File: smart_pointer.h

package info (click to toggle)
rheolef 7.2-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 88,076 kB
  • sloc: cpp: 110,259; sh: 16,733; makefile: 5,438; python: 1,391; yacc: 218; javascript: 203; xml: 191; awk: 61; sed: 5
file content (482 lines) | stat: -rw-r--r-- 14,535 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#ifndef _RHEO_SMART_POINTER_H
#define _RHEO_SMART_POINTER_H
//
// This file is part of Rheolef.
//
// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
//
// Rheolef is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Rheolef is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Rheolef; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
// 
// =========================================================================
// author: Pierre.Saramito@imag.fr
// date:   27 january 2000, updated 11 may 2012.

namespace rheolef {
/**
@utilclassfile smart_pointer with true copy semantic 
@addindex reference counting
@addindex memory management
@addindex shallow copy
@addindex smart pointer

Description
===========
Here is a convenient way to implement a true copy semantic,
by using shallow copies and reference counting, in order to 
minimise memory copies.
This concept is generally related to the *smart pointer*
method for managing memory.

The true semantic copy is defined as follows:
if an object `A` is assigned to `B`,
such as `A = B`,
every further modification on `A` or `B`
does not modify the other.

Notice that this class differs from the `std::shared_ptr`
class that implements safe pointers without the true copy semantic.

Clone variant
=============
The smart_pointer_clone variant uses a `T* T::clone() const` member
function instead of the usual `T::T()` copy constructor for obtaining 
a true copy of the data.
This variant is motivated as follows:
when using hierarchies of derived classes (also known as polymorphic classes),
the usual copy is not possible because c++ copy constructors cannot be virtual,
so you cannot make a copy this way. 
This is a well-known problem with C++'s implementation of polymorphism.
 
We uses a solution to the non-virtual copy constructor problem which is
suggested by Ellis and Stroustrup in "The Annotated LRM". 
The solution is to require the 'T' class to provide a virtual clone method for every
class which makes a copy using new and the correct copy constructor,
returning the result as a pointer to the superclass 'T'.
Each subclass of 'T' overloads this function with its own variant
which copies its own type. Thus the copy operation is now virtual and
furthermore is localized to the individual subclass. 

Nocopy variant
==============
The smart_pointer_nocopy variant 
is designed for use on objects that
cannot (or must not) be copied. An example would be when managing an 
object that contains, say, a file handle. It is essential that this
not be copied because then you get the problem of deciding which copy
is responsible for closing the file. To avoid the problem, wrap the file
handle in a class and then manage a unique instance of it using a 
smart_pointer_nocopy.
This ensures that the file handle cannot be copied and is closed when the last alias is destroyed.
 
The interface to the nocopy variant is the same as smart_pointer
but with all operations that perform copying forbidden.
In fact, because all three variants are instances of a common superclass,
the forbidden methods do exist but will cause an error and exit if they are called.
 
The following modifiers cannot be used because they use copying
of the pointed-to object and will therefore cause an error:

        T* operator-> ();
        T& operator* ();
        T* pointer ();
        T& data ();
  
Reference
=========
    [1] A. Geron and F. Tawbi,
        Pour mieux developer avec C++ : design pattern, STL, RTTI et smart pointers,
        InterEditions, 1999. Page 118.
    [2] STLplus: clone and nocopy variants,
        http://stlplus.sourceforge.net/stlplus3/docs/smart_ptr.html

Example
=======
@snippet smart_pointer.h verbatim_smart_pointer_tst

Implementation
==============
@showfromfile
@snippet smart_pointer.h verbatim_smart_pointer
@snippet smart_pointer.h verbatim_smart_pointer_clone
@snippet smart_pointer.h verbatim_smart_pointer_nocopy
*/
} // namespace rheolef

#include "rheolef/compiler.h"

// -----------------------------------------------------------------------
// smart_pointer_base<T,Copy>
// -----------------------------------------------------------------------
namespace rheolef {

template <class T, class C>
class smart_pointer_base {
public:

  struct internal {};

// allocators:

  smart_pointer_base (T* p = 0);
  smart_pointer_base (const smart_pointer_base<T,C>&);
  smart_pointer_base (void* count, internal);
  smart_pointer_base<T,C>& operator= (const smart_pointer_base<T,C>&);
  ~smart_pointer_base ();

// accessors:

  const T* pointer    () const;
  const T& data       () const;
  const T* operator-> () const;
  const T& operator*  () const;

// modifiers:

  T* pointer    ();
  T& data       ();
  T* operator-> ();
  T& operator*  ();

