1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
#ifndef _BIGFLOAT_H
#define _BIGFLOAT_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// bigfloat<N> class with N digits precision
// as a remplacement for the double
//
// class bigfloat<N>
// class numeric_limits <bigfloat<N> >
// class numeric_flags <bigfloat<N> >
//
// author: Pierre.Saramito@imag.fr
//
// date: 25 january 2000
//
// IMPLEMENTATION NOTE:
// this is a wrapper class for cln_F:
// provides an interface comparable to double.
//
// TODO: ostream
// knows setprecision(n) but
// does not respond to
// scientific & fixed & uppercase
//
// TODO: complete the math lib, as IEEE
// -> see the blitz test suite.
//
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <cmath>
#include <cln/cln.h>
#ifdef _RHEOLEF_HAVE_GINAC
#include <ginac/ginac.h>
#endif // _RHEOLEF_HAVE_GINAC
#include "rheolef/numeric_limits.h"
#include "rheolef/numeric_flags.h"
#include "all_float_io.h"
#include <sstream>
template <int N>
class bigfloat {
public:
// allocators/deallocators
bigfloat(double x = 0);
bigfloat(const char* s);
bigfloat(int x);
bigfloat(long x);
bigfloat(unsigned int x);
bigfloat(unsigned long x);
// type conversions
operator double() const; // compiler do not send any warning, such as
operator int() const; // warning: initialization to `int' from `bigfloat' !!
#ifdef _RHEOLEF_HAVE_GINAC
operator GiNaC::ex() const;
#endif // _RHEOLEF_HAVE_GINAC
// assignments
bigfloat<N>& operator = (const bigfloat<N>&);
bigfloat<N>& operator = (const char*&);
bigfloat<N>& operator = (const double&);
bigfloat<N>& operator = (const int&);
bigfloat<N>& operator = (const long&);
bigfloat<N>& operator = (const unsigned int&);
bigfloat<N>& operator = (const unsigned long&);
// operators
template <int M>
friend bigfloat<M> operator - (const bigfloat<M>&);
# define bigfloat_binary_operator_basic(op,T1,T2) \
template <int M> \
friend bigfloat<M> operator op (const T1&, const T2&);
# define bigfloat_binary_operator(op) \
bigfloat_binary_operator_basic(op,bigfloat<M>,bigfloat<M>) \
bigfloat_binary_operator_basic(op,bigfloat<M>,double) \
bigfloat_binary_operator_basic(op,bigfloat<M>,int) \
bigfloat_binary_operator_basic(op,bigfloat<M>,long) \
bigfloat_binary_operator_basic(op,bigfloat<M>,unsigned int) \
bigfloat_binary_operator_basic(op,bigfloat<M>,unsigned long) \
bigfloat_binary_operator_basic(op,double,bigfloat<M>) \
bigfloat_binary_operator_basic(op,int,bigfloat<M>) \
bigfloat_binary_operator_basic(op,long,bigfloat<M>) \
bigfloat_binary_operator_basic(op,unsigned int,bigfloat<M>) \
bigfloat_binary_operator_basic(op,unsigned long,bigfloat<M>)
bigfloat_binary_operator(+)
bigfloat_binary_operator(-)
bigfloat_binary_operator(*)
bigfloat_binary_operator(/)
# undef bigfloat_binary_operator_basic
# undef bigfloat_binary_operator
// computed assignments
# define bigfloat_computed_assignment(op) \
bigfloat<N>& operator op(const bigfloat<N>&); \
bigfloat<N>& operator op(const double&); \
bigfloat<N>& operator op(const int&); \
bigfloat<N>& operator op(const long&); \
bigfloat<N>& operator op(const unsigned int&); \
bigfloat<N>& operator op(const unsigned long&);
bigfloat_computed_assignment(+=)
bigfloat_computed_assignment(-=)
bigfloat_computed_assignment(*=)
bigfloat_computed_assignment(/=)
#undef bigfloat_computed_assignment
// comparators
#define bigfloat_comparator_basic(op) \
template <int M> \
friend bool operator op (const bigfloat<M>&, const bigfloat<M>&);
#define bigfloat_comparator_both(op,T) \
template <int M> \
friend bool operator op (const bigfloat<M>&, const T&); \
template <int M> \
friend bool operator op (const T&, const bigfloat<M>&);
#define bigfloat_comparator(op) \
bigfloat_comparator_basic(op) \
bigfloat_comparator_both(op,double) \
bigfloat_comparator_both(op,int) \
bigfloat_comparator_both(op,long) \
