1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is sequential in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef/geo.h"
#include "rheolef/geo_domain.h"
#include "rheolef/rheostream.h"
#include "rheolef/iorheo.h"
#include "rheolef/rheostream.h"
namespace rheolef {
template <class T> idiststream& geo_get_vtk (idiststream& ips, geo_basic<T,sequential>& omega);
template <class T> idiststream& geo_get_bamg (idiststream& ips, geo_basic<T,sequential>& omega);
template <class T>
idiststream&
geo_basic<T,sequential>::get (idiststream& ips)
{
iorheo::flag_type format = iorheo::flags(ips.is()) & iorheo::format_field;
if (format [iorheo::vtk]) { return geo_get_vtk (ips,*this); }
if (format [iorheo::bamg]) { return geo_get_bamg (ips,*this); }
// else: standard .geo format:
// allocate a new geo_rep object (TODO: do a dynamic_cast ?)
geo_rep<T,sequential>* ptr = new_macro((geo_rep<T,sequential>));
ptr->get (ips);
base::operator= (ptr);
return ips;
}
/** ------------------------------------------------------------------------
* on any 3d geo_element K, set K.dis_iface(iloc) number
* ------------------------------------------------------------------------
*/
template <class T>
void
geo_rep<T,sequential>::set_element_side_index (size_type side_dim)
{
if (map_dimension() <= side_dim) return;
// ------------------------------------------------------------------------
// 1) ball(X) := { E; X is a vertex of E }
// ------------------------------------------------------------------------
index_set empty_set; // TODO: add a global allocator to empty_set
disarray<index_set,sequential> ball (geo_element_ownership(0), empty_set);
{
size_type isid = 0;
for (const_iterator iter = begin(side_dim), last = end(side_dim); iter != last; iter++, isid++) {
const geo_element& S = *iter;
for (size_type iloc = 0, nloc = S.size(); iloc < nloc; iloc++) {
size_type iv = S[iloc];
ball [iv] += isid;
}
}
}
// ------------------------------------------------------------------------
// 2) pour K dans partition(iproc)
// pour (dis_A,dis_B) arete de K
// set = dis_ball(dis_A) inter dis_ball(dis_B) = {dis_iedg}
// E = dis_edges(dis_iedg)
// => on numerote dis_iedg cette arete dans le geo_element K
// et on indique son orient en comparant a E, arete qui definit l'orient
// ------------------------------------------------------------------------
for (size_type dim = side_dim+1; dim <= base::_gs._map_dimension; dim++) {
for (iterator iter = begin(dim), last = end(dim); iter != last; iter++) {
geo_element& K = *iter;
for (size_type loc_isid = 0, loc_nsid = K.n_subgeo(side_dim); loc_isid < loc_nsid; loc_isid++) {
size_type loc_jv0 = K.subgeo_local_vertex (side_dim, loc_isid, 0);
size_type jv0 = K[loc_jv0];
index_set isid_set = ball [jv0]; // copy: will be intersected
for (size_type sid_jloc = 1, sid_nloc = K.subgeo_size (side_dim, loc_isid); sid_jloc < sid_nloc; sid_jloc++) {
size_type loc_jv = K.subgeo_local_vertex (side_dim, loc_isid, sid_jloc);
size_type jv = K[loc_jv];
const index_set& ball_jv = ball [jv];
isid_set.inplace_intersection (ball_jv);
}
check_macro (isid_set.size() == 1, "connectivity: side not found in the side set");
size_type isid = *(isid_set.begin());
const geo_element& S = get_geo_element(side_dim,isid);
if (side_dim == 1) {
// side: edge
size_type jv1 = K [K.subgeo_local_vertex (side_dim, loc_isid, 1)];
geo_element::orientation_type orient = S.get_edge_orientation (jv0, jv1);
K.edge_indirect (loc_isid).set (orient, isid);
} else { // side_dim == 2
geo_element::orientation_type orient;
geo_element::shift_type shift;
if (K.subgeo_size (side_dim, loc_isid) == 3) {
// side: triangle
size_type jv1 = K [K.subgeo_local_vertex (side_dim, loc_isid, 1)];
size_type jv2 = K [K.subgeo_local_vertex (side_dim, loc_isid, 2)];
S.get_orientation_and_shift (jv0, jv1, jv2, orient, shift);
} else {
// side: quadrangle
size_type jv1 = K [K.subgeo_local_vertex (side_dim, loc_isid, 1)];
size_type jv2 = K [K.subgeo_local_vertex (side_dim, loc_isid, 2)];
size_type jv3 = K [K.subgeo_local_vertex (side_dim, loc_isid, 3)];
S.get_orientation_and_shift (jv0, jv1, jv2, jv3, orient, shift);
}
K.face_indirect (loc_isid).set (orient, isid, shift);
}
}
}
}
}
// =========================================================================
// get
// =========================================================================
/// @brief io for geo
template <class T>
