1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
#ifndef _RHEOLEF_BASIS_VISU_GNUPLOT_ICC
#define _RHEOLEF_BASIS_VISU_GNUPLOT_ICC
// file automatically generated by: ../../../rheolef/nfem/pbasis/make_basis_list_cxx.sh
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef/basis_raw.h"
#include "rheolef/iorheo.h"
#include "rheolef/rheostream.h"
namespace rheolef { namespace details {
using namespace std;
template<class Basis>
void
put (const Basis& b, ostream& os, reference_element hat_K)
{
typedef typename Basis::size_type size_type;
typedef typename Basis::value_type T;
bool verbose = iorheo::getverbose(os);
bool clean = iorheo::getclean(os);
bool execute = iorheo::getexecute(os);
size_type nsub = iorheo::getsubdivide(os);
if (nsub <= 1) nsub = 20; // default value
size_type loc_ndof = reference_element::n_node(hat_K.variant(), b.degree());
string basename = "basis-" + b.name() + "-" + hat_K.name();
string filelist;
// --------------------
// .plot
// --------------------
string plot_name = basename + ".plot";
string gdat_name = basename + ".gdat";
ofstream plot (plot_name.c_str());
cerr << "! file \"" << plot_name << "\" created" << endl;
filelist += " \"" + plot_name + "\"";
size_t d = hat_K.dimension();
check_macro (d==1 || d==2, "unsupported dimension " << d);
plot << "gdat = \"" << gdat_name << "\"" << endl
<< "set colors classic" << endl
<< "set size square" << endl
;
if (d == 1) {
plot << "plot \\" << endl
;
for (size_t loc_idof = 0; loc_idof < loc_ndof; ++loc_idof) {
plot << " gdat u 1:"<<loc_idof+2 << " t \"L" << loc_idof+1 << "\" w l";
if (loc_idof+1 != loc_ndof) {
plot << ",\\";
}
plot << endl;
}
} else if (d == 2) {
plot << "pause_duration = 0.5" << endl
<< "d = 2" << endl
<< "i = d+1" << endl
<< "imax = d+" << loc_ndof << endl
<< "set hidden3d back # offset 1 trianglepattern 3 undefined 1 altdiagonal bentover" << endl
<< "set linetype 1 lw 1 lc rgb \"#000000\"" << endl
<< "set linetype 2 lw 1 lc rgb \"#0000ff\"" << endl
<< "splot gdat u 1:2:i t sprintf(\"P%d\",i-d) w l lc 0" << endl
<< "load \"" << basename << ".loop\"" << endl
;
string loop_name = basename + ".loop";
ofstream loop (loop_name.c_str());
cerr << "! file \"" << loop_name << "\" created" << endl;
filelist += " " + loop_name;
loop << "i = i+1" << endl
<< "if (i <= imax) \\" << endl
<< " pause pause_duration; \\" << endl
<< " replot; \\" << endl
<< " reread" << endl
;
}
plot << "pause -1 \"<return>\"" << endl;
plot.close();
// --------------------
// .gdat
// --------------------
ofstream gdat (gdat_name.c_str());
cerr << "! file \"" << gdat_name << "\" created" << endl;
filelist += " \"" + gdat_name + "\"";
gdat << setprecision(std::numeric_limits<T>::digits10)
<< "# basis " << b.name() << endl
<< "# element " << hat_K.name() << endl
<< "# degree " << b.degree() << endl
;
Eigen::Matrix<T,Eigen::Dynamic,1> value;
switch (hat_K.variant()) {
case reference_element::p: {
break;
}
case reference_element::e: {
gdat << "# size " << loc_ndof << endl
<< "# x";
for (size_t loc_idof = 0; loc_idof < loc_ndof; ++loc_idof) {
gdat << " L" << loc_idof+1;
}
gdat << endl;
for (size_type i = 0; i <= nsub; i++) {
point_basic<T> hat_x (T(int(i))/T(int(nsub)));
b.evaluate (hat_K, hat_x, value);
gdat << hat_x[0];
for (size_t loc_idof = 0, loc_ndof = value.size(); loc_idof < loc_ndof; ++loc_idof) {
gdat << " " << value[loc_idof];
}
gdat << endl;
}
break;
}
case reference_element::t: {
for (size_type j = 0; j <= nsub; j++) {
for (size_type i1 = 0; i1 <= nsub; i1++) {
size_type i = std::min(i1, nsub-j);
point_basic<T> hat_x (T(int(i))/T(int(nsub)), T(int(j))/T(int(nsub)));
b.evaluate (hat_K, hat_x, value);
gdat << hat_x[0] << " " << hat_x[1];
for (size_t loc_idof = 0, loc_ndof = value.size(); loc_idof < loc_ndof; ++loc_idof) {
gdat << " " << value[loc_idof];
}
gdat << endl;
}
gdat << endl;
}
break;
}
case reference_element::q: {
for (size_type j = 0; j <= nsub; j++) {
for (size_type i = 0; i <= nsub; i++) {
point_basic<T> hat_x (2*T(int(i))/T(int(nsub))-1, 2*T(int(j))/T(int(nsub))-1);
b.evaluate (hat_K, hat_x, value);
gdat << hat_x[0] << " " << hat_x[1];
for (size_t loc_idof = 0, loc_ndof = value.size(); loc_idof < loc_ndof; ++loc_idof) {
gdat << " " << value[loc_idof];
}
gdat << endl;
}
gdat << endl;
}
break;
}
#ifdef TODO // 3D visu ?
case reference_element::T: {
for (size_type k = 0; k <= nsub; k++) {
for (size_type j = 0; j+k <= nsub; j++) {
for (size_type i = 0; i+j+k <= nsub; i++) {
point_basic<T> hat_x (T(i)/T(nsub), T(j)/T(nsub), T(k)/T(nsub));
b.eval_lagrange (hat_x, hat_K, degree, sopt, inv_vdm, value);
Lambda = max(Lambda, norm(value,1));
}
}
}
return Lambda;
}
case reference_element::P: {
for (size_type k = 0; k <= degree; k++) {
for (size_type j = 0; j <= degree; j++) {
for (size_type i = 0; i+j <= degree; i++) {
point_basic<T> hat_x (T(i)/T(nsub), T(j)/T(nsub), 2*T(k)/T(nsub)-1);
b.eval_lagrange (hat_x, hat_K, degree, sopt, inv_vdm, value);
Lambda = max(Lambda, norm(value,1));
}
}
}
break;
}
case reference_element::H: {
for (size_type k = 0; k <= degree; k++) {
for (size_type j = 0; j <= degree; j++) {
for (size_type i = 0; i <= degree; i++) {
point_basic<T> hat_x (2*T(i)/T(nsub)-1, 2*T(j)/T(nsub), 2*T(k)/T(nsub)-1);
b.eval_lagrange (hat_x, hat_K, degree, sopt, inv_vdm, value);
Lambda = max(Lambda, norm(value,1));
}
}
}
break;
}
#endif // TODO
default:
error_macro ("unexpected element type `"<<hat_K.name()<<"'");
}
// -----------
if (execute) {
// -----------
string command = "gnuplot \"" + plot_name + "\"";
if (verbose) clog << "! " << command << endl;
int status = system (command.c_str());
}
// -----------
if (clean) {
// -----------
string command = "/bin/rm -f " + filelist;
if (verbose) clog << "! " << command << endl;
int status = system (command.c_str());
}
}
}} // namespace rheolef::details
#endif // _RHEOLEF_BASIS_VISU_GNUPLOT_ICC
|