bigfloat_comparator_both(op,unsigned int) \
bigfloat_comparator_both(op,unsigned long)
bigfloat_comparator(==)
bigfloat_comparator(!=)
bigfloat_comparator(<)
bigfloat_comparator(>)
bigfloat_comparator(<=)
bigfloat_comparator(>=)
#undef bigfloat_comparator
#undef bigfloat_comparator_basic
#undef bigfloat_comparator_both
// math functions
template <int M> friend bigfloat<M> fabs(const bigfloat<M>& x);
template <int M> friend bigfloat<M> sqrt(const bigfloat<M>& x);
template <int M> friend bigfloat<M> sin(const bigfloat<M>& x);
template <int M> friend bigfloat<M> cos(const bigfloat<M>& x);
template <int M> friend bigfloat<M> tan(const bigfloat<M>& x);
template <int M> friend bigfloat<M> log(const bigfloat<M>& x);
template <int M> friend bigfloat<M> exp(const bigfloat<M>& x);
template <int M> friend bigfloat<M> sinh(const bigfloat<M>& x);
template <int M> friend bigfloat<M> cosh(const bigfloat<M>& x);
template <int M> friend bigfloat<M> tanh(const bigfloat<M>& x);
template <int M> friend bigfloat<M> atan(const bigfloat<M>& x);
template <int M> friend bigfloat<M> acos(const bigfloat<M>& x);
template <int M> friend bigfloat<M> sqr(const bigfloat<M>& x);
template <int M> friend bigfloat<M> floor(const bigfloat<M>& x);
template <int M> friend bigfloat<M> ceil(const bigfloat<M>& x);
template <int M> friend bigfloat<M> trunc(const bigfloat<M>& x);
template <int M> friend bigfloat<M> round(const bigfloat<M>& x);
template <int M> friend bigfloat<M> log10(const bigfloat<M>& x);
template <int M> friend bigfloat<M> pow(const bigfloat<M>& x, const bigfloat<M>& y);
template <int M> friend bigfloat<M> pow(const bigfloat<M>& x, int n);
// inputs/outputs
template <int M> friend std::ostream& operator << (std::ostream& s, const bigfloat<M>& x);
template <int M> friend std::istream& operator >> (std::istream& s, bigfloat<M>& x);
// constants (may be const! -> core dump..)
#ifdef TODO
static bigfloat<N> Pi;
static bigfloat<N> one_on_log10;
#endif // TODO
// numeric limits
// Returns the smallest float format which guarantees at least
// n decimal digits in the mantissa (after the decimal point).
// Methode from: cln-1.0.2/src/float/misc/cl_float_format.cc
// Mindestens 1+n Dezimalstellen (inklusive Vorkommastelle)
// bedeutet mindestens ceiling((1+n)*ln(10)/ln(2)) Binarstellen.
// ln(10)/ln(2) = 3.321928095 = (binar) 11.01010010011010011110000100101111...
// = (binar) 100 - 0.10101101100101100001111011010001
// Durch diese Berechnungsmethode wird das Ergebnis sicher >= (1+n)*ln(10)/ln(2)
// sein, evtl. um ein paar Bit zu gross, aber nicht zu klein.
static const int digits
= ((1+N) << 2)
- ((1+N) >> 1) - ((1+N) >> 3) - ((1+N) >> 5)
- ((1+N) >> 6) - ((1+N) >> 8) - ((1+N) >> 9)
- ((1+N) >> 12) - ((1+N) >> 14) - ((1+N) >> 15);
static const int digits10 = N;
static bigfloat<N> epsilon();
static bigfloat<N> min();
static bigfloat<N> max();
// computation of some constants
static bigfloat<N> compute_pi();
// data
protected:
cln::cl_F _f;
// internal constructor
bigfloat(const cln::cl_F& y) : _f(y) {}
public:
// for debug
std::ostream& dump(std::ostream&);
};
//
// TODO: complete the fields...
//
namespace std {
template<int N>
class numeric_limits <bigfloat<N> > {
public:
static const int digits = bigfloat<N>::digits;
static const int digits10 = bigfloat<N>::digits10;
// have no representation...
static bigfloat<N> min () { return bigfloat<N>::min(); }
static bigfloat<N> max () { return bigfloat<N>::max(); }
static bigfloat<N> epsilon () { return bigfloat<N>::epsilon(); }
static bigfloat<N> denorm_min () { return bigfloat<N>::min(); }
// CLN does not implement features like NaNs, denormalized numbers
// and gradual underflow.
// If the exponent range of some floating-point type is too limited
// for your application, choose another floating-point type with
// larger exponent range.