// implementation:
private:
  struct counter {
    T*  _p;
    int _n;
    counter (T* p = 0);
    ~counter ();
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Weffc++"
    int operator++ ();
    int operator-- ();
#pragma GCC diagnostic pop
  private:
    counter (const counter&);
    counter& operator= (const counter&);
  };
  counter *_count;
public:
#ifndef TO_CLEAN
  int reference_counter() const { return _count != 0 ? _count->_n : -1; }
#endif // TO_CLEAN
  counter* get_count() const { return _count; }
};
// -----------------------------------------------------------------------
// counter: inlined
// -----------------------------------------------------------------------
template <class T, class C>
inline
smart_pointer_base<T,C>::counter::counter (T* p)
 : _p(p), _n(1)
{
}
template <class T, class C>
inline
smart_pointer_base<T,C>::counter::~counter ()
{
    delete_macro(_p);
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Weffc++"
template <class T, class C>
inline
int
smart_pointer_base<T,C>::counter::operator++ ()
{
    return ++_n;
}
template <class T, class C>
inline
int
smart_pointer_base<T,C>::counter::operator-- ()
{ 
    if (--_n != 0) return _n;
    delete(this);
    return 0;
}
#pragma GCC diagnostic pop
// -----------------------------------------------------------------------
// smart_pointer_base: inlined
// -----------------------------------------------------------------------
template <class T, class C>
inline
smart_pointer_base<T,C>::smart_pointer_base (T* p)
: _count(new_macro(counter(p)))
{
}
template <class T, class C>
inline
smart_pointer_base<T,C>::smart_pointer_base (void* count, internal)
: _count(static_cast<counter*>(count))
{
    ++(*_count);
}
template <class T, class C>
inline
smart_pointer_base<T,C>::smart_pointer_base (const smart_pointer_base& sp)
 : _count(sp._count)
{
    ++(*_count);
}
template <class T, class C>
inline
smart_pointer_base<T,C>::~smart_pointer_base ()
{
     if (_count != 0) { --(*_count); }
}
template <class T, class C>
inline
smart_pointer_base<T,C>&
smart_pointer_base<T,C>::operator= (const smart_pointer_base& sp)
{
    if (_count != sp._count) { 
	--(*_count);
	_count = sp._count;
	++(*_count);
    }
    return *this;
}
template <class T, class C>
inline
const T*
smart_pointer_base<T,C>::pointer () const
{
    return _count -> _p;
}
template <class T, class C>
inline
const T&
smart_pointer_base<T,C>::data () const
{
    return *pointer();
}
template <class T, class C>
inline
const T*
smart_pointer_base<T,C>::operator-> () const
{
    return pointer();
}
template <class T, class C>
inline
const T&
smart_pointer_base<T,C>::operator* () const
{
    return data();
}
template <class T, class C>
inline
T*
smart_pointer_base<T,C>::pointer ()
{
    // here is tthe true copy semantic:
    if (_count -> _p == 0) return 0;
    if (_count -> _n > 1) {
   	--(_count-> _n);
	T* q = C()(*(_count -> _p));
       	_count = new_macro (counter(q));
    }	
    return _count -> _p;
}
template <class T, class C>
inline
T*
smart_pointer_base<T,C>::operator-> ()
{
     return pointer();
}
template <class T, class C>
inline
T&
smart_pointer_base<T,C>::data ()
{
    return *pointer();
}
template <class T, class C>
inline
T&
smart_pointer_base<T,C>::operator* ()
{
    return data();
}
// -----------------------------------------------------------------------
// copy functors implementing the three possible copy semantics
// -----------------------------------------------------------------------
namespace details {

// constructor_copy uses the copy constructor of the object - used for simple types
template <typename T>
struct constructor_copy {
  T* operator() (const T& data) throw() { return new_macro(T(data)); }
};

// clone_copy uses the clone method of the object - used for polymorphic types
template <typename T>
struct clone_copy {
  T* operator() (const T& from) throw() { return from.clone(); }
};

// no_copy throws an exception - used for types that cannot be copied
template <typename T>
struct no_copy {
  T* operator() (const T& from) {
    error_macro ("no_copy functor called (illegal copy)");
    return 0;
  }
};