idiststream&
geo_rep<T,sequential>::get (idiststream& ips)
{
using namespace std;
check_macro (ips.good(), "bad input stream for geo.");
istream& is = ips.is();
// ------------------------------------------------------------------------
// 0) get header
// ------------------------------------------------------------------------
check_macro (dis_scatch(ips,ips.comm(),"\nmesh"), "input stream does not contains a geo.");
ips >> base::_version;
check_macro (base::_version == 4, "mesh format version 4 expected, but format version " << base::_version << " founded");
geo_header hdr;
ips >> hdr;
bool do_upgrade = iorheo::getupgrade(is);
if (do_upgrade || hdr.need_upgrade()) {
return get_upgrade (ips, hdr);
} else {
return get_standard (ips, hdr);
}
}
template <class T>
idiststream&
geo_rep<T,sequential>::get_standard (idiststream& ips, const geo_header& hdr)
{
using namespace std;
check_macro (ips.good(), "bad input stream for geo.");
istream& is = ips.is();
// ------------------------------------------------------------------------
// 1) store header infos in geo
// ------------------------------------------------------------------------
base::_have_connectivity = true;
base::_name = "unnamed";
base::_dimension = hdr.dimension;
base::_gs._map_dimension = hdr.map_dimension;
base::_sys_coord = hdr.sys_coord;
base::_piola_basis.reset_family_index (hdr.order);
size_type nnod = hdr.dis_size_by_dimension [0];
size_type n_edg = hdr.dis_size_by_dimension [1];
size_type n_fac = hdr.dis_size_by_dimension [2];
size_type n_elt = hdr.dis_size_by_dimension [base::_gs._map_dimension];
// ------------------------------------------------------------------------
// 2) get coordinates
// ------------------------------------------------------------------------
base::_node.resize (nnod);
if (base::_dimension > 0) {
base::_node.get_values (ips, _point_get<T>(geo_base_rep<T,sequential>::_dimension));
check_macro (ips.good(), "bad input stream for geo.");
}
base::_gs.node_ownership = base::_node.ownership();
// ------------------------------------------------------------------------
// 3) get elements
// ------------------------------------------------------------------------
if (base::_gs._map_dimension > 0) {
for (size_type variant = reference_element::first_variant_by_dimension(base::_gs._map_dimension);
variant < reference_element:: last_variant_by_dimension(base::_gs._map_dimension); variant++) {
geo_element::parameter_type param (variant, 1);
base::_geo_element [variant].resize (hdr.dis_size_by_variant [variant], param);
base::_geo_element [variant].get_values (ips);
base::_gs.ownership_by_variant [variant] = base::_geo_element [variant].ownership();
}
base::_gs.ownership_by_dimension [base::_gs._map_dimension] = distributor (n_elt, base::comm(), n_elt);
}
// ------------------------------------------------------------------------
// 4) check that nodes are numbered by increasing node_subgeo_dim
// ------------------------------------------------------------------------
// ICI va devenir obsolete car les noeuds seront numerotes par _numbering=Pk_numbering
{
std::vector<size_type> node_subgeo_dim (nnod, size_type(-1));
size_type prev_variant = 0;
for (iterator iter = begin(base::_gs._map_dimension), last = end(base::_gs._map_dimension); iter != last; iter++) {
geo_element& K = *iter;
check_macro (prev_variant <= K.variant(), "elements should be numbered by increasing variants (petqTPH)");
prev_variant = K.variant();
for (size_type d = 0; d <= base::_gs._map_dimension; d++) {
for (size_type loc_inod = K.first_inod(d), loc_nnod = K.last_inod(d); loc_inod < loc_nnod; loc_inod++) {
node_subgeo_dim [K[loc_inod]] = d;
}
}
}
size_type prev_node_dim = 0;
for (typename std::vector<size_type>::const_iterator iter = node_subgeo_dim.begin(), last = node_subgeo_dim.end();
iter != last; iter++) {
check_macro (prev_node_dim <= *iter, "nodes should be numbered by increasing subgeo dimension");
prev_node_dim = *iter;
}
}
// ------------------------------------------------------------------------
// 5) compute n_vert (n_vert < nnod when order > 1) and set element indexes (K.dis_ie & K.ios_dis_ie)
// ------------------------------------------------------------------------
size_type n_vert = 0;
if (base::_gs._map_dimension == 0) {
n_vert = nnod;
} else {
std::vector<size_t> is_vertex (nnod, 0);
size_type ie = 0;