#ifdef TODO
static const int min_exponent = INT_MIN;
static const int max_exponent = INT_MAX;
static const int min_exponent10 = INT_MIN;
static const int max_exponent10 = INT_MAX;
__NUMERIC_LIMITS_FLOAT(<bigfloat<N>)
#endif // TODO
};
} // namespace std
template <int N>
class numeric_flags<bigfloat<N> > {
public:
static bool output_as_double() { return _output_as_double; }
static void output_as_double(bool f) { _output_as_double = f; }
protected:
static bool _output_as_double;
};
// flag initialisation
template <int N>
bool numeric_flags<bigfloat<N> >::_output_as_double = false;
// numeric limits
template <int N>
inline
bigfloat<N>
bigfloat<N>::min()
{
return bigfloat<N>(most_negative_float(cln::float_format_t(digits)));
}
template <int N>
inline
bigfloat<N>
bigfloat<N>::max()
{
return bigfloat<N>(most_positive_float(cln::float_format_t(digits)));
}
template <int N>
inline
bigfloat<N>
bigfloat<N>::epsilon()
{
return bigfloat<N>(float_epsilon(cln::float_format_t(digits)));
}
// constants
template <int N>
inline
bigfloat<N>
bigfloat<N>::compute_pi()
{
return bigfloat<N>(cln::pi(cln::float_format_t(digits)));
}
// allocators/deallocators
#define bigfloat_cstor(T) \
template <int N> \
inline \
bigfloat<N>::bigfloat(T x) \
: _f(cln::cl_float(x, cln::float_format_t(digits))) \
{ \
}
bigfloat_cstor(double)
bigfloat_cstor(int)
bigfloat_cstor(unsigned int)
#undef bigfloat_cstor
template <int N>
inline
bigfloat<N>::bigfloat(const char* s)
: _f(cln::cl_float(cln::cl_F(s), cln::float_format_t(digits)))
{
}
// type conversions
template <int N>
inline
bigfloat<N>::operator double() const
{
return cln::double_approx(_f);
}
template <int N>
inline
bigfloat<N>::operator int() const
{
return int(double(*this));
}
#ifdef _RHEOLEF_HAVE_GINAC
template <int N>
inline
bigfloat<N>::operator GiNaC::ex() const
{
std::stringstream s;
s << std::setprecision(N) << *this;
// std::string sx = s.str();
GiNaC::ex x;
s >> x;
return x;
}
#endif // _RHEOLEF_HAVE_GINAC
// assignments
template <int N>
inline
bigfloat<N>&
bigfloat<N>::operator = (const bigfloat<N>& x)
{
_f = x._f;
return *this;
}
#define bigfloat_assignment(T) \
template <int N> \
inline \
bigfloat<N>& \
bigfloat<N>::operator = (const T& x) \
{ \
_f = cln::cl_float(x, cln::float_format_t(digits)); \
return *this; \
}
bigfloat_assignment(double)
bigfloat_assignment(int)
bigfloat_assignment(unsigned int)
#undef bigfloat_assignment
template <int N>
inline
bigfloat<N>&
bigfloat<N>::operator = (const char*& x)
{
_f = cln::cl_float(cln::cl_F(x), cln::float_format_t(digits));
return *this;
}
// operators
template <int N>
inline
bigfloat<N>
operator - (const bigfloat<N>& x)
{
return bigfloat<N>(-x._f);
}
# define bigfloat_binary_operator_basic(op) \
template <int N> \
inline \
bigfloat<N> \
operator op (const bigfloat<N>& x, const bigfloat<N>& y) \
{ \
return bigfloat<N>(x._f op y._f); \
}
# define bigfloat_binary_operator_left(op,T1) \
template <int N> \
inline \
bigfloat<N> \
operator op (const T1& x, const bigfloat<N>& y) \
{ \
return bigfloat<N>(x) op y; \
}
# define bigfloat_binary_operator_right(op,T2) \
template <int N> \
inline \
bigfloat<N> \
operator op (const bigfloat<N>& x, const T2& y) \
{ \
return x op bigfloat<N>(y); \
}
# define bigfloat_binary_operator_both(op,T) \
bigfloat_binary_operator_left(op,T) \
bigfloat_binary_operator_right(op,T)
# define bigfloat_binary_operator(op) \
bigfloat_binary_operator_basic(op) \
bigfloat_binary_operator_both(op,double) \
bigfloat_binary_operator_both(op,int) \
bigfloat_binary_operator_both(op,long) \
bigfloat_binary_operator_both(op,unsigned int) \
bigfloat_binary_operator_both(op,unsigned long)
bigfloat_binary_operator(+)
bigfloat_binary_operator(-)
bigfloat_binary_operator(*)
bigfloat_binary_operator(/)
# undef bigfloat_binary_operator_basic
# undef bigfloat_binary_operator
// computed assignments
