal_integrate_rep<Expr>>,
public field_lazy_base <field_lazy_terminal_integrate<Expr>> {
public :
// definitions:
using rep = field_lazy_terminal_integrate_rep<Expr>;
using base1 = smart_pointer_nocopy<rep>;
using base2 = field_lazy_base<field_lazy_terminal_integrate<Expr>>;
using size_type = typename rep::size_type;
using memory_type = typename rep::memory_type;
using scalar_type = typename rep::scalar_type;
using space_type = typename rep::space_type;
using geo_type = typename rep::geo_type;
using band_type = typename rep::band_type;
using vector_element_type = typename rep::vector_element_type;
// allocator:
field_lazy_terminal_integrate (
const geo_type& domain,
const Expr& expr,
const integrate_option& iopt)
: base1(new_macro(rep(domain,expr,iopt))),
base2()
{}
field_lazy_terminal_integrate (
const Expr& expr,
const integrate_option& iopt)
: base1(new_macro(rep(expr,iopt))),
base2()
{}
field_lazy_terminal_integrate (
std::string domname,
const Expr& expr,
const integrate_option& iopt)
: base1(new_macro(rep(domname,expr,iopt))),
base2()
{}
// accessors:
const geo_type& get_geo() const { return base1::data().get_geo(); }
const space_type& get_space() const { return base1::data().get_space(); }
bool is_on_band() const { return base1::data().is_on_band(); }
band_type get_band() const { return base1::data().get_band(); }
void initialize (const geo_type& omega_K) const { return base1::data().initialize (omega_K); }
void evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{ base1::data().evaluate (omega_K, K, uk); }
};
// concept;
template<class Expr> struct is_field_lazy <field_lazy_terminal_integrate<Expr> > : std::true_type {};
}// namespace details
// 2.2.a) general call
template <class Expr>
inline
typename
std::enable_if<
details::is_field_expr_quadrature_arg<Expr>::value
,details::field_lazy_terminal_integrate <Expr>
>::type
//! @brief see the @ref integrate_3 page for the full documentation
lazy_integrate (
const typename Expr::geo_type& domain,
const Expr& expr,
const integrate_option& iopt = integrate_option())
{
return details::field_lazy_terminal_integrate<Expr> (domain, expr, iopt);
}
template <class Expr>
inline
typename
std::enable_if<
details::is_field_expr_v2_variational_arg<Expr>::value
,details::field_lazy_terminal_integrate <details::field_expr_quadrature_on_element<Expr>>
>::type
//! @brief see the @ref integrate_3 page for the full documentation
lazy_integrate (
const geo_basic<typename Expr::scalar_type, typename Expr::memory_type>& domain,
const Expr& expr,
const integrate_option& iopt = integrate_option())
{
details::field_expr_quadrature_on_element<Expr> expr_quad(expr);
return lazy_integrate (domain, expr_quad, iopt);
}
// 2.2.b) missing domain
template <class Expr>
inline
typename
std::enable_if<
details::is_field_expr_quadrature_arg<Expr>::value
,details::field_lazy_terminal_integrate <Expr>
>::type
//! @brief see the @ref integrate_3 page for the full documentation
lazy_integrate (
const Expr& expr,
const integrate_option& iopt = integrate_option())
{
return details::field_lazy_terminal_integrate<Expr> (expr, iopt);
}
template <class Expr>
inline
typename
std::enable_if<
details::is_field_expr_v2_variational_arg<Expr>::value
,details::field_lazy_terminal_integrate <details::field_expr_quadrature_on_element<Expr>>
>::type
//! @brief see the @ref integrate_3 page for the full documentation
lazy_integrate (
const Expr& expr,
const integrate_option& iopt = integrate_option())
{
details::field_expr_quadrature_on_element<Expr> expr_quad(expr);
return lazy_integrate (expr_quad, iopt);
}
// 2.2.c) subdomain by its name
template <class Expr>
inline
typename
std::enable_if<
details::is_field_expr_quadrature_arg<Expr>::value
,details::field_lazy_terminal_integrate <Expr>
>::type
//! @brief see the @ref integrate_3 page for the full documentation
lazy_integrate (
const std::string& domname,
const Expr& expr,
const integrate_option& iopt = integrate_option())
{
return details::field_lazy_terminal_integrate<Expr> (domname, expr, iopt);