} // end namespace stlplus
// -----------------------------------------------------------------------
// smart_pointer<T>
// -----------------------------------------------------------------------
// [verbatim_smart_pointer]
template <typename T>
class smart_pointer : public smart_pointer_base<T, details::constructor_copy<T> > {
    typedef details::constructor_copy<T>     C;
    typedef smart_pointer_base<T,C>          base;
  public:
    typedef T                                handled_type;
    typedef typename base::internal          internal;
    smart_pointer (T* p = 0) : base (p) {}
    smart_pointer (void* count, internal i) : base(count,i) {}
    smart_pointer (const smart_pointer<T>& x) : base(x) {}
    smart_pointer<T>& operator= (const smart_pointer<T>& x) {
	base::operator= (x); return *this; }
    ~smart_pointer() {}
};
// [verbatim_smart_pointer]
// -----------------------------------------------------------------------
// smart_pointer_clone<T>
// -----------------------------------------------------------------------
// [verbatim_smart_pointer_clone]
template <typename T>
class smart_pointer_clone : public smart_pointer_base<T, details::clone_copy<T> > {
    typedef details::clone_copy<T>     C;
    typedef smart_pointer_base<T,C>    base;
  public:
    typedef T                          handled_type;
    typedef typename base::internal    internal;
    smart_pointer_clone (T* p = 0) : base (p) {}
    smart_pointer_clone (void* count, internal i) : base(count,i) {}
    smart_pointer_clone (const smart_pointer_clone<T>& x) : base(x) {}
    smart_pointer_clone<T>& operator= (const smart_pointer_clone<T>& x) {
	base::operator= (x); return *this; }
    ~smart_pointer_clone() {}
};
// [verbatim_smart_pointer_clone]
// -----------------------------------------------------------------------
// smart_pointer_nocopy<T>
// -----------------------------------------------------------------------
// [verbatim_smart_pointer_nocopy]
template <typename T>
class smart_pointer_nocopy : public smart_pointer_base<T, details::no_copy<T> > {
    typedef details::no_copy<T>        C;
    typedef smart_pointer_base<T,C>    base;
  public:
    typedef T                          handled_type;
    typedef typename base::internal    internal;
    smart_pointer_nocopy (T* p = 0) : base (p) {}
    smart_pointer_nocopy (void* count, internal i) : base(count,i) {}
    smart_pointer_nocopy (const smart_pointer_nocopy<T>& x) : base(x) {}
    smart_pointer_nocopy<T>& operator= (const smart_pointer_nocopy<T>& x) {
	base::operator= (x); return *this; }
    ~smart_pointer_nocopy() {}
};
// [verbatim_smart_pointer_nocopy]
}// namespace rheolef
#endif // _RHEO_SMART_POINTER_H

#ifdef  _RHEO_SMART_POINTER_TST_CC
// -----------------------------------------------------------------------
// smart_pointer_tst.cc : here for doxygen, to avoid INPUT in util/tst
// -----------------------------------------------------------------------
using namespace rheolef;
using namespace std;

// [verbatim_smart_pointer_tst]
// data representation (could be file "container_data.h")
typedef int T;
class container_data {
    private:  
        T *values;
        int n;
    public: 
	//!      IMPORTANT: 
	//! the copy constructor 
        //!       **MAY** 
	//! performs a complete copy
	//!
        container_data (const container_data& x)
         : values(new T[x.n]), n(x.n)
        { for (int i=0; i<n;i++) values[i]=x.values[i];}
        container_data& operator= (const container_data& x) {
          n = x.n;
          values = new T[n];
          for (int i=0; i<n;i++) values[i]=x.values[i];
	  return *this;
        }
        // a customized constructor
        explicit container_data(int n1)
         : values(new T[n1]), n(n1) {}

        ~container_data() { delete [] values; }

        // read and write accessors are separated
        const T& operator[](int i) const 
		    { return values[i]; }
              T& operator[](int i)       
		    { return values[i]; }
};
// an interface to data via the Objet class
//        that count occurrence (could be "container.h")
//
class container : private smart_pointer<container_data> {
public:
    // the customized cstor
    explicit container(int n = 0);

    // read/write accessors
    const T&  operator[](int i) const;
          T&  operator[](int i);
};
// here is the implementation of the interface
//  (could be "container.c")
//
container::container (int n)
: smart_pointer<container_data> (new container_data(n))
{}
const T&
container::operator[] (int i) const {
    // use read access data()
    return data().operator[] (i);
}
T&
container::operator[] (int i) {
    // use write access data() that check occurrence count
    return data().operator [] (i);
}
// test program
int main() {
    container A(10);
    A[1] = 1;
    container B = A;
    B[1] = 2;
    if (A[1] == B[1]) {
	    std::cerr << "fatal: It is not a true copy semantic." << std::endl;
	exit(1);
    }
    std::cerr << "It seems to be a true copy semantic." << std::endl;
}
// [verbatim_smart_pointer_tst]
#endif // _RHEO_SMART_POINTER_TST_CC