# define bigfloat_computed_assignment_basic(op,T) \
template <int N> \
inline \
bigfloat<N>& \
bigfloat<N>::operator op##= (const T& x) \
{ \
(*this) = (*this) op x; \
return *this; \
}
# define bigfloat_computed_assignment(op) \
bigfloat_computed_assignment_basic(op,bigfloat<N>) \
bigfloat_computed_assignment_basic(op,double) \
bigfloat_computed_assignment_basic(op,int) \
bigfloat_computed_assignment_basic(op,long) \
bigfloat_computed_assignment_basic(op,unsigned int) \
bigfloat_computed_assignment_basic(op,unsigned long)
bigfloat_computed_assignment(+)
bigfloat_computed_assignment(-)
bigfloat_computed_assignment(*)
bigfloat_computed_assignment(/)
# undef bigfloat_computed_assignment_basic
# undef bigfloat_computed_assignment
// comparators
#define bigfloat_comparator_basic(op) \
template <int N> \
inline \
bool \
operator op (const bigfloat<N>& x, const bigfloat<N>& y) \
{ \
return (cln::compare(x._f,y._f) op 0); \
}
#define bigfloat_comparator_both(op,T) \
template <int N> \
inline \
bool \
operator op (const bigfloat<N>& x, const T& y) \
{ \
return (x op bigfloat<N>(y)); \
} \
template <int N> \
inline \
bool \
operator op (const T& x, const bigfloat<N>& y) \
{ \
return (bigfloat<N>(x) op y); \
}
#define bigfloat_comparator(op) \
bigfloat_comparator_basic(op) \
bigfloat_comparator_both(op,double) \
bigfloat_comparator_both(op,int) \
bigfloat_comparator_both(op,long) \
bigfloat_comparator_both(op,unsigned int) \
bigfloat_comparator_both(op,unsigned long)
bigfloat_comparator(==) \
bigfloat_comparator(!=) \
bigfloat_comparator(<) \
bigfloat_comparator(>) \
bigfloat_comparator(<=) \
bigfloat_comparator(>=)
#undef bigfloat_comparator_basic
#undef bigfloat_comparator_both
#undef bigfloat_comparator
// math functions
#define bigfloat_math_function(fct, cln_fct) \
template <int N> \
inline \
bigfloat<N> \
fct (const bigfloat<N>& x) \
{ \
return cln_fct (x._f); \
}
bigfloat_math_function(fabs, abs)
bigfloat_math_function(sqrt, sqrt)
bigfloat_math_function(sin, sin)
bigfloat_math_function(cos, cos)
bigfloat_math_function(tan, tan)
bigfloat_math_function(log, ln)
bigfloat_math_function(exp, exp)
bigfloat_math_function(sinh, sinh)
bigfloat_math_function(cosh, cosh)
bigfloat_math_function(tanh, tanh)
bigfloat_math_function(atan, atan)
bigfloat_math_function(sqr, square)
bigfloat_math_function(floor, ffloor)
bigfloat_math_function(ceil, fceiling)
bigfloat_math_function(trunc, ftruncate)
bigfloat_math_function(round, fround)
#undef bigfloat_math_function
template <int N>
inline
bigfloat<N>
log10 (const bigfloat<N>& x)
{
#ifdef TODO
// How to store one_on_log10 one time for all ?
return log(x) * bigfloat<N>::one_on_log10;
#else
return log(x) / log(bigfloat<N>(10));
#endif // TODO
}
template <int N>
inline
bigfloat<N>
pow (const bigfloat<N>& x, const bigfloat<N>& y)
{
if (y == trunc(y)) {
return pow (x, int(y));
}
if (x == bigfloat<N>(0)) return bigfloat<N>(1);
if (x < bigfloat<N>(0)) {
fatal_macro ("argument x="<<x<<" of pow(x,y) may be >= 0");
}
return exp(y*log(x));
}
template <int N>
inline
bigfloat<N>
pow (const bigfloat<N>& x, int n)
{
if (x == bigfloat<N>(0)) {
if (n == 0) return bigfloat<N>(1);
if (n < 0) return bigfloat<N>(1) / bigfloat<N>(0);
else return bigfloat<N>(0);
}
if (x < bigfloat<N>(0)) {
if (n % 2 == 1) {
return - exp(n*log(-x));
} else {
return exp(n*log(-x));
}
}
return exp(n*log(x));
}
template <int N>
inline
bigfloat<N>
acos (const bigfloat<N>& x)
{
return bigfloat<N>(cln::cl_float(cln::realpart(acos(x._f))));
}
// inputs/outputs
template<int N>
inline
std::istream&
operator >> (std::istream& s, bigfloat<N>& x)
{
return all_float_read (s, x);
}
template <int N>
std::ostream&
operator << (std::ostream& s, const bigfloat<N>& x)
{
return all_float_write (s, x);
}
// for debug
template <int N>
inline
std::ostream&
bigfloat<N>::dump(std::ostream& s)
{
return s << _f;
}
#endif //_BIGFLOAT_H
|