}
template <class Expr>
inline
typename
std::enable_if<
details::is_field_expr_v2_variational_arg<Expr>::value
,details::field_lazy_terminal_integrate <details::field_expr_quadrature_on_element<Expr>>
>::type
//! @brief see the @ref integrate_3 page for the full documentation
lazy_integrate (
const std::string& domname,
const Expr& expr,
const integrate_option& iopt = integrate_option())
{
details::field_expr_quadrature_on_element<Expr> expr_quad(expr);
return lazy_integrate (domname, expr_quad, iopt);
}
// ----------------------------------------------
// 2.3. integrate on a band
// ----------------------------------------------
namespace details {
template<class Expr>
class field_lazy_terminal_integrate_band_rep {
public :
// definitions:
using size_type = geo_element::size_type;
using memory_type = typename Expr::memory_type;
using scalar_type = typename Expr::scalar_type;
using space_type = typename Expr::space_type;
using geo_type = typename Expr::geo_type;
using float_type = typename float_traits<scalar_type>::type;
using band_type = band_basic<float_type,memory_type>;
using vector_element_type = Eigen::Matrix<scalar_type,Eigen::Dynamic,1>;
// allocators:
field_lazy_terminal_integrate_band_rep (
const band_type& gh,
const Expr& expr,
const integrate_option& iopt);
// accessors:
const geo_type& get_geo() const { return _gh.level_set(); }
const space_type& get_space() const { return _expr.get_vf_space(); }
bool is_on_band() const { return true; }
band_type get_band() const { return _gh; }
void initialize (const geo_type& omega_K) const;
void evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const;
// data:
protected:
band_type _gh;
mutable Expr _expr;
mutable integrate_option _iopt;
mutable geo_type _prev_omega_K;
mutable size_type _prev_K_dis_ie;
mutable vector_element_type _prev_uk;
};
// inlined;
template<class Expr>
field_lazy_terminal_integrate_band_rep<Expr>::field_lazy_terminal_integrate_band_rep (
const band_type& gh,
const Expr& expr,
const integrate_option& iopt)
: _gh(gh),
_expr(expr),
_iopt(iopt),
_prev_omega_K(),
_prev_K_dis_ie(std::numeric_limits<size_type>::max()),
_prev_uk()
{
}
template<class Expr>
void
field_lazy_terminal_integrate_band_rep<Expr>::initialize (const geo_type& omega_K) const
{
const geo_type& band = _gh.band(); // the 3D intersected tetras
const geo_type& bgd_omega = get_space().get_constitution().get_background_geo();
check_macro (omega_K == get_geo(),
"integrate on band: unexpected integration domain");
check_macro (band.get_background_geo() == bgd_omega,
"do_integrate: incompatible integration domain "<<_gh.level_set().name() << " and test function based domain "
<< bgd_omega.name());
_expr.initialize (_gh, _iopt);
_prev_omega_K = omega_K;
_prev_K_dis_ie = std::numeric_limits<size_type>::max();
}
template<class Expr>
void
field_lazy_terminal_integrate_band_rep<Expr>::evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{
if (_prev_omega_K == omega_K && _prev_K_dis_ie == K.dis_ie()) {
uk = _prev_uk;
return;
}
_expr.evaluate (omega_K, K, uk);
_prev_uk = uk; // expensive to compute, so memorize it for common subexpressions
_prev_omega_K = omega_K;
_prev_K_dis_ie = K.dis_ie();
}
template<class Expr>
class field_lazy_terminal_integrate_band: public smart_pointer_nocopy<field_lazy_terminal_integrate_band_rep<Expr>>,
public field_lazy_base <field_lazy_terminal_integrate_band<Expr>> {
public :
// definitions:
using rep = field_lazy_terminal_integrate_band_rep<Expr>;
using base1 = smart_pointer_nocopy<rep>;
using base2 = field_lazy_base<field_lazy_terminal_integrate_band<Expr>>;
using size_type = typename rep::size_type;
using memory_type = typename rep::memory_type;
using scalar_type = typename rep::scalar_type;
using space_type = typename rep::space_type;
using geo_type = typename rep::geo_type;
using band_type = typename rep::band_type;
using vector_element_type = typename rep::vector_element_type;
// allocator:
field_lazy_terminal_integrate_band (