for (iterator iter = begin(base::_gs._map_dimension), last = end(base::_gs._map_dimension); iter != last; iter++, ie++) {
geo_element& K = *iter;
K.set_ios_dis_ie (ie);
K.set_dis_ie (ie);
if (base::order() > 1) {
for (size_type iloc = 0, nloc = K.size(); iloc < nloc; iloc++) {
is_vertex [K[iloc]] = 1;
}
}
}
if (base::order() == 1) {
n_vert = nnod;
} else {
n_vert = accumulate (is_vertex.begin(), is_vertex.end(), 0);
}
}
// ------------------------------------------------------------------------
// 6) create vertex-element (0d elements)
// ------------------------------------------------------------------------
geo_element::parameter_type param (reference_element::p, 1);
base::_geo_element [reference_element::p].resize (n_vert, param);
size_type first_iv = base::_node.ownership().first_index();
{
size_type iv = 0;
for (iterator iter = begin(0), last = end(0); iter != last; iter++, iv++) {
geo_element& P = *iter;
P[0] = first_iv + iv;
P.set_dis_ie (first_iv + iv); // TODO: P[0] & dis_ie redundant for `p'
P.set_ios_dis_ie (first_iv + iv);
}
}
// ownership_by_dimension[0]: used by connectivity
base::_gs.ownership_by_variant [reference_element::p] = base::_geo_element [reference_element::p].ownership();
base::_gs.ownership_by_dimension [0] = base::_geo_element [reference_element::p].ownership();
// ------------------------------------------------------------------------
// 7) get faces & edge
// ------------------------------------------------------------------------
if (base::_gs._map_dimension > 0) {
for (size_type side_dim = base::_gs._map_dimension - 1; side_dim >= 1; side_dim--) {
for (size_type variant = reference_element::first_variant_by_dimension(side_dim);
variant < reference_element:: last_variant_by_dimension(side_dim); variant++) {
geo_element::parameter_type param (variant, 1);
base::_geo_element [variant].resize (hdr.dis_size_by_variant [variant], param);
base::_geo_element [variant].get_values (ips);
base::_gs.ownership_by_variant [variant] = base::_geo_element [variant].ownership();
}
size_type nsid = hdr.dis_size_by_dimension [side_dim];
base::_gs.ownership_by_dimension [side_dim] = distributor (nsid, base::comm(), nsid);
size_type isid = 0;
for (iterator iter = begin(side_dim), last = end(side_dim); iter != last; iter++, isid++) {
geo_element& S = *iter;
S.set_ios_dis_ie (isid);
S.set_dis_ie (isid);
}
}
}
// ------------------------------------------------------------------------
// 8) get domain, until end-of-file
// ------------------------------------------------------------------------
vector<index_set> ball [4];
domain_indirect_basic<sequential> dom;
while (dom.get (ips, *this, ball)) {
base::_domains.push_back (dom);
}
// ------------------------------------------------------------------------
// 9) set indexes on faces and edges of elements, for P2 approx
// ------------------------------------------------------------------------
set_element_side_index (1);
set_element_side_index (2);
// ------------------------------------------------------------------------
// 10) bounding box: _xmin, _xmax
// ------------------------------------------------------------------------
base::compute_bbox();
return ips;
}
// ----------------------------------------------------------------------------
// dump
// ----------------------------------------------------------------------------
template <class T>
void
geo_rep<T,sequential>::dump (std::string name) const {
std::ofstream os ((name + "-dump.geo").c_str());
odiststream ods (os, base::_node.ownership().comm());
put_geo (ods);
}
// ----------------------------------------------------------------------------
// read from file
// ----------------------------------------------------------------------------
template <class T>
void
geo_rep<T,sequential>::load (std::string filename, const communicator&)
{
idiststream ips;
ips.open (filename, "geo");
check_macro(ips.good(), "\"" << filename << "[.geo[.gz]]\" not found.");
get (ips);
std::string root_name = delete_suffix (delete_suffix(filename, "gz"), "geo");
std::string name = get_basename (root_name);
base::_name = name;
}
// ----------------------------------------------------------------------------
// instanciation in library
// ----------------------------------------------------------------------------
template class geo_rep<Float,sequential>;
template idiststream& geo_basic<Float,sequential>::get (idiststream&);
} // namespace rheolef
|