1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// gnuplot geo visualisation
//
// author: Pierre.Saramito@imag.fr
//
// date: 16 sept 2011
//
# include "rheolef/field.h"
# include "rheolef/field_wdof_indirect.h"
# include "rheolef/field_evaluate.h"
# include "rheolef/piola_util.h"
# include "rheolef/rheostream.h"
# include "field_seq_visu_gnuplot_internal.h"
# include "rheolef/rounder.h"
# include "rheolef/interpolate.h"
namespace rheolef {
template <class T>
odiststream& visu_gnuplot (odiststream& ops, const geo_basic<T,sequential>& omega);
// ----------------------------------------------------------------------------
// puts for one element
// ----------------------------------------------------------------------------
template<class T>
static
void
put_edge (
std::ostream& gdat,
const geo_basic<T,sequential>& omega,
const geo_element& K,
const field_basic<T,sequential>& uh,
const fem_on_pointset<T>& fops,
size_t my_order,
bound_type<T>& bbox)
{
using namespace std;
typedef typename geo_basic<T,sequential>::size_type size_type;
typedef point_basic<size_type> ilat;
size_type dim = omega.dimension();
const Eigen::Matrix<piola<T>,Eigen::Dynamic,1>& piola = fops.get_piola_on_pointset().get_piola (omega, K);
Eigen::Matrix<T,Eigen::Dynamic,1> value;
field_evaluate (uh, fops, omega, K, value);
for (size_type loc_idof = 0, loc_ndof = piola.size(); loc_idof < loc_ndof; loc_idof++) {
bbox.update (piola[loc_idof].F, value[loc_idof]);
}
for (size_type i = 0; i <= my_order; i++) {
size_type loc_idof = reference_element_e::ilat2loc_inod (my_order, ilat(i));
piola[loc_idof].F.put (gdat, dim); gdat << " " << value[loc_idof] << endl;
}
gdat << endl;
gdat << endl;
}
template<class T>
static
void
put_triangle (
std::ostream& gdat,
const geo_basic<T,sequential>& omega,
const geo_element& K,
const field_basic<T,sequential>& uh,
const fem_on_pointset<T>& fops,
size_t my_order,
bound_type<T>& bbox)
{
using namespace std;
typedef typename geo_basic<T,sequential>::size_type size_type;
typedef point_basic<size_type> ilat;
size_type dim = omega.dimension();
const Eigen::Matrix<piola<T>,Eigen::Dynamic,1>& piola = fops.get_piola_on_pointset().get_piola (omega, K);
Eigen::Matrix<T,Eigen::Dynamic,1> value;
field_evaluate (uh, fops, omega, K, value);
for (size_type loc_idof = 0, loc_ndof = piola.size(); loc_idof < loc_ndof; loc_idof++) {
bbox.update (piola[loc_idof].F, value[loc_idof]);
}
for (size_type j = 0; j <= my_order; j++) {
for (size_type i1 = 0; i1 <= my_order; i1++) {
size_type i = std::min(i1, my_order-j);
size_type iloc = reference_element_t::ilat2loc_inod (my_order, ilat(i, j));
piola[iloc].F.put (gdat, dim); gdat << " " << value[iloc] << endl;
}
gdat << endl;
}
gdat << endl << endl;
}
template<class T>
static
void
put_quadrangle (
std::ostream& gdat,
const geo_basic<T,sequential>& omega,
const geo_element& K,
const field_basic<T,sequential>& uh,
const fem_on_pointset<T>& fops,
size_t my_order,
bound_type<T>& bbox)
{
using namespace std;
typedef typename geo_basic<T,sequential>::size_type size_type;
typedef point_basic<size_type> ilat;
size_type dim = omega.dimension();
const Eigen::Matrix<piola<T>,Eigen::Dynamic,1>& piola = fops.get_piola_on_pointset().get_piola (omega, K);
Eigen::Matrix<T,Eigen::Dynamic,1> value;
field_evaluate (uh, fops, omega, K, value);
for (size_type loc_idof = 0, loc_ndof = piola.size(); loc_idof < loc_ndof; loc_idof++) {
bbox.update (piola[loc_idof].F, value[loc_idof]);
}
for (size_type j = 0; j < my_order+1; j++) {
for (size_type i = 0; i < my_order+1; i++) {
size_type loc_idof00 = reference_element_q::ilat2loc_inod (my_order, ilat(i, j));
piola[loc_idof00].F.put (gdat, dim); gdat << " " << value[loc_idof00] << endl;
}
gdat << endl;
}
gdat << endl << endl;
}
template<class T>
void
put (
std::ostream& gdat,
const geo_basic<T,sequential>& omega,
const geo_element& K,
const field_basic<T,sequential>& uh,
const fem_on_pointset<T>& fops,
size_t my_order,
bound_type<T>& bbox)
{
switch (K.variant()) {
case reference_element::e: put_edge (gdat, omega, K, uh, fops, my_order, bbox); break;
case reference_element::t: put_triangle (gdat, omega, K, uh, fops, my_order, bbox); break;
case reference_element::q: put_quadrangle (gdat, omega, K, uh, fops, my_order, bbox); break;
default: error_macro ("unsupported element variant `"<<K.variant()<<"'");
}
}
// ----------------------------------------------------------------------------
// scalar field puts
// ----------------------------------------------------------------------------
template <class T>
odiststream&
visu_gnuplot_scalar (odiststream& ods, const field_basic<T,sequential>& uh)
{
using namespace std;
typedef typename field_basic<T,sequential>::float_type float_type;
typedef typename geo_basic<float_type,sequential>::size_type size_type;
typedef point_basic<size_type> ilat;
ostream& os = ods.os();
bool verbose = iorheo::getverbose(os);
bool clean = iorheo::getclean(os);
bool execute = iorheo::getexecute(os);
bool fill = iorheo::getfill(os); // show grid or fill elements
bool elevation = iorheo::getelevation(os);
bool color = iorheo::getcolor(os);
bool gray = iorheo::getgray(os);
bool black_and_white = iorheo::getblack_and_white(os);
bool reader_on_stdin = iorheo::getreader_on_stdin(os);
string format = iorheo::getimage_format(os);
string basename = iorheo::getbasename(os);
size_type subdivide = iorheo::getsubdivide(os);
size_type n_isovalue = iorheo::getn_isovalue(os);
size_type n_isovalue_negative = iorheo::getn_isovalue_negative(os);
string outfile_fmt = "";
string tmp = get_tmpdir() + "/";
if (!clean) tmp = "";
const geo_basic<float_type,sequential>& omega = uh.get_geo();
size_type dim = omega.dimension();
size_type map_dim = omega.map_dimension();
size_type nv = omega.sizes().ownership_by_dimension[0].size();
size_type nedg = omega.sizes().ownership_by_dimension[1].size();
size_type nfac = omega.sizes().ownership_by_dimension[2].size();
size_type nvol = omega.sizes().ownership_by_dimension[3].size();
size_type ne = omega.sizes().ownership_by_dimension[map_dim].size();
const basis_basic<float_type>& b = uh.get_space().get_basis();
if (subdivide == 0) { // subdivide is unset: use default
subdivide = std::max(omega.order(), subdivide);
subdivide = std::max(b.degree (), subdivide);
}
basis_basic<T> subdivide_pointset ("P"+std::to_string(subdivide));
piola_on_pointset<T> pops; pops.initialize (omega.get_piola_basis(), subdivide_pointset, integrate_option());
fem_on_pointset<T> fops; fops.initialize (b, pops);
bound_type<T> bbox;
bbox.xmin = omega.xmin();
bbox.xmax = omega.xmax();
bbox.umin = uh.min();
bbox.umax = uh.max();
std::vector<T> values;
if (n_isovalue_negative != 0) {
for (size_t i = 0; i <= n_isovalue_negative; i++) {
values.push_back (bbox.umin*(n_isovalue_negative - i)/n_isovalue_negative);
}
for (size_t i = 1; i <= n_isovalue - n_isovalue_negative; i++) {
values.push_back (bbox.umax*i/(n_isovalue - n_isovalue_negative));
}
}
string filelist;
//
// output .gdat
//
string filename = tmp+basename + ".gdat";
string gdatname = filename;
filelist = filelist + " " + filename;
ofstream gdat (filename.c_str());
if (verbose) clog << "! file \"" << filename << "\" created.\n";
gdat << setprecision(numeric_limits<float_type>::digits10);
size_type used_dim = (fill ? map_dim : 1);
for (size_type ie = 0, ne = omega.size(used_dim); ie < ne; ie++) {
const geo_element& K = omega.get_geo_element(used_dim,ie);
put (gdat, omega, K, uh, fops, subdivide, bbox);
}
gdat.close();
//
// rounding bounds
//
T eps = 1e-7;
bbox.umin = floorer(eps) (bbox.umin);
bbox.umax = ceiler(eps) (bbox.umax);
if (fabs(bbox.umax - bbox.umin) < eps) { // empty range: constant field
bbox.umax = 1.1*bbox.umax;
bbox.umin = 0.9*bbox.umin;
}
//
// output .plot
//
filename = tmp+basename + ".plot";
filelist = filelist + " " + filename;
ofstream plot (filename.c_str());
if (verbose) clog << "! file \"" << filename << "\" created.\n";
plot << "#!gnuplot" << endl
<< setprecision(numeric_limits<float_type>::digits10);
if (format != "") {
outfile_fmt = basename + "." + format;
string terminal = format;
if (terminal == "ps") {
terminal = "postscript eps";
if (color) terminal += " color";
}
if (terminal == "jpg") terminal = "jpeg";
if (terminal == "jpeg" || terminal == "png" || terminal == "gif") {
terminal += " crop";
}
plot << "set terminal " << terminal << endl
<< "set output \"" << outfile_fmt << "\"" << endl;
}
plot << "umin = " << bbox.umin << endl
<< "umax = " << bbox.umax << endl
<< "n_isovalue = " << n_isovalue << endl
<< "uincr = 1.0*(umax-umin)/n_isovalue" << endl;
if (dim == 2) {
if (bbox.xmin[0] >= bbox.xmax[0]) plot << "#";
plot << "set xrange [" << bbox.xmin[0] << ":" << bbox.xmax[0] << "]" << endl;
if (bbox.xmin[1] >= bbox.xmax[1]) plot << "#";
plot << "set yrange [" << bbox.xmin[1] << ":" << bbox.xmax[1] << "]" << endl;
if (bbox.umin >= bbox.umax) plot << "#";
plot << "set zrange [umin:umax]" << endl;
if (bbox.xmin[0] >= bbox.xmax[0] || bbox.xmin[1] >= bbox.xmax[1]) {
plot << "set size square" << endl;
} else {
plot << "set size ratio -1 # equal scales" << endl
<< "set noxtics" << endl
<< "set noytics" << endl;
}
if (elevation) {
plot << "set xyplane at umin-0.1*(umax-umin)" << endl;
} else {
plot << "set view map" << endl;
}
if (map_dim == 2) {
plot << "unset surface" << endl
<< "set contour base" << endl;
if (values.size() != 0) {
plot << "set cntrparam levels discrete ";
for (size_t i = 0, n = values.size(); i < n; i++) {
plot << values[i];
if (i+1 != n) plot << ", ";
}
plot << endl;
} else {
plot << "eps = (umax-umin)*1e-4"<< endl;
plot << "uincr_eps = 1.0*(umax-umin-2*eps)/n_isovalue"<< endl;
plot << "set cntrparam levels incremental umin+eps,uincr_eps,umax-eps"<< endl;
}
}
if (black_and_white) {
plot << "set cbtics out scale 0.5" << endl;
}
plot << "set cbtics uincr" << endl
<< "set cbrange [umin:umax]" << endl;
if (gray) {
plot << "set palette gray" << endl;
} else if (color) {
plot << "set palette rgbformulae 33,13,-4" << endl;
} else { // bw
plot << "set palette rgbformulae 0,0,0" << endl;
}
plot << "set palette maxcolors n_isovalue+1" << endl
<< "set nokey" << endl;
} else if (dim == 3 && map_dim == 2) {
// field defined on a 3D surface
point_basic<T> dx = 0.1*(omega.xmax() - omega.xmin());
T dx_max = max(dx[0],max(dx[1],dx[2]));
if (dx_max == 0) dx_max = 0.1;
dx[0] = max(dx[0],dx_max);
if (omega.dimension() >= 2) dx[1] = max(dx[1],dx_max);
if (omega.dimension() == 3) dx[2] = max(dx[2],dx_max);
point_basic<T> xmin = omega.xmin() - dx;
point_basic<T> xmax = omega.xmax() + dx;
// TODO: visu contours discrets comme en 2d classique
plot << "set xrange [" << xmin[0] << ":" << xmax[0] << "]" << endl
<< "set yrange [" << xmin[1] << ":" << xmax[1] << "]" << endl
<< "set zrange [" << xmin[2] << ":" << xmax[2] << "]" << endl
<< "set xyplane at " << xmin[2] << endl
<< "set view equal xyz # equal scales" << endl
<< "set view 70,120" << endl
<< "n_isovalue = " << n_isovalue << endl
<< "n_subdivide = 40 " << endl
<< "uincr = 1.0*(umax-umin)/n_isovalue" << endl
<< "set cbtics uincr" << endl
<< "set pm3d interpolate n_subdivide,n_subdivide corners2color mean" << endl
<< "set palette rgbformulae 33,13,-4 maxcolors n_isovalue" << endl;
if (format != "") {
plot << "set noxlabel" << endl
<< "set noylabel" << endl
<< "set nozlabel" << endl;
} else {
plot << "set xlabel \"x\"" << endl
<< "set ylabel \"y\"" << endl
<< "set zlabel \"z\"" << endl;
}
}
if (dim == 1) {
if (color) {
plot << "set colors classic" << endl;
}
plot << "plot \"" << gdatname << "\" notitle with lines lw 2";
if (gray || black_and_white) {
plot << " lc 0" << endl;
}
plot << endl;
} else {
if (!fill && dim == 2) {
plot << "plot";
} else {
plot << "splot";
}
plot << " \"" << gdatname << "\" notitle";
if (map_dim == 2) {
if (black_and_white) {
plot << " with lines palette lw 2" << endl;
} else {
plot << " with lines palette" << endl;
}
} else { // a 2d line
plot << " with lines palette lw 2" << endl;
}
}
//
// end of plot
//
if (format == "" && !reader_on_stdin) {
plot << "pause -1 \"<return>\"\n";
}
plot.close();
//
// run gnuplot
//
int status = 0;
string command;
if (execute) {
command = "gnuplot ";
if (reader_on_stdin) command += "-persist ";
command += tmp + basename + ".plot";
if (verbose) clog << "! " << command << endl;
cin.sync();
status = system (command.c_str());
if (format != "") {
check_macro (file_exists (outfile_fmt), "! file \"" << outfile_fmt << "\" creation failed");
if (verbose) clog << "! file \"" << outfile_fmt << "\" created" << endl;
}
}
//
// clear gnuplot data
//
if (clean) {
command = "/bin/rm -f " + filelist;
if (verbose) clog << "! " << command << endl;
status = system (command.c_str());
}
return ods;
}
// ----------------------------------------------------------------------------
// vector field puts
// ----------------------------------------------------------------------------
template <class T>
odiststream&
visu_gnuplot_vector (odiststream& ods, const field_basic<T,sequential>& uh)
{
typedef typename geo_basic<T,sequential>::size_type size_type;
Float vscale = iorheo::getvectorscale(ods.os());
const geo_basic<T,sequential>& omega = uh.get_geo();
// TODO: non-isoparam => interpolate
check_macro (omega.get_piola_basis().degree() == uh.get_space().get_basis().degree(),
"gnuplot vector: unsupported non-isoparametric approx " << uh.get_space().get_basis().name());
size_type n_elt = omega.size();
size_type d = omega.dimension();
T diam_omega = norm (omega.xmax() - omega.xmin()); // characteristic length in omega
T h_moy = diam_omega/pow(n_elt,1./d);
space_basic<T,sequential> Xh (uh.get_geo(), "P"+std::to_string(uh.get_space().degree()));
field_basic<T,sequential> norm_uh = interpolate(Xh, norm(uh));
T norm_max_uh = norm_uh.max_abs(); // get max vector length
if (norm_max_uh + 1 == 1) norm_max_uh = 1;
#ifdef TODO
T scale = vscale*(h_moy/norm_max_uh);
#endif // TODO
size_type n_comp = uh.get_space().get_basis().size();
disarray<point_basic<T>, sequential> x = omega.get_nodes();
for (size_type inod = 0, nnod = x.size(); inod < nnod; inod++) {
point_basic<T> vi;
for (size_type i_comp = 0; i_comp < n_comp; i_comp++) {
size_type idof = n_comp*inod + i_comp;
vi[i_comp] = uh.dof(idof);
}
x[inod] += vscale*vi;
}
geo_basic<T,sequential> deformed_omega = omega;
deformed_omega.set_nodes(x);
space_basic<T,sequential> deformed_Vh (deformed_omega, norm_uh.get_space().get_basis().name());
field_basic<T,sequential> deformed_norm_uh (deformed_Vh);
std::copy (norm_uh.begin_dof(), norm_uh.end_dof(), deformed_norm_uh.begin_dof());
visu_gnuplot (ods, deformed_norm_uh);
return ods;
}
// ----------------------------------------------------------------------------
// switch
// ----------------------------------------------------------------------------
template <class T>
odiststream&
visu_gnuplot (odiststream& ods, const field_basic<T,sequential>& uh)
{
switch (uh.get_space().valued_tag()) {
case space_constant::scalar: visu_gnuplot_scalar (ods, uh); break;
case space_constant::vector: visu_gnuplot_vector (ods, uh); break;
default: error_macro ("do not known how to print " << uh.valued() << "-valued field");
}
return ods;
}
// ----------------------------------------------------------------------------
// instanciation in library
// ----------------------------------------------------------------------------
#define _RHEOLEF_instanciate(T) \
template odiststream& visu_gnuplot<T> (odiststream&, const field_basic<T,sequential>&);
_RHEOLEF_instanciate(Float)
#undef _RHEOLEF_instanciate
} // rheolef namespace
|