const band_type& gh,
const Expr& expr,
const integrate_option& iopt)
: base1(new_macro(rep(gh,expr,iopt))),
base2()
{}
// accessors:
const geo_type& get_geo() const { return base1::data().get_geo(); }
const space_type& get_space() const { return base1::data().get_space(); }
bool is_on_band() const { return base1::data().is_on_band(); }
band_type get_band() const { return base1::data().get_band(); }
void initialize (const geo_type& omega_K) const { return base1::data().initialize (omega_K); }
void evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{ base1::data().evaluate (omega_K, K, uk); }
};
// concept;
template<class Expr> struct is_field_lazy <field_lazy_terminal_integrate_band<Expr> > : std::true_type {};
}// namespace details
template <class Expr>
typename
std::enable_if<
details::is_field_expr_quadrature_arg<Expr>::value
,details::field_lazy_terminal_integrate_band <Expr>
>::type
//! @brief see the @ref integrate_3 page for the full documentation
lazy_integrate (
const band_basic<typename float_traits<typename Expr::scalar_type>::type,
typename Expr::memory_type>& gh,
const Expr& expr,
const integrate_option& iopt = integrate_option())
{
return details::field_lazy_terminal_integrate_band<Expr> (gh, expr, iopt);
}
template <class Expr>
typename
std::enable_if<
details::is_field_expr_v2_variational_arg<Expr>::value
,details::field_lazy_terminal_integrate_band <details::field_expr_quadrature_on_element<Expr>>
>::type
//! @brief see the @ref integrate_3 page for the full documentation
lazy_integrate (
const band_basic<typename float_traits<typename Expr::scalar_type>::type,
typename Expr::memory_type>& gh,
const Expr& expr,
const integrate_option& iopt = integrate_option())
{
details::field_expr_quadrature_on_element<Expr> expr_quad(expr);
return lazy_integrate (gh, expr_quad, iopt);
}
// ----------------------------------------------
// 2.4. interpolate
// ----------------------------------------------
namespace details {
template<class Expr>
class field_lazy_terminal_interpolate_rep {
public :
// definitions:
using size_type = geo_element::size_type;
using memory_type = typename Expr::memory_type;
using value_type = typename Expr::value_type; // TODO: undeterminated_type<T>
using scalar_type = typename Expr::scalar_type;
using float_type = typename float_traits<scalar_type>::type;
using geo_type = geo_basic <float_type,memory_type>;
using space_type = space_basic<float_type,memory_type>;
using band_type = band_basic <float_type,memory_type>;
using vector_element_type = Eigen::Matrix<scalar_type,Eigen::Dynamic,1>;
// allocators:
field_lazy_terminal_interpolate_rep (
const space_type& Xh,
const Expr& expr);
// accessors:
const geo_type& get_geo() const { return _Xh.get_geo(); }
const space_type& get_space() const { return _Xh; }
bool is_on_band() const { return false; }
band_type get_band() const { return band_type(); }
void initialize (const geo_type& omega_K) const;
void evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const;
protected:
// internals:
template <class Value>
typename std::enable_if<
is_undeterminated<Value>::value
,void
>::type
evaluate_internal (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const;
template <class Value>
typename std::enable_if<
! is_undeterminated<Value>::value
,void
>::type
evaluate_internal (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const;
// data:
space_type _Xh;
mutable Expr _expr;
mutable piola_on_pointset<float_type> _pops;
mutable disarray<int,memory_type> _is_marked;
mutable geo_type _prev_omega_K;
mutable size_type _prev_K_dis_ie;
mutable vector_element_type _prev_uk;
};
// inlined;
template<class Expr>
field_lazy_terminal_interpolate_rep<Expr>::field_lazy_terminal_interpolate_rep (
const space_type& Xh,
const Expr& expr)
: _Xh(Xh),
_expr(expr),
_pops(),
_is_marked(),
_prev_omega_K(),
_prev_K_dis_ie(std::numeric_limits<size_type>::max()),
_prev_uk()
{
}
template<class Expr>
void
field_lazy_terminal_interpolate_rep<Expr>::initialize (const geo_type& omega_K) const
