File: csr_seq.cc

package info (click to toggle)
rheolef 7.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 88,200 kB
  • sloc: cpp: 110,259; sh: 16,733; makefile: 5,406; python: 1,391; yacc: 218; javascript: 203; xml: 191; awk: 61; sed: 5
file content (505 lines) | stat: -rw-r--r-- 17,783 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

#include "rheolef/csr.h"
#include "rheolef/asr.h"
#include "rheolef/asr_to_csr.h"
#include "rheolef/msg_util.h"
#include "rheolef/csr_amux.h"
#include "rheolef/csr_cumul_trans_mult.h"
using namespace std;
namespace rheolef {
// ----------------------------------------------------------------------------
// class member functions
// ----------------------------------------------------------------------------

template<class T>
csr_rep<T,sequential>::csr_rep(const distributor& row_ownership, const distributor& col_ownership, size_type nnz1) 
 : vector_of_iterator<pair_type>(row_ownership.size()+1),
   _row_ownership (row_ownership),
   _col_ownership (col_ownership),
   _data (nnz1),
   _is_symmetric (false),
   _is_definite_positive (false),
   _pattern_dimension (0)
{
}
template<class T>
void
csr_rep<T,sequential>::resize (const distributor& row_ownership, const distributor& col_ownership, size_type nnz1) 
{
   vector_of_iterator<pair_type>::resize (row_ownership.size()+1);
   _row_ownership = row_ownership;
   _col_ownership = col_ownership;
   _data.resize (nnz1);
   // first pointer points to the beginning of the data:
   vector_of_iterator<pair_type>::operator[](0) = _data.begin().operator->();
}
template<class T>
csr_rep<T,sequential>::csr_rep(size_type loc_nrow1, size_type loc_ncol1, size_type loc_nnz1) 
 : vector_of_iterator<pair_type> (loc_nrow1+1),
   _row_ownership (distributor::decide, communicator(), loc_nrow1),
   _col_ownership (distributor::decide, communicator(), loc_ncol1),
   _data (loc_nnz1),
   _is_symmetric (false),
   _is_definite_positive (false),
   _pattern_dimension (0)
{
}
template<class T>
void
csr_rep<T,sequential>::resize (size_type loc_nrow1, size_type loc_ncol1, size_type loc_nnz1)
{
   vector_of_iterator<pair_type>::resize (loc_nrow1+1);
   _row_ownership = distributor (distributor::decide, communicator(), loc_nrow1);
   _col_ownership = distributor (distributor::decide, communicator(), loc_ncol1);
   _data.resize (loc_nnz1);
   // first pointer points to the beginning of the data:
   vector_of_iterator<pair_type>::operator[](0) = _data.begin().operator->();
}
template<class T>
csr_rep<T,sequential>::csr_rep(const csr_rep<T,sequential>& b)
 : vector_of_iterator<pair_type>(b.nrow()+1),
   _row_ownership (b.row_ownership()),
   _col_ownership (b.col_ownership()),
   _data(b._data),
   _is_symmetric (b._is_symmetric),
   _is_definite_positive (b._is_definite_positive),
   _pattern_dimension (b._pattern_dimension)
{
  // physical copy of csr
  const_iterator ib = b.begin();
  iterator       ia = begin();
  ia[0] = _data.begin().operator->();
  for (size_type i = 0, n = b.nrow(); i < n; i++) {
    ia [i+1] = ia[0] + (ib[i+1] - ib[0]);
  }
}
template<class T>
template<class A>
void
csr_rep<T,sequential>::build_from_asr (const asr<T,sequential,A>& a)
{
  resize (a.row_ownership(), a.col_ownership(), a.nnz());
  typedef std::pair<size_type,T>                pair_type;
  typedef std::pair<size_type,T>                const_pair_type;
  //typedef typename asr<T>::row_type::value_type const_pair_type;
  asr_to_csr (
	a.begin(),
        a.end(), 
	always_true<const_pair_type>(), 
	pair_identity<const_pair_type,pair_type>(), 
        vector_of_iterator<pair_type>::begin(), 
        _data.begin());
} 
template<class T>
odiststream&
csr_rep<T,sequential>::put_matrix_market (odiststream& ods, size_type first_dis_i) const
{
  std::ostream& os = ods.os();
  os << setprecision (std::numeric_limits<T>::digits10)
     << "%%MatrixMarket matrix coordinate real general" << std::endl
     << nrow() << " " << ncol() << " " << nnz() << endl;
  const_iterator ia = begin();
  const size_type base = 1;
  for (size_type i = 0, n = nrow(); i < n; i++) {
    for (const_data_iterator iter = ia[i], last = ia[i+1]; iter != last; ++iter) {
      os << i+first_dis_i+base << " "
         << (*iter).first+base << " "
         << (*iter).second << endl;	
    }
  }
  return ods;
}
template<class T>
odiststream&
csr_rep<T,sequential>::put_sparse_matlab (odiststream& ods, size_type first_dis_i) const
{
  std::ostream& os = ods.os();
  std::string name = iorheo::getbasename(ods.os());
  if (name == "") name = "a";
  os << setprecision (std::numeric_limits<T>::digits10)
     << name << " = spalloc(" << nrow() << "," << ncol() << "," << nnz() << ");" << endl;
  const_iterator ia = begin();
  const size_type base = 1;
  for (size_type i = 0, n = nrow(); i < n; i++) {
    for (const_data_iterator iter = ia[i], last = ia[i+1]; iter != last; ++iter) {
      os << name << "(" << i+first_dis_i+base << "," << (*iter).first+base << ") = "
         << (*iter).second << ";" << endl;	
    }
  }
  return ods;
}
template<class T>
odiststream&
csr_rep<T,sequential>::put (odiststream& ods, size_type first_dis_i) const
{
    iorheo::flag_type format = iorheo::flags(ods.os()) & iorheo::format_field;
    if (format [iorheo::matlab] || format [iorheo::sparse_matlab]) 
					{ return put_sparse_matlab   (ods,first_dis_i); }
    // default is matrix market format
    return put_matrix_market (ods,first_dis_i);
}
template<class T>
void
csr_rep<T,sequential>::dump (const string& name, size_type first_dis_i) const
{
    std::ofstream os (name.c_str());
    std::cerr << "! file \"" << name << "\" created." << std::endl;
    odiststream ods(os);
    put (ods);
}
// ----------------------------------------------------------------------------
// basic linear algebra
// ----------------------------------------------------------------------------

template<class T>
void
csr_rep<T,sequential>::mult(
    const vec<T,sequential>& x,
    vec<T,sequential>&       y)
    const
{
    check_macro (x.size() == ncol(), "csr*vec: incompatible csr("<<nrow()<<","<<ncol()<<") and vec("<<x.size()<<")");
    csr_amux (
        vector_of_iterator<pair_type>::begin(), 
        vector_of_iterator<pair_type>::end(), 
        x.begin(), 
        details::generic_set_op(),
        y.begin());
}
template<class T>
void
csr_rep<T,sequential>::trans_mult(
    const vec<T,sequential>& x,
    vec<T,sequential>&       y)
    const
{
    // reset y and then cumul
    check_macro (x.size() == nrow(), "csr.trans_mult(vec): incompatible csr("<<nrow()<<","<<ncol()<<") and vec("<<x.size()<<")");
    std::fill (y.begin(), y.end(), T(0));
    csr_cumul_trans_mult (
        vector_of_iterator<pair_type>::begin(), 
        vector_of_iterator<pair_type>::end(), 
        x.begin(), 
        details::generic_set_plus_op(),
        y.begin());
}
template<class T>
csr_rep<T,sequential>&
csr_rep<T,sequential>::operator*= (const T& lambda)
{
  iterator ia = begin();
  for (data_iterator p = ia[0], last_p = ia[nrow()]; p != last_p; p++) {
    (*p).second *= lambda;
  }
  return *this;
}
// ----------------------------------------------------------------------------
// expression c=a+b and c=a-b with a temporary c=*this
// ----------------------------------------------------------------------------
template<class T>
template<class BinaryOp>
void
csr_rep<T,sequential>::assign_add (
    const csr_rep<T,sequential>& a, 
    const csr_rep<T,sequential>& b,
    BinaryOp binop)
{
    check_macro (a.nrow() == b.nrow() && a.ncol() == b.ncol(),
	"incompatible csr add(a,b): a("<<a.nrow()<<":"<<a.ncol()<<") and "
	"b("<<b.nrow()<<":"<<b.ncol()<<")");
    //
    // first pass: compute nnz_c and resize
    //
    size_type nnz_c = 0;
    const size_type infty = std::numeric_limits<size_type>::max();
    const_iterator ia = a.begin();
    const_iterator ib = b.begin();
    for (size_type i = 0, n = a.nrow(); i < n; i++) {
        for (const_data_iterator iter_jva = ia[i], last_jva = ia[i+1],
                                 iter_jvb = ib[i], last_jvb = ib[i+1];
	    iter_jva != last_jva || iter_jvb != last_jvb; ) {

            size_type ja = iter_jva == last_jva ? infty : (*iter_jva).first;
            size_type jb = iter_jvb == last_jvb ? infty : (*iter_jvb).first;
	    if (ja == jb) {
		iter_jva++;
		iter_jvb++;
	    } else if (ja < jb) {
		iter_jva++;
            } else {
		iter_jvb++;
            }
	    nnz_c++;
  	}
    }
    resize (a.row_ownership(), b.col_ownership(), nnz_c);
    data_iterator iter_jvc = _data.begin().operator->();
    iterator ic = begin();
    *ic++ = iter_jvc;
    //
    // second pass: add and store in c
    //
    for (size_type i = 0, n = a.nrow(); i < n; i++) {
        for (const_data_iterator iter_jva = ia[i], last_jva = ia[i+1],
                                 iter_jvb = ib[i], last_jvb = ib[i+1];
	    iter_jva != last_jva || iter_jvb != last_jvb; ) {

            size_type ja = iter_jva == last_jva ? infty : (*iter_jva).first;
            size_type jb = iter_jvb == last_jvb ? infty : (*iter_jvb).first;
	    if (ja == jb) {
		*iter_jvc++ = std::pair<size_type,T> (ja, binop((*iter_jva).second, (*iter_jvb).second));
		iter_jva++;
		iter_jvb++;
	    } else if (ja < jb) {
		*iter_jvc++ = std::pair<size_type,T> (ja, binop((*iter_jva).second, T(0)));
		iter_jva++;
            } else {
		*iter_jvc++ = std::pair<size_type,T> (jb, binop(T(0), (*iter_jvb).second));
		iter_jvb++;
            }
  	}
        *ic++ = iter_jvc;
    }
    set_symmetry          (a.is_symmetric() && b.is_symmetric());
    set_pattern_dimension (std::max(a.pattern_dimension(), b.pattern_dimension()));
    set_definite_positive (a.is_definite_positive() || b.is_definite_positive());
    // perhaps too optimist for definite_positive: should be ajusted before calling a solver
}
// ----------------------------------------------------------------------------
// trans(a)
// ----------------------------------------------------------------------------
/*@! 
 \vfill \pagebreak \mbox{} \vfill \begin{algorithm}[h]
  \caption{{\tt sort}: sort rows by increasing column order}
  \begin{algorithmic}
    \INPUT {the matrix in CSR format}
      ia(0:nrow), ja(0:nnz-1), a(0:nnz-1)
    \ENDINPUT
    \OUTPUT {the sorted CSR matrix}
      iao(0:nrow), jao(0:nnzl-1), ao(0:nnzl-1)
    \ENDOUTPUT
    \BEGIN 
      {\em first: reset iao} \\
      \FORTO {i := 0} {nrow}
	  iao(i) := 0;
      \ENDFOR
	
      {\em second: compute lengths from pointers} \\
      \FORTO {i := 0} {nrow-1}
        \FORTO {p := ia(i)} {ia(i+1)-1}
	    iao (ja(p)+1)++;
        \ENDFOR
      \ENDFOR

      {\em third: compute pointers from lengths} \\
      \FORTO {i := 0} {nrow-1}
	  iao(i+1) += iao(i)
      \ENDFOR

      {\em fourth: copy values} \\
      \FORTO {i := 0} {nrow-1}
        \FORTO {p := ia(i)} {ia(i+1)-1}
          j := ja(p) \\
	  q := iao(j) \\
	  jao(q) := i \\
	  ao(q) := a(p) \\
	  iao (j)++
        \ENDFOR
      \ENDFOR

      {\em fiveth: reshift pointers} \\
      \FORTOSTEP {i := nrow-1} {0} {-1}
	iao(i+1) := iao(i);
      \ENDFOR
      iao(0) := 0
    \END
 \end{algorithmic} \end{algorithm}
 \vfill \pagebreak \mbox{} \vfill
*/

// NOTE: transposed matrix has always rows sorted by increasing column indexes
//       even if original matrix has not
template<class T>
void
csr_rep<T,sequential>::build_transpose (csr_rep<T,sequential>& b) const
{
  b.resize (col_ownership(), row_ownership(), nnz()); 

  // first pass: set ib(*) to ib(0)
  iterator ib = b.begin();
  for (size_type j = 0, m = b.nrow(); j < m; j++) {
    ib[j+1] = ib[0];
  }
  // second pass: compute lengths of row(i) of a^T in ib(i+1)-ib(0)
  const_iterator ia = begin();
  for (size_type i = 0, n = nrow(); i < n; i++) {
    for (const_data_iterator p = ia[i], last_p = ia[i+1]; p != last_p; p++) {
      size_type j = (*p).first;
      ib [j+1]++;
    }
  }
  // third pass: compute pointers from lengths
  for (size_type j = 0, m = b.nrow(); j < m; j++) {
    ib [j+1] += (ib[j]-ib[0]);
  }
  // fourth pass: store values
  data_iterator q0 = ib[0];
  for (size_type i = 0, n = nrow(); i < n; i++) {
    for (const_data_iterator p = ia[i], last_p = ia[i+1]; p != last_p; p++) {
      size_type j = (*p).first;
      data_iterator q = ib[j];
      (*q).first  = i;
      (*q).second = (*p).second;
      ib[j]++;
    }
  }
  // fiveth: shift pointers
  for (long int j = b.nrow()-1; j >= 0; j--) {
    ib[j+1] = ib[j];
  }
  ib[0] = q0;
}
// ----------------------------------------------------------------------------
// set symmetry by check
// ----------------------------------------------------------------------------
template<class T>
void
csr_rep<T,sequential>::set_symmetry_by_check (const T& tol) const
{
  if (nrow() != ncol()) {
    set_symmetry(false);
    return;
  }
  // check if a-trans(a) == 0 up to machine prec
  csr_rep<T,sequential> at, d;
  build_transpose (at);
  d.assign_add (*this, at, std::minus<T>());
  set_symmetry(d.max_abs() <= tol);
}
// ----------------------------------------------------------------------------
// expression c=a*b with a temporary c=*this
// ----------------------------------------------------------------------------
// compute the sparse size of c=a*b
template<class T>
typename csr_rep<T,sequential>::size_type
csr_csr_mult_size (
    const csr_rep<T,sequential>& a,
    const csr_rep<T,sequential>& b)
{
  typedef typename csr_rep<T,sequential>::size_type size_type;
  typename csr_rep<T,sequential>::const_iterator ia = a.begin(), ib = b.begin();
  size_type nnz_c = 0;
  for (size_type i = 0, n = a.nrow(); i < n; i++) {
    std::set<size_type> y;
    for (typename csr<T>::const_data_iterator ap = ia[i], last_ap = ia[i+1]; ap != last_ap; ++ap) {
      size_type j = (*ap).first;
      typename std::set<size_type>::iterator iter_y = y.begin();
      for (typename csr<T>::const_data_iterator bp = ib[j], last_bp = ib[j+1]; bp != last_bp; ++bp) {
        size_type k = (*bp).first;
	iter_y = y.insert(iter_y, k);
      }
    }
    nnz_c += y.size();
  }
  return nnz_c;
}
// compute the values of the sparse matrix c=a*b
template<class T>
static
void
csr_csr_mult (
    const csr_rep<T,sequential>& a,
    const csr_rep<T,sequential>& b,
          csr_rep<T,sequential>& c)
{
  typedef typename csr_rep<T,sequential>::size_type      size_type;
  typename csr_rep<T,sequential>::const_iterator ia = a.begin(), ib = b.begin();
  typename csr_rep<T,sequential>::iterator       ic = c.begin();
  for (size_type i = 0, n = a.nrow(); i < n; i++) {
    std::map<size_type,T> y;
    for (typename csr<T>::const_data_iterator ap = ia[i], last_ap = ia[i+1]; ap != last_ap; ++ap) {
      size_type j    = (*ap).first;
      const T&  a_ij = (*ap).second;
      typename std::map<size_type,T>::iterator prev_y = y.begin();
      for (typename csr<T>::const_data_iterator bp = ib[j], last_bp = ib[j+1]; bp != last_bp; ++bp) {
        size_type k    = (*bp).first;
        const T&  b_jk = (*bp).second;
	T value = a_ij*b_jk;
        typename std::map<size_type,T>::iterator curr_y = y.find(k);
        if (curr_y == y.end()) { 
          // create a new (i,k,value) entry in matrix C
	  y.insert (prev_y, std::pair<size_type,T>(k, value));
        } else {
          // increment an existing (i,k,value) entry in matrix C
          (*curr_y).second += value;
          prev_y = curr_y;
        }
      }
    }
    ic[i+1] = ic[i] + y.size();
    // copy the y temporary into the i-th row of C:
    typename std::map<size_type,T>::const_iterator iter_y = y.begin();
    for (typename csr<T>::data_iterator cp = ic[i], last_cp = ic[i+1]; cp != last_cp; ++cp, ++iter_y) {
	*cp = *iter_y;
    }
  }
  // propagate flags ; cannot stat yet for symmetry and positive_definite
  c.set_pattern_dimension (std::max(a.pattern_dimension(), b.pattern_dimension()));
}
template<class T>
void
csr_rep<T,sequential>::assign_mult (
    const csr_rep<T,sequential>& a, 
    const csr_rep<T,sequential>& b)
{
  size_type nnz_c = csr_csr_mult_size (a, b);
  resize (a.row_ownership(), b.col_ownership(), nnz_c);
  csr_csr_mult (a, b, *this);
}
// ----------------------------------------------------------------------------
// instanciation in library
// ----------------------------------------------------------------------------
#ifndef _RHEOLEF_USE_HEAP_ALLOCATOR
#define _RHEOLEF_instanciate_class(T) \
template void csr_rep<T,sequential>::build_from_asr (const asr<T,sequential,std::allocator<T> >&);
#else // _RHEOLEF_USE_HEAP_ALLOCATOR
#define _RHEOLEF_instanciate_class(T) \
template void csr_rep<T,sequential>::build_from_asr (const asr<T,sequential,std::allocator<T> >&);	\
template void csr_rep<T,sequential>::build_from_asr (const asr<T,sequential,heap_allocator<T> >&);
#endif // _RHEOLEF_USE_HEAP_ALLOCATOR

#define _RHEOLEF_instanciate(T) \
template class csr_rep<T,sequential>;					\
template void csr_rep<T,sequential>::assign_add (			\
	const csr_rep<T,sequential>&,					\
	const csr_rep<T,sequential>&,					\
	      std::plus<T>);						\
template void csr_rep<T,sequential>::assign_add (			\
	const csr_rep<T,sequential>&,					\
	const csr_rep<T,sequential>&,					\
	std::minus<T>);							\
_RHEOLEF_instanciate_class(T)

_RHEOLEF_instanciate(Float)

} // namespace rheolef