{
check_macro (omega_K == _Xh.get_geo(),
"interpolate: incompatible space \""<<_Xh.name()<<"\" with geometry \""
<< omega_K.name());
const basis_basic<float_type>& b = _Xh.get_basis();
const piola_fem<float_type>& pf = b.get_piola_fem();
integrate_option iopt;
_pops.initialize (omega_K.get_piola_basis(), b, iopt);
_expr.initialize (_Xh, _pops, iopt);
_expr.template valued_check<value_type>();
_prev_omega_K = omega_K;
_prev_K_dis_ie = std::numeric_limits<size_type>::max();
if (_Xh.get_basis().is_continuous()) {
std::set<size_type> ext_dis_idof;
_Xh.get_parent_subgeo_owner_dis_indexes (ext_dis_idof);
_is_marked.resize (_Xh.ownership());
std::fill (_is_marked.begin(), _is_marked.end(), false);
_is_marked.set_dis_indexes (ext_dis_idof);
} // if continuous
}
template<class Expr>
template <class Value>
typename std::enable_if<
! is_undeterminated<Value>::value
,void
>::type
field_lazy_terminal_interpolate_rep<Expr>::evaluate_internal (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{
// 1) evaluate as a Value
Eigen::Matrix<Value,Eigen::Dynamic,1> value; // TODO: allocate it once on the mesh
_expr.evaluate (omega_K, K, value);
// 2) convert field "Values" at nodes of K to scalar "dofs"
const piola_fem<float_type>& pf = _Xh.get_basis().get_piola_fem();
if (pf.transform_need_piola()) {
const Eigen::Matrix<piola<float_type>,Eigen::Dynamic,1>& piola = _pops.get_piola (omega_K, K);
for (size_type loc_inod = 0, loc_nnod = value.size(); loc_inod < loc_nnod; ++loc_inod) {
// be carefull: piola_fem::inv_transform should support inplace call in the "value" arg
pf.inv_transform (piola[loc_inod], value[loc_inod], value[loc_inod]);
}
}
_Xh.get_basis().compute_dofs (K, value, uk);
}
template<class Expr>
template <class Value>
typename std::enable_if<
is_undeterminated<Value>::value
,void
>::type
field_lazy_terminal_interpolate_rep<Expr>::evaluate_internal (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{
using T = scalar_type;
// when valued_type is undeterminated at compile time e.g.
// field uh = lazy_interpolate (Xh, tau_h*vh);
// => undeterminated : could be scalar, vector or tensor valued
// so, ask to the Xh space at run-time:
switch (_Xh.valued_tag()) {
#define _RHEOLEF_switch(VALUED,VALUE) \
case space_constant::VALUED: \
(*this).template evaluate_internal<VALUE> (omega_K, K, uk); break;
_RHEOLEF_switch(scalar,T)
_RHEOLEF_switch(vector,point_basic<T>)
_RHEOLEF_switch(tensor,tensor_basic<T>)
_RHEOLEF_switch(unsymmetric_tensor,tensor_basic<T>)
#ifdef TODO
_RHEOLEF_switch(tensor3,tensor3_basic<T>)
_RHEOLEF_switch(tensor4,tensor4_basic<T>)
#endif // TODO
#undef _RHEOLEF_switch
default: error_macro ("unexpected argument valued tag="<<_Xh.valued_tag());
}
}
template<class Expr>
void
field_lazy_terminal_interpolate_rep<Expr>::evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{
if (_prev_omega_K == omega_K && _prev_K_dis_ie == K.dis_ie()) {
trace_macro("interpolate(K="<<K.name()<<K.dis_ie()<<",prev="<<_prev_K_dis_ie<<"): re-use");
uk = _prev_uk;
return;
}
trace_macro("interpolate(K="<<K.name()<<K.dis_ie()<<",prev="<<_prev_K_dis_ie<<"): compute");
(*this).template evaluate_internal<value_type> (omega_K, K, uk);
// filter for continuous element: each dof value is transmitted only once
// so the result could be summed as any others field_lazy<Expr>
if (_Xh.get_basis().is_continuous()) {
std::vector<size_type> dis_idx;
_Xh.dis_idof (K, dis_idx);
check_macro (dis_idx.size() == size_type(uk.size()),
"invalid sizes: dis_idx.size="<<dis_idx.size()<<", uk.size="<<uk.size());
size_type my_proc = _Xh.comm().rank();
for (size_type loc_idof = 0, loc_ndof = dis_idx.size(); loc_idof < loc_ndof; ++loc_idof) {
size_type dis_idof = dis_idx [loc_idof];
size_type iproc = _Xh.get_parent_subgeo_owner (dis_idof);
if (iproc != my_proc || _is_marked.dis_at (dis_idof)) {
uk [loc_idof] = 0;
continue;
}
// conserve the uk[loc_idof] value and remember it:
_is_marked.dis_entry (dis_idof) = true;
}
}
_prev_uk = uk; // expensive to compute, so memorize it for common subexpressions
_prev_omega_K = omega_K;
_prev_K_dis_ie = K.dis_ie();
}
template<class Expr>
class field_lazy_terminal_interpolate: public smart_pointer_nocopy<field_lazy_terminal_interpolate_rep<Expr>>,
public field_lazy_base <field_lazy_terminal_interpolate<Expr>> {
public :
// definitions:
using rep = field_lazy_terminal_interpolate_rep<Expr>;
using base1 = smart_pointer_nocopy<rep>;
using base2 = field_lazy_base<field_lazy_terminal_interpolate<Expr>>;
using size_type = typename rep::size_type;
using memory_type = typename rep::memory_type;
using scalar_type = typename rep::scalar_type;
using space_type = typename rep::space_type;
using geo_type = typename rep::geo_type;
using band_type = typename rep::band_type;
using vector_element_type = typename rep::vector_element_type;
// allocator:
field_lazy_terminal_interpolate (
const space_type& Xh,
const Expr& expr)
: base1(new_macro(rep(Xh,expr))),
base2()
{}
// accessors:
const geo_type& get_geo() const { return base1::data().get_geo(); }
const space_type& get_space() const { return base1::data().get_space(); }
bool is_on_band() const { return base1::data().is_on_band(); }
band_type get_band() const { return base1::data().get_band(); }
void initialize (const geo_type& omega_K) const { return base1::data().initialize (omega_K); }
void evaluate (
const geo_type& omega_K,
const geo_element& K,
vector_element_type& uk) const
{ base1::data().evaluate (omega_K, K, uk); }
};
// concept;
template<class Expr> struct is_field_lazy <field_lazy_terminal_interpolate<Expr> > : std::true_type {};
}// namespace details
// 2.4.a. general nonlinear expression
//! @brief see the @ref interpolate_3 page for the full documentation
template<class Expr>
typename std::enable_if<
details::is_field_expr_v2_nonlinear_arg<Expr>::value
&& ! details::has_field_rdof_interface<Expr>::value // TODO: interpolate also rdof with an extended "evaluate" interface
&& ! details::is_field_function<Expr>::value
,details::field_lazy_terminal_interpolate<
typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type
>
>::type
lazy_interpolate (
const space_basic<
typename float_traits<typename Expr::scalar_type>::type
,typename Expr::memory_type>& Xh,
const Expr& expr)
{
using wrap_t = typename details::field_expr_v2_nonlinear_terminal_wrapper_traits<Expr>::type;
return details::field_lazy_terminal_interpolate<wrap_t> (Xh, wrap_t(expr));
}
// 2.4.b. function & functor
//! @brief see the @ref interpolate_3 page for the full documentation
template <class Expr>
inline
typename std::enable_if<
details::is_field_function<Expr>::value
,details::field_lazy_terminal_interpolate<
details::field_expr_v2_nonlinear_terminal_function<Expr>
>
>::type
lazy_interpolate (
const space_basic<
typename float_traits<typename details::field_expr_v2_nonlinear_terminal_function<Expr>::scalar_type>::type
,typename details::field_expr_v2_nonlinear_terminal_function<Expr>::memory_type>& Xh,
const Expr& expr)
{
using wrap_t = details::field_expr_v2_nonlinear_terminal_function<Expr>;
return details::field_lazy_terminal_interpolate<wrap_t> (Xh, wrap_t(expr));
}
#ifdef TO_CLEAN
// 2.4.c. re-interpolation of fields and linear field expressions
// for change of mesh, of approx, ect
// not truly lazy, but here for the completeness of the interpolate interface
//! @brief see the @ref interpolate_3 page for the full documentation
template<class T, class M>
inline
field_basic<T,M>
lazy_interpolate (const space_basic<T,M>& X2h, const field_basic<T,M>& u1h)
{
return interpolate (X2h, u1h);
}
//! @brief see the @ref interpolate_3 page for the full documentation
template <class T, class M, class Expr>
inline
typename std::enable_if<
details::is_field_wdof<Expr>::value
&& ! details::is_field<Expr>::value
,field_basic<T,M>
>::type
lazy_interpolate (const space_basic<T,M>& Xh, const Expr& expr)
{
return interpolate (Xh, field_basic<T,M>(expr));
}
#endif // TO_CLEAN
}// namespace rheolef
# endif /* _RHEOLEF_FIELD_LAZY_TERMINAL